清华大学天文学导论11宇宙学

合集下载

自然科学公共选修课程——科学基础

自然科学公共选修课程——科学基础

自然科学公共选修课程——科学基础天文学导论 (278)物理学思想史与自然哲学 (280)等离子体科学和应用 (282)太空之旅 (284)创新与发明 (286)中国古代冶铸技术 (287)电影中的科学理念探讨 (289)思维能力与工程制图 (290)激光与现代生活概论 (293)营养化学 (295)美容化学 (297)《天文学导论》课程教学大纲一、课程名称天文学导论Introduction to Astronomy二、课程编码1405961三、学时与学分32/2四、先修课程无五、课程教学目标本课程为非天文专业的理工科或文科学生普及天文学知识而开设。

内容包括宇宙概貌,太阳系,九大行星,地球,月球,日蚀,月蚀的形成原因,恒星的形成,演化与死亡的规律。

致密星如中子星和黑洞的特征,星系的概念以及宇宙大爆炸学说等天文学基础知识。

讲授采用双语教学,配合大量多媒体精采图片以及天文学科普电影资料,以形象描述为主,基本上不用数学公式。

这样既可以去除学生的畏难情绪,又可以激发学生探索宇宙奥秘的兴趣,使他们感到确有收获。

六、适用学科专业全校各专业七、基本教学内容与学时安排Chapter 1 The universe at different scales (宇宙的不同尺度) (1学时)Chapter 2 The earth and the sky (地球和天空) (2学时)Chapter 3 Lunar phases, tides and eclipses (月相, 潮汐和蚀) (2学时)Chapter 4 The origin of modern astronomy (现代天文学的起源) (2学时)Chapter 5 Theory of motion and gravitation (运动理论和引力) (2学时)Chapter 6 Relativity (相对论) (2学时)Chapter 7 The solar system (太阳系) (2学时)Chapter 8 Measuring stars (测量恒星) (2学时)Chapter 9 The sun (太阳) (2学时)Chapter 10 The formation of stars (恒星的形成) (2学时)Chapter 11 Stellar evolution (恒星的演化) (2学时)Chapter 12 The deaths of stars (恒星的死亡) (2学时)Chapter 13 Neutron stars (中子星) (2学时)Chapter 14 Black holes (黑洞) (2学时)Chapter 15 Galaxies (星系) (1学时)Chapter 16 Cosmology (宇宙学) (1学时)附录A Electromagnetic radiation (电磁辐射) (0.5学时)附录B Atoms (原子) (0.5学时)复习(2学时)八、教材及参考书根据原版教材的简写版本编写,学生采用该教材的影印本278原版教材: Astronomy—The Solar System and BeyondAuthor: Michael A. Seeds (Joseph R. Grundy Observatory, Franklin and Marshall College) Press: Wadsworth Publishing Company (1998)天文爱好者杂志电影资料: 天文百科大全(York Films of England)第一集: 太阳系的诞生; 太阳, 水星, 金星, 地球, 月球;第二集: 银河系, 哈勃太空望远镜, 星系, 类星体, 大爆炸宇宙学, 黑洞, 暗物质;第三集: 观星史, 食与极光, 小行星, 宇宙辐射, 生命的探索第四集: 人造卫星, 太空先驱, 太空生活, 太空探测, 太空站;第五集: 火星, 木星, 土星, 天王星与海王星, 冥王星与彗星.电影资料: 美国《太空探索》系列第一集: 阿波罗登月计划;第二集: 人类太空探索的历史;第三集: 探索太阳系第四集: 走进宇航员世界;第五集: 美国太空发展四十年;第六集: 神秘火星的过去,现在和未来九、考核方式书面考试, 开卷, 英文试题(问答题), 可以用中文或者英文答题279《物理学思想史与自然哲学》课程教学大纲一、课程名称物理学思想史与自然哲学History of Physics Thoughts & Nature Phyilosophy二、课程编码1405991三、学时与学分24/1.5四、先修课程无五、课程教学目标(一)使学生从物理学史的角度来了解人类人探索自然的历程;(二)使学生了解哲学对科学发展怎样起着高屋建瓴的作用;(三)通过对物理学史上重要理论提出背景的讲解,告诉学生伟大的科学家们是怎样从平凡的现象中发现突破口,而做出重要的发现,使学生们从中受到启发,学会用新的、敏感的眼光去看待周围的事物,做一个科学上的有心人。

