1.3 第1课时 正方形的性质1

合集下载

1.3第1课时 正方形的性质(数学北师大版九年级上册)

1.3第1课时  正方形的性质(数学北师大版九年级上册)

A
D
解:BE=DF,且BE⊥DF.理由如下:
(1)∵四边形ABCD是正方形.
∴BC=DC,∠BCE =90° .
(正方形的四条边都相等,四个角都是直角)
B
∴∠DCF=180°-∠BCE=180°-90°=90°.
E
F C
∴∠BCE=∠DCF.
又∵CE=CF.
∴△BCE≌△DCF. A
∴BE=DF.
6.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD 四个顶点分别在四条平行线上,则正方形的面积为 .
【答案】5 【解答】解:过C点作EF⊥l2,交l1于E点,交l4于F点. ∵l1∥l2∥l3∥l4,EF⊥l2, ∴EF⊥l1,EF⊥l4, 即∠CED=∠BFC=90°. ∵ABCD为正方形, ∴∠BCD=90°. ∴∠DCE+∠BCF=90°. 又∵∠DCE+∠CDE=90°, ∴∠CDE=∠BCF. 在△CDE和△BCF中,
∴△PME≌△PNB(ASA), ∴EM=BN.
课堂小结
正方形
定义 有一组邻相等,并且有一个角是直角的平行 四边形叫做正方形
1.四个角都是直角
性质 2.四条边都相等
3.对角线相等且互相垂直平分
归纳结论
相互平分
对角线
对边平行且相等

相等
对角线

四个角相等都是90°
正方形
对称性
四边相等

对角线
相互垂直且 平Hale Waihona Puke 对角轴对称图形(4条对称轴)
三 正方形性质定理的应用
典例精析
例1:如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且

3.正方形的性质与判定第1课时正方形的性质PPT课件(北师大版)

3.正方形的性质与判定第1课时正方形的性质PPT课件(北师大版)

第一章
特殊平行四边形 3.正方形的性质与判定
第1课时 正方形的性质
第1课时 正方形的性质
1 …知…识…回…顾…. 2 …新…知…导…航…. 3 …轻…松…过…招….
第1课时 正方形的性质
知识回顾
正方是轴对称图形,它有 4 条对称轴,即经 过对边中点的直线或两对角线所在直线:正方形又 是中心对称图形,两对角线交点是它的对称中心 (也是对边中点的直线的交点)。 .
第1课时 正方形的性质
新知导航
变式训练
1.已知正方形ABCD的对角线相交于点O. (1)若周长为8,则对角线长为 2 2 , 面积为 4 ; (2)图中共有 8 个等腰直角三角形.
第1课时 正方形的性质
新知导航
2.如图,过正方形ABCD的顶点B作直线l,过点A,C 作l的垂线,垂足分别为E,F,若 AE=1,CF=3.求AB的长.
第1课时 正方形的性质
轻松过招
3.如图,正方形ABCD中,E为CD边上一点,F为 BC延长线上一点,且CE=CF. (1)求证:△BCE≌△DCF;
(1)证明:∵四边形ABCD是正方形,
∴BC=DC,∠BCE=∠DCF=90°
CE=CF
在△BCE和△DCF中, ∠BCE=∠DCF ,
∴△BCE≌△DCF.
解:∵四边形ABCD是正方形, ∴∠CBF+∠FBA=90°,AB=BC, ∵CF⊥BE,∴∠CBF+∠BCF=90°, ∴∠BCF=∠ABE, ∵∠AEB=∠BFC=90°,AB=BC, ∴△ABE≌△BCF(AAS),∴AE=BF=1,BE=CF=3, ∴AB= AE2+BE2 = 1+9 = 10 .
第1课ห้องสมุดไป่ตู้ 正方形的性质
轻松过招

1.3正方形的性质与判定

1.3正方形的性质与判定

E
F
3. 四边形 EFGH 的形状有什 A 么特征?
H D G
C
第三环节 猜想结论,分组验证
如果四边形ABCD变为特殊的四边形,中点四边 形EFGH会有怎样的变化呢? 原四边形可以是:
平行四边形
矩形