清华大学天文学导论-11宇宙学

清华大学天文学导论-11宇宙学

~105 galaxies
宇宙大尺度上的均匀性
约100万个星系在约30度天空范围内和约20亿 光年距离以内的分布 在这个尺度上,每个方向的星系计数大致相同
宇宙小尺度上的非均匀性
距离最近(约5亿光年距离以内)的15,000个 星系的全天图。在这个尺度上,宇宙中星系 的分布根本不均匀而是趋于成团的
• 物理规律的普适性
宇宙学原理的两个推论:
• 宇宙中的物质分布是均匀的(空间尺度足够大) • 宇宙是各向同性的
宇宙学原理表明宇宙既要均匀又要各向同性 数十年的观测证明宇宙学原理是经得起检验的
1.1 宇宙中物质是均匀分布的(Homogeneity) 宇宙在大尺度上(大于几亿光年的超团尺度) 均匀 迄今没有发现尺度超过 ~6亿光年的结构 (→ 宇宙是无边界的)
天文学导论
第11讲 宇宙学
A man said to the universe: “Sir, I exist!” “However,” replied the universe, “The fact has not created in me A sense of obligation.”
Stephen Crane (1871—1900)
宇宙的临界密度 critical mass density
一个天体表面的逃逸速度由其质量和半径(即 平均密度)决定 宇宙的膨胀速度同样由其质量和大小即平均密 度ρ决定 宇宙密度存在一个临界值 ρc ≈ 8×10-30 gcm-3 • ρ > ρc ,引力大得将停止并反演宇宙膨胀 • ρ = ρc ,引力太弱,宇宙将永远膨胀下去 • ρ < ρc ,宇宙也将永远膨胀下去
John C. Mather 1/2 of the prize NASA Goddard Space Flight Center Greenbelt, MD, USA b. 1946 George F. Smoot 1/2 of the prize University of California Berkeley, CA, USA b. 1945

天文学教程pdf

天文学教程pdf

天文学教程一、天文学基础1. 天文学的定义:天文学是研究宇宙中天体的学科,包括恒星、行星、星系、星云、星团、星系团等。

它旨在理解宇宙的结构、起源和演化。

2. 天文学的重要性:天文学对人类文明的发展有着深远的影响。

它不仅帮助我们认识宇宙,还推动了数学、物理学、化学等其他学科的发展。

3. 天文学的历史:从天文学发展的历程来看,可以划分为古代天文学、近代天文学和现代天文学三个阶段。

古代天文学以肉眼观测和简单的仪器为主,积累了大量的天文资料,并提出了许多有价值的理论。

近代天文学则以望远镜的发明和应用为标志,开始了对宇宙的更深入探索。

现代天文学则借助大型望远镜、卫星和空间探测器等高科技手段,对宇宙进行全方位的研究。

二、天体与天体系统1. 恒星:恒星是宇宙中最基本的天体之一,它们通过核聚变产生能量和光。

根据质量、温度和光谱等特征,恒星可以分为不同的类型,如O型星、B型星、A型星等。

恒星的生命周期包括主序阶段、红巨星阶段和白矮星阶段等。

2. 太阳系:太阳系是一个由太阳和围绕其旋转的行星、卫星、小行星、彗星等天体组成的天体系统。

太阳是太阳系的中心,它提供了太阳系内所有天体所需的光和热。

行星是太阳系中最大的天体之一,它们按照距离太阳的远近可以分为内行星和外行星。

3. 银河系:银河系是一个由数千亿颗恒星组成的巨大星系,它呈旋涡状结构,中心有一个巨大的黑洞。

我们的太阳就位于银河系的一条旋臂上。

4. 星系:宇宙中存在大量的星系,它们形态各异,大小不一。

根据形态和特征,星系可以分为椭圆星系、旋涡星系和不规则星系等类型。

星系之间的距离非常遥远,通常以数百万光年甚至数十亿光年计。

5. 星系团和超星系团:星系团是由数十个到数千个星系组成的巨大天体系统。

而超星系团则是由多个星系团组成的更大的天体系统。

这些巨大的天体系统在宇宙中形成了复杂的网络结构。

三、天文观测与仪器1. 肉眼观测:在古代,人们主要通过肉眼观测来认识天体。

他们观察太阳、月亮、行星和恒星等天体的位置和运动,并积累了丰富的天文资料。

清华大学天文学导论笔记

清华大学天文学导论笔记

天文学史开普勒三定律(椭圆轨道、运行速度、轨道与周期)引力摄动:另一颗行星的引力导致某行星绕太阳的运动不符合两体假设非牛顿引力摄动:水星、金星近日点进动验证了爱因斯坦广义相对论钟慢效应:μ介子寿命为2.2×10-6s,以光速运动也仅能行进600m,而宇宙射线在大气外层产生的近光速μ介子却可以以到达地球表面。

引力透镜:由于质量对光的吸引,若被观测的星体与观测者连线上有大质量星系(透镜星系),观测者可能观察到多个像(爱因斯坦十字、双爱因斯坦环)天体视运动天体的周日视运动:由于地球自转导致的天体视运动太阳:东升西落,与当地正午通过天子午线达到最高点,两次通过子午线间的时间为一太阳日(24h)北京东经116.5度,东八区标准东经120度,北京时间正午12时时北京的太阳时为11点46分赤道参考系:把天空幻想为大球,北极指向北天极,南极指向南天极,赤道扩展为天赤道。

北天极对地面的高度等于北半球该地的纬度。

天赤道与天极的弧距离总是90度,与地平面相交于正东正西方向,且恰好看到一半。

天球自东向西旋转,每小时旋转15度,所有星体的视运动轨迹都平行于天赤道。

地平参考系:以正头顶为天顶,子午线从正南到正北穿过南天极、天顶和北天极平分天球。

本地参考系中天体位置在始终改变。

赤道上,一切星体都垂直于地平面升起和落下,所有星体都可见且在地平面上方12个小时周年视运动:天球坐标系上恒星的坐标固定,由于地球公转导致太阳在天球上向东运动。

这也导致了每天同一时间天空状况不同(因为太阳时制)太阳:太阳在天球上的位置始终自西向东移动,每年环绕天球一周,其在天球上的轨迹称为黄道。

太阳绕天球一周的时间是365.24天。

太阳日:24h,太阳连续两次到达子午线的时间。

恒星日:23h56min,恒星连续两次到达子午线的时间。

恒星日表明了地球自转的真实周期。

由于太阳一直向东运动,所以恒星比太阳运动的快一点。

由于我们使用太阳时,恒星每天升起、穿过子午线、下落的时间都要提前约4分钟,经过一个太阳年后回到原地。

清华大学天文学导论笔记终审稿)

清华大学天文学导论笔记终审稿)

清华大学天文学导论笔记公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]天文学史开普勒三定律(椭圆轨道、运行速度、轨道与周期)引力摄动:另一颗行星的引力导致某行星绕太阳的运动不符合两体假设非牛顿引力摄动:水星、金星近日点进动验证了爱因斯坦广义相对论钟慢效应:μ介子寿命为×10-6s,以光速运动也仅能行进600m,而宇宙射线在大气外层产生的近光速μ介子却可以以到达地球表面。