菱形
正方形
等腰梯形
直角梯形
梯形
第三环节 猜想结论,分组验证
特殊四边形的中点四边形:
平行四边形的中点四边形是平行四边形
山东星火国际传媒集团
选择△FAD≌△FAB证明,过程如下:
∵正方形ABCD, ∴AD=AB,∠DAF=∠BAF, 又∵AF=AF ∴△FAD≌△FAB.
山东星火国际传媒集团
课堂小结
1:正方形的性质:包括边、角、对角线以及 对称性. 2:将平行四边形、矩形、菱形、正方形之间 的联系. 3:建立起适合自己的知识结构并内化为自己 数学品质的一部分.
山东星火国际传媒集团
合作学习
第二类图形就是正方形,我们给出定义: 有一组邻边相等的矩形叫做正方形.
议一议: (1)正方形是菱形吗? (2)你认为正方形有哪些性质?
从我们得到数据分析:正方形既是矩形 又是菱形,它具有矩形和菱形的所有性质.
请同学们参照下表或独立整理矩形菱形
的性质.
矩形 边 性质 菱形 边 角 对角线 性质
矩形的中点四边形是菱形
菱形的中点四边形是矩形
正方形的中点四边形是正方形
第三环节 猜想结论,分组验证
特殊四边形的中点四边形:
等腰梯形的中点四边形是菱形
直角梯形的中点四边形是平行四边形
梯形的中点四边形是平行四边形
第三环节 猜想结论,分组验证
归纳: 特殊四边形的中点四边形:

九数上册 1.3 正方形的性质与判定

九数上册 1.3 正方形的性质与判定

这是老师的,你的呢?
练习提高
1:如图,在正方形ABCD中,对角线AC与BD相 交于点O,图中有多少个等腰三角形? 2:如图,在正方形ABCD中,点F为对角线AC 上一点,连接BF,DF。你能找出图中的全等 三角形吗?选择其中一对进行证明.
1:解:图中共有8个等腰三角形. 2:解:图中的全等三角形共有3对, 分别是△ADC与ABC, △FCD与FCB, △FAD与△FAB.
第一章 特殊平行四边形
第3节 正方形的性质与判定(一)
情境引入
看我们收获了什么?
看我们收获了什么?Fra bibliotek合作学习
第二类图形就是正方形,我们给出定义: 有一组邻边相等的矩形叫做正方形.
议一议: (1)正方形是菱形吗? (2)你认为正方形有哪些性质?
从我们得到数据分析:正方形既是矩形 又是菱形,它具有矩形和菱形的所有性质.
选择△FAD≌△FAB证明,过程如下:
∵正方形ABCD, ∴AD=AB,∠DAF=∠BAF, 又∵AF=AF ∴△FAD≌△FAB.
课堂小结
1:正方形的性质:包括边、角、对角线以及 对称性. 2:将平行四边形、矩形、菱形、正方形之间 的联系. 3:建立起适合自己的知识结构并内化为自己 数学品质的一部分.
性质应用
例1:如图1-18,在正方形ABCD中,E为CD 上一点,F为BC边延长线上一点,且 CE=CF.BE与DF之间有怎样的关系?请说 明理由. 解:BE=DF,且BE⊥DF. 理由如下:
(1)∵四边形ABCD是正方形. ∴BC=DC,∠BCE=90°(正方形的四 条边都相等,四个角都是直角). ∴∠DCF=180°-∠BCE=180°90°=90°. ∴∠BCE=∠DCF. 又∵CE=CF. ∴△BCE≌△DCF. ∴BE=DF.

1.3-1正方形的性质与判定

1.3-1正方形的性质与判定

课题:1.3 正方形的性质与判定(1)教学目标:1.掌握正方形的概念、性质,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别.3.通过观察、实验、归纳、类比获得数学猜想,发展学生的合情推理能力,进一步提高学生逻辑思维能力.教学重点与难点:重点:正方形的概念、性质及与平行四边形、矩形、菱形的联系和区别.难点:应用正方形的性质进行有关的论证和计算,提高学生的逻辑思维能力.课前准备:多媒体课件.教学过程:一、创设情境,导入新课活动内容:回答下列问题.问题1:回顾思考平行四边形、矩形、菱形的性质是什么?问题2:观察下列特殊的平行四边形,你能发现什么样的共同特征?问题3:这几个图形是矩形吗?是菱形吗?是否具有矩形,菱形的性质吗?332211处理方式:通过课件展示问题由学生口答,问题1给学生1分钟的思考时间,然后指定同学(重点检查学困生,中等生对回答问题进行补充)回答,问题2、3由学生集体回答,在同学回答时给予适时的引导,逐步引导学生向正方形的概念和性质方面思考。