引力透镜:由于质量对光的吸引,若被观测的星体与观测者连线上有大质量星系(透镜星系),观测者可能观察到多个像(爱因斯坦十字、双爱因斯坦环)天体视运动天体的周日视运动:由于地球自转导致的天体视运动太阳:东升西落,与当地正午通过天子午线达到最高点,两次通过子午线间的时间为一太阳日(24h)北京东经度,东八区标准东经120度,北京时间正午12时时北京的太阳时为11点46分赤道参考系:把天空幻想为大球,北极指向北天极,南极指向南天极,赤道扩展为天赤道。

北天极对地面的高度等于北半球该地的纬度。

天赤道与天极的弧距离总是90度,与地平面相交于正东正西方向,且恰好看到一半。

天球自东向西旋转,每小时旋转15度,所有星体的视运动轨迹都平行于天赤道。

地平参考系:以正头顶为天顶,子午线从正南到正北穿过南天极、天顶和北天极平分天球。

本地参考系中天体位置在始终改变。

赤道上,一切星体都垂直于地平面升起和落下,所有星体都可见且在地平面上方12个小时周年视运动:天球坐标系上恒星的坐标固定,由于地球公转导致太阳在天球上向东运动。

这也导致了每天同一时间天空状况不同(因为太阳时制)太阳:太阳在天球上的位置始终自西向东移动,每年环绕天球一周,其在天球上的轨迹称为黄道。

太阳绕天球一周的时间是天。

太阳日:24h,太阳连续两次到达子午线的时间。

恒星日:23h56min,恒星连续两次到达子午线的时间。

恒星日表明了地球自转的真实周期。

由于太阳一直向东运动,所以恒星比太阳运动的快一点。

天文学导论复习

天文学导论复习
亚巨星结构:非燃烧He核+壳层H燃烧+非燃烧H包层
•体积膨胀表面温度降低,但光度增加
2.红巨星支
He核体积持续缩小电子开始简并(压)
红巨星结构:非燃烧简并He核+燃烧H壳层+非燃烧H包层
(恒星沿RGB是加速向上攀升的)
3.氦闪
由于简并,He核温度上升但不膨胀
氦闪后,电子简并解除
恒星进入一个新的稳定态:He在正常的非简并的核内燃烧成为C,H在壳层内燃烧成为He
3.牛顿的万有引力定律
牛顿万有引力定律适用于弱引力场,例如太阳系(水星除外)
4.爱因斯坦的相对论
长度、时间和质量是相对的,依赖观测者相对于所选定的参考系的运动
三.辐射与天文望远镜
1.电磁(波)辐射
2.黑体辐射
物件加热:低温红外线,温度升高红光黄光白光蓝光
黑体谱的形状只与物体(恒星)的表面温度有关
维恩位移定律:温度降低,黑体谱的峰值向长波方向移动
6.太阳系的形成
六.系外行星
1.引言:系外行星存在的证据
尘埃盘(Dust Disks)暗示行星的存在
2.方法:探测系外行星的5大技术
直接成像法
天体测量学法
视向速度法—多普勒效应
凌星法
微引力透镜法
时间测量法
3.历史:不该有行星的脉冲星
4.特征:系外行星与太阳系大不同
5.方向:寻找类地行星的宏伟计划
6.目的:搜寻地外生命与智慧生命
2.类地行星
一般特征:像地球,靠近太阳,铁(镍)核心和岩石外壳,没有或极少卫星,体积小,质量不大,致密,密度= 4-5 g/cm3,大气稀薄
水星
几乎没有大气,水星表面昼夜温差极大
金星