设计意图:通过复习回顾旧知识,创设问题情境,引导在回答问题中感受知识学习的重要性,培养学生的学习兴趣,激发学生的求知欲,探索欲,同时让学生在回答问题的过程中不断的理解感知知识间的区别与联系.二、探究学习,感悟新知活动内容1:(多媒体出示)请同学们看课本第20页,完成以下探究问题,并与同伴交流.1.正方形的定义:有一组邻边,并且有一个角是的平行四边形叫做正方形.2.正方形的性质:(1)正方形既是,又是,因此它具有矩形与菱形的所有性质.(2)正方形四个角都,都等于.(3)正方形的对角线且互相.每条对角线都平分一组.(4)正方形即是对称图形,又是对称图形;它有条对称轴,分别是所在的直线和所在的直线;它的对称中心是.3.总结正方形的性质定理:(多媒体展示)(1)正方形的四个角都是直角,四条边相等(3)正方形的对角线相等且互相垂直平分.(补充说明:定理的证明可以让学生进行口述,教师适时的进行补充说明,不作为重点内容讲解)处理方式:学生在自学的基础上讨论交流,并完成问题探究,个别提问与学生之间互相补充,以达到问题的完整正确,教师适时点评,强调性质.设计意图:本活动的设计意在引导学生通过自主学习,合作探究,展示交流,让学生在解决问题的过程中,享受学习的快乐,享受收获的喜悦,逐步从感性的知识,发展成理性的感知.活动内容2:请同学看课本21页“议一议”思考:(1)平行四边形、菱形、矩形、正方形之间的关系?(2)小组合作,用一个图形直观的表示他们之间的关系吗?并展示与其它小组共同分享.AB处理方式:在小组合作讨论交流,老师的指导下,让学生通过自己的归纳找到平行四边形、菱形、矩形、正方形之间的关系,组员合作共同完成用图形直观的表示它们之间的关系,用投影仪展示他们的成果,通过学生展示后共同总结,并用多媒体课件出示.设计意图:通过合作交流,进一步培养学生的合作意识,同时通过知识总结让各环节的知识点融会贯通,加强学生对知识间相互联系的认识,提升学生的综合应用能力.活动内容3:知识巩固(多媒体展示) 1.正方形具有菱形不具有的性质是( )A .对角线平分一组对角B .对角线互相垂直C .有4条对称轴D .四条边都相等 2.(14•湘西州)下列说法中,正确的是( )A .相等的角一定是对顶角B .四个角都相等的四边形一定是正方形C .平行四边形的对角线互相平分D .矩形的对角线一定垂直3.(14▪株洲)已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°, ③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是 正方形,现有下列四种选法,其中错误的是A .选①②B .选②③C .选①③D .选②④4.如图在正方形ABCD 中,对角线AC 与BD 相交于O ,图中有多少个等腰三角形?活动内容4:例题解析(多媒体出示例1)如图,在矩形ABCD 中,E 为CD 边上一点,F 为延长线上一点,且CE=CF ,BE 与DF 之间有怎样的关系?请说明理由.ABF处理方式:先让学生认真看题,理解题意,找到题中的已知条件,理清解题思路,讨论交流,2分钟后让学生到黑板展示,其余学生在下面独立书写解题过程;老师结合学生的板书进行点评指导.设计意图:通过例题展示,让学生逐步学会对知识的应用,进一步理解正方形的性质,并学会应用正方形的性质解决有关实际的问题.活动内容5:知识巩固(多媒体展示) 1.对角线长为2cm 的正方形,边长是多少?2.如图,在正方形ABCD 中,点F 为对角线AC 上一点,连接BF ,DF ,你能找出图中的全等三角形吗?选择其中一对进行证明.3.如图,四边形ABCD 是正方形,△CBE 是等边三角形,求∠AEB 的度数.处理方式:让三名学生主动到黑板板演,拨.学生完成后及时点评,同时借助多媒体投影展示学生出现的普遍问题,进行矫正.设计意图:通过巩固练习加深对知识的理解与应用.第2题图第3题图三、回顾反思,提炼升华师:同学们,通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识. 四、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.矩形、菱形、正方形都具有的性质是( )A .邻边相等B . 四个角都是直角C .对角线相等D . 对角线互相平分2(14.来宾)正方形的一条对角线长为4,则这个正方形的面积是( )A . 8B .24C .28D . 16 3.(14.福州)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .45︒B .55︒C .60︒D .75︒ 4.(2014•鄂州)在平面内正方形ABCD 与正方形CEFH 如图放置,连DE ,BH ,两线交于M .求证: (1)BH=DE . (2)BH ⊥DE .处理方式:学生独立完成,教师出示答案,根据学生的板书指导学生校对,并统计学生答题情况.学生根据自己的答案进行订正改错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.五、布置作业,课堂延伸必做题:助学第19页,知识梳理,范例导航;自主评价第1、2、3、4、7、9题 选做题:助学第20页,自主评价第5、6、8、10题第4题图板书设计:。