宇宙学术语

宇宙学术语

宇宙学术语1. 宇宙 (Universe): 指的是包括所有物质和空间的整个宇宙系统。

2. 星系 (Galaxy): 指的是由数百亿颗星星、行星、气体和尘埃组成的天体系统。

3. 恒星 (Star): 恒星是由氢和氦气球化的物体,具有自身的内部核反应,通过核聚变产生能量、热和光。

4. 行星 (Planet): 指绕恒星公转和自转的天体,通常具有固态表面和气体大气层。

5. 恒星演化 (Stellar Evolution): 恒星内部的热核反应随着时间的流逝而演变,从恒星的形成、稳定期、红巨星到白矮星或中子星等等。

6. 天文学 (Astronomy): 指的是研究天体、天体运行规律、天体演化、构成和性质的科学。

7. 宇宙大爆炸理论 (Big Bang Theory): 指的是宇宙最初的爆炸起源,它建立在所有物质和空间的单一起源的假设之上。

8. 宇宙膨胀 (Cosmic Expansion): 宇宙膨胀是宇宙比较早期的演化过程,它始于大爆炸的开始,并持续至今。

9. 星系聚团 (Galaxy Cluster): 星系的分布并不是随机分布的,而是由于它们之间的引力互相作用而形成的群体。

10. 黑洞 (Black Hole): 黑洞是一种超密度、超重力的天体,它将周围的物体引入到中心,因此没有任何的物质或光线从它内部的事件视界中逃脱。

11. 宇宙微波背景辐射 (Cosmic Microwave Background Radiation): 它是宇宙最早的辐射,是大爆炸之后最初的气体效应,可以提供宇宙最早的图像,帮助我们理解宇宙的早期演化。

12. 宇宙学常数 (Cosmological Constant): 它是用于描述宇宙膨胀速度的参数,它与爆炸速度和宇宙体积的大小有关。

13. 宇宙射线 (Cosmic Ray): 宇宙射线是从太空中不断涌入地球大气层的高能粒子,大多数宇宙射线都是质子、中子和电子。

14. 暗物质 (Dark Matter): 暗物质是一种在天文学上使用的概念,它不能直接观察到,它不会发光、不会发射电磁波、不会相互作用,但它的存在通过引力相互作用可以证明。

2020年智慧树知道网课《天文学导论》课后章节测试满分答案

2020年智慧树知道网课《天文学导论》课后章节测试满分答案

第一章测试1【判断题】(1分)天文学是一门古老而又年轻的学科。

A.对B.错2【判断题】(1分)宇宙中存在各种极端物理条件,可以检验物理规律的普适性。

A.对B.错3【判断题】(1分)天文学研究已经获得很多次诺贝尔奖,将来很难有更多此类量级的重大发现。

A.对B.错4【判断题】(1分)中国天文大科学工程时期已经基本结束,因而我们预期重大发现的涌现。

A.对B.错5【单选题】(1分)不属于20世纪60年代四大射电天文发现的是()A.白矮星B.类星体C.星际分子D.微波背景辐射6【多选题】(1分)宇宙中可以存在哪些极端物理条件()A.强引力B.超强磁场C.超高能D.超真空7【多选题】(1分)以下哪些天文发现没有获得诺贝尔物理学奖()A.中微子振荡B.类星体的发现C.脉冲双星的发现D.大爆炸宇宙学8【单选题】(1分)下面4个电磁波波长最短的是()A.光学B.紫外C.红外D.X射线9【单选题】(1分)下列不是空间望远镜的是()A.硬X射线调制望远镜B.阿尔法磁谱仪C.甚大望远镜D.XMM-牛顿望远镜10【多选题】(1分)天文学研究的用处有()A.检验物理规律普适性B.促进物理学发展C.满足人类好奇心D.授时、制作日历第二章测试1【判断题】(1分)宇宙中天体物理条件太极端,所以完全无法在实验室进行任何相关天体物理研究。