1.3第1课时正方形的性质-北师大版九年级数学上册习题课件

1.3第1课时正方形的性质-北师大版九年级数学上册习题课件

(2)如图 2,结论不变.DM⊥EM,DM=EM.理由:在图 2 中,延长 EM 交 DA
2.正方的形是延轴对长称图线形,于它的对H称.轴∵有(四边) 形 ABCD 是正方形,四边形 EFGC 是正方形,∴∠ADE=∠
10.【易错题】已知正方形ABCD中,点E为直线BC上一点,若AE=2BE,则∠DAE=__________度.
1.正方形具有而矩形不具有的性质是( )
11.如图,正方形OABC的边OA和OC都在坐标轴上,将正方形OABC绕点O旋转到OA′B′C′,这时点A′的坐标为(2,3),则点B′的坐标为__________.
∴∠FAE+∠AED=90°, 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是正方形或有一个角是直角的菱形是正方形.
知识点1 正方形的定义 有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是 正方形或有一个角是直角的菱形是正方形.
第一章 特殊平行四边形
上一页 返回导航 下一页
数学·九年级(上)·配北师
知识点2 正方形的性质 (1)定理1:正方形的四个角都是直角,四条边都相等. (2) 定 理 2 : 正 方 形 的 对 角 线 相 等 且 互 相 垂 直 平 分 , 每 一 条 对 角 线 平 分 一 组 对 角. (3)对称性:正方形是中心对称图形,对角线的交点是它的对称中心.正方形是 轴对称图形,两条对角线所在的直线,以及过每一组对边中点的直线都是它的对称 轴.
90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF= AE2+AF2= 2AE=5 2.
第一章 特殊平行四边形
上一页 返回导航 下一页

1.3.1 正方形的性质与判定(学生)

1.3.1 正方形的性质与判定(学生)

九年级数学导学案课题: 1.3.1 正方形的性质与判定学习目标:1.理解正方形的定义。

2.经历探索正方形的性质的过程,进一步了解和体会说理的基本方法.3.在探索活动过程中发展学生的探究意识。

学习重点:正方形定义、性质的探索。

学导过程:一、自主学习1.什么是平行四边形?平行四边形的性质有哪些?2.什么是菱形和矩形?它们的性质有哪些?二、合作探究3.观察课本P20图1-17中的四边形都是特殊的平行四边形,观察这些特殊的平行四边形,你能发现它们有什么样的共同特征?结论:,并且的平行四边形,叫做正方形;4.议一议:(1)正方形是矩形吗?是菱形吗?(2)你认为正方形具有哪些性质?与同伴交流。

结论:(1)正方形的四个角,四条边;(2)正方形的对角线。

思考:你能证明你的结论吗?如图,在正方形ABCD中,∠ABC=90°,AB=BC,对角线AC,BD相交于点O。

求证:(1) ∠ABC =∠BCD =∠CAD =∠DAB=90°听课人:听课时间:次数:(2)AB=BC=CD=AD(3)AC=BD,AC与BD相互垂直平分5.想一想:正方形有几条对称轴?并用语言叙述。

三、互动展示6.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流。

四、达标检测7.如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF,BE与DF之间又怎样的关系?请说明理由。

五、反思延伸整理收获?谈感受?说说本节课学习中好的方法和困扰的地方?六、作业布置:1、必做题:习题1.7 第1、2、3题。

2、选做题:习题1.7第4题。

1.3.1正方形的性质与判定(正方形的性质)

1.3.1正方形的性质与判定(正方形的性质)
1.3.1正方形的性质与判定
正方形的性质 初三数学组 备课时间:2014.9.10
学习目标(1分钟)
1.理解正方形的有关概念及与平行 四边形的联系。 2.掌握正方形的性质定理,并会用 性质定理进行计算或证明。
自学指导1:(3分钟)
1、定义:有一组邻边 相等 平行四边形叫正方形。 2、正方形的性质: ⑴正方形的 四条边 相等。 ⑵正方形的四个角都是 直角 。 ;并且 ⑶正方形的对角线 相等 且互相 垂直平分 每条对角线平分一组 对角 。 且有一个内角是 直角 的
自学指导2(6分钟)
自学课本P21例1,然后完成下面的练习 把正方形ABCD绕着点A,按顺时针方向旋转得到正方形 AEFG,边FG与BC交于点H,请判断HG与HB之间的关系。 C 解:HG=HB,理由如下: D
连接AH ∵四边形ABCD是正方形, ∴AB=AD ∠B=∠D=900 ∵正方形AEFG是正方形ABCD旋转得到 A G H B F
自学课本P20的内容,回答下列问题:
(4)正方形既是 轴对称 图形,又是 中心对称 图形。
自学检测1(2分钟)
1、正方形具有而菱形不具有的性质是( C ) A、对角线互相垂直 分 C、对角线相等 角 B、对角线互相平 D、对角线平分一组对
2、下列结论:⑴正方形具有平行四边形的一 切性质;⑵正方形具有矩形的一切性质;⑶正 C 方形具有菱形的一切性质;⑷正方形共有四条 对称轴;其中正确的结论有( ) A.2个 B.3个 C.4个 D.0个
∴ AG=AB ∠B=∠G=900
又∵ AH=AH ∴ Rt△AGH ≌Rt△ABH(HL) ∴ HG=HB
注意:用HL证明直角 三角形全等时,必须 写Rt!
E
自学检测(6分钟)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档