A.对B.错2【判断题】(1分)地心说是完全的,日心说是完全正确的。

A.对B.错3【判断题】(1分)天文学中定义的各种时间有着各自适用的范围。

A.对B.错4【判断题】(1分)开普勒行星运动定律和牛顿万有引力定律之间没有关系。

A.对B.错5【单选题】(1分)引力波观测常被比喻成天文学家的()A.触觉B.味觉C.视觉D.听觉6【单选题】(1分)不属于开普勒行星运动规律的是()A.密度定律B.周期定律C.面积定律D.椭圆定律7【单选题】(1分)以下距离或距离单位最大的是()A.光传播一分钟的距离B.地月距离C.水星与太阳的距离D.天文单位8【单选题】(1分)星等值相差15等的两颗恒星的亮度差为()倍A.1000B.1000000C.100000D.100009【多选题】(1分)以下观测和日地距离的测量有关的是()A.金星凌日B.月食C.三角视差D.日食10【单选题】(1分)视星等为下列哪个值的恒星最亮()A.18B.19C.16D.17第三章测试1【判断题】(1分)彗星通常有两个彗尾:原子彗尾和离子彗尾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红移是宇宙尺度因子改变的结果
▪ 红移直接测量辐射发出时的宇宙尺度因子,即 自从辐射发出以后宇宙尺度因子的改变
R(z) 1 1 z
Z=0, R=1 Z=1, R=1/2 Z=2, R=1/3 ......
勒梅特的原始原子论
▪ 1927年,比利时教士与天文学家勒梅特 ( Georges Lemaître ) 指出哈勃所观测到 的宇宙膨胀现象正是爱因斯坦引力场方程(广 义相对论描述宇宙)所预言的
哈勃图 Hubble Diagram
▪ 由于造父变星的周光关系的定标问题,哈勃低估了星 系距离,由此得出的哈勃常数是现代值的7倍之多!
H0 = 500 km/s/Mpc
H0=71±4 km/s/Mpc
哈勃的数据
现代的数据
3。宇宙开始于一次大爆炸
▪ 哈勃定律:所有星系在过去是叠加在一起的 宇宙的一切(物质与辐射、能量)起源于一点, 即宇宙开始于一次大爆炸(the big bang)!
▪ 我们的宇宙有一个起点(时间)
▪ 但这个起点在哪里?
▪ 宇宙大爆炸发生在任何一个地方
• 如果大爆炸点不同于宇宙其它地方 违背宇宙无 中心原理?
• 大爆炸不是简单地把物质抛向空间!(中心和边
界)
©
宇宙即创生?
▪ 星系并非自身在时空中相互远离,而是宇宙自 身的膨胀使得构成宇宙的星系相互远离
▪ 宇宙大爆炸是宇宙自身时空(空间、时间、物 质与能量)的创生与膨胀!
哈勃时间(Hubble time)1/H0
▪ 哈勃定律表明星系之间相互远离所持续的时间 相同,称为哈勃时间
• (与具体的星系及其距离无关)时间Fra bibliotek距离 速度
距离 H0 距离
1 H0
哈勃时间
▪ 等速膨胀 1/H0 即为宇宙年龄
▪ H0=71 km/s/Mpc 宇宙年龄 ~ 137亿年
宇宙学家很尴尬
天文学导论
第11讲 宇宙学
A man said to the universe: “Sir, I exist!” “However,” replied the universe, “The fact has not created in me A sense of obligation.”
Stephen Crane (1871—1900)
▪ 因此,过去的宇宙必定比今天的宇宙占有较小 的空间尺度。并且,宇宙有一个起始之点,称 为“原始原子”
• ( 哈勃定律 [宇宙膨胀]、宇宙加速膨胀! )
αβγ大爆炸宇宙学
▪ 1940s, 伽莫夫(Gamov)和其学生阿尔夫 (Alpher)首先提出宇宙起源于约150亿年前 一次猛烈的巨大爆炸
• 1948年4月1日,发表论文的作者顺序: Alpher、 Bethe贝特和Gamov αβγ大爆炸宇宙学
▪ 1964年, Dicke, Peebles, Roll 和 Wilkinson 计 算得到背景辐射为温度 10K 的黑体辐射。准 备去寻找.....
▪ 随着宇宙膨胀和温度降低,构成物质的原初元 素相继形成 …… 预言轻元素丰度
▪ 预言宇宙大爆炸的5-10K残余背景辐射!!!
霍伊尔:稳恒态宇宙模型
▪ 1948年,弗雷德·霍伊尔(1915-2001)
• 与汤米·戈尔德、赫尔曼·邦迪 • 1960年代, CMB等,更新
▪ 1949年,BBC,“The Big Bang 大爆炸”, 嘲笑大爆炸模型。 “奇点”!?
1. 宇宙学原理
本讲内容
2. 宇宙在膨胀
3. 宇宙起源于一次大爆炸
4. 宇宙微波背景辐射
5. 宇宙的密度与形状(加速膨胀与暗 能量)
6. 暴胀宇宙
7. 宇宙大尺度结构的形成(暗物质
8. 宇宙的演化史
9. 结束语
1。宇宙学原理 Cosmological Principal
▪ 宇宙学原理:无论身处宇宙的何处,“观测者” 所看到的宇宙都是相同的
均匀 ▪ 迄今没有发现尺度超过 ~6亿光年的结构 (→
宇宙是无边界的)
~105 galaxies
宇宙大尺度上的均匀性
▪ 约100万个星系在约30度天空范围内和约20亿 光年距离以内的分布
▪ 在这个尺度上,每个方向的星系计数大致相同
宇宙小尺度上的非均匀性
▪ 距离最近(约5亿光年距离以内)的15,000个 星系的全天图。在这个尺度上,宇宙中星系 的分布根本不均匀而是趋于成团的
• 物理规律的普适性
▪ 宇宙学原理的两个推论:
• 宇宙中的物质分布是均匀的(空间尺度足够大) • 宇宙是各向同性的
▪ 宇宙学原理表明宇宙既要均匀又要各向同性 ▪ 数十年的观测证明宇宙学原理是经得起检验的
1.1 宇宙中物质是均匀分布的(Homogeneity) ▪ 宇宙在大尺度上(大于几亿光年的超团尺度)
▪ 1920s,维斯托 ·斯莱弗(Vesto Slipher): 绝大部分星系的吸收线红移 星系都在远离 我们而去 星系的退行速度
▪ 1929,埃德温 ·哈勃(Edwin Hubble):星 系距离 + 星系退行速度 星系退行速度与距离成正比:
Vr = H0×D,即哈勃定律 ▪ 大爆炸宇宙学的重要观测证据之一
本超星系团
隐带
英仙-双鱼超团
1.2 宇宙是各向同性的 (Isotropy)
▪ 从任何方向看,我们的宇宙大致都是相同的 (→ 宇宙没有中心)
身处宇宙任何地方的“观测者”向任 何方向看都能得到相同的哈勃定律
均匀,各向同性
不均匀,不各向同性
均匀,不各向同性
均匀,不各向同性
2。宇宙在膨胀 The Expanding Universe
▪ 元素合成理论:著名B2FH理论
• 1983年诺贝尔物理学奖授予福勒
▪ 许多研究成果不符合正统的学术观点
4. 宇宙微波背景辐射
The Cosmic Microwave Background (CMB)
▪ 1948年, Alpher, Bethe 和 Gamov 预言 5-10K 的宇宙大爆炸的残余背景辐射
尺度因子 scale factor (R)
▪ 宇宙的膨胀以尺度因子R来量度,无量纲化宇宙大小 ▪ R随宇宙膨胀而变大
• 过于<1 • 现在=1 • 未来>1
▪ 大爆炸的初期,宇宙很小
• T=1天,几倍太阳系 • T=1/50秒,地球大小 • ......, 原子,质子,......
▪ 宇宙的膨胀不影响局域的物理规律:原子、恒星、星 系或任何别的事情
相关文档
最新文档