【市级联考】江苏省苏州市昆山市2018届九年级(上)期末数学试题

合集下载

江苏省苏州市昆山、太仓市2018届九年级上学期期末教学质量调研测试数学试题( 解析版)

江苏省苏州市昆山、太仓市2018届九年级上学期期末教学质量调研测试数学试题( 解析版)

江苏省苏州市昆山、太仓市2018 届九年级上学期期末教学质量调研测试数学试题一、选择题(本大题共10 小题,每小题 3 分,共30 分)1.下列方程为一元二次方程的是()A.x2﹣3=x(x+4)B.C.x2﹣10x=5 D.4x+6xy=33【分析】只含有一个未知数,并且未知数的最高次数是2 的整式方程叫一元二次方程.解:x2﹣3=x(x+4)整理得:4x+3=0,不是一元二次方程;x2﹣=3 是分式方程,x2﹣10x=5 是一元二次方程,4x+6xy=33 含有两个未知数,不是一元二次方程.故选:C.【点评】本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.2.一元二次方程x(x﹣2)=2﹣x 的根是()A.﹣1 B.﹣1 和2 C.1 和2 D.2【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.解:x(x﹣2)+(x﹣2)=0,(x﹣2)(x+1)=0,x﹣2=0 或x+1=0,所以x1=2,x2=﹣1.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.如图,在 Rt △ABC 中,∠C =90°,∠B =30°,AB =8,则 BC 的长是()C .8D .4【分析】根据 cos B =及特殊角的三角函数值解题即可. 解:∵在 Rt △ABC 中,∠C =90°,∠B =30°,AB =8, cos B = , 即 cos30°=,∴BC =8× =4 ;故选:D .【点评】本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.4. 下表是某校女子排球队队员的年龄分布则该校女子排球队队员的平均年龄是( )岁 A .14.5B .15C .15.3D .15.5【分析】根据加权平均数的计算公式列出算式,再进行计算即可. 解:根据题意得:(13×1+14×1+15×7+16×3)÷12=15(岁), 即该校女子排球队队员的平均年龄为 15 岁. 故选:B .【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.5. 对于二次函数 y =﹣x 2+x ﹣4,下列说法正确的是( )A . 当 x >0 时,y 随 x 的增大而增大B .图象的顶点坐标为(﹣2,﹣7)A .B .4C.当x=2 时,y 有最大值﹣3D.图象与x 轴有两个交点【分析】先把函数的解析式化成顶点式,再逐个判断即可.解:A、y=﹣x2+x﹣4=﹣(x﹣2)2﹣3,当x<2 时,y 随x 的增大而增大,故本选项不符合题意;B、顶点坐标为(2,﹣3),故本选项不符合题意;C、当x=2 时,y 有最大值是﹣3,故本选项符合题意;D、∵顶点坐标为(2,﹣3),函数图象开口向下,∴图象和x 轴没有交点,故本选项不符合题意;故选:C.【点评】本题考查了二次函数的图象、性质和最值,能熟记二次函数的图象和性质的内容是解此题的关键.6.三角形两边的长分别是8 和6,第三边的长是方程x2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是()A.4 B.5 C.6 D.8【分析】先解方程,根据三角形的三边关系可知x=10:三边分别为6、8、10,是直角三角形,所以其斜边就是外接圆的直径;解:x2﹣12x+20=0,(x﹣2)(x﹣10)=0,∴x=10 或2,当x=2 时,2+6=8,不符合题意,∴x=10,当第三边为10 时,因为62+82=102,此三角形是直角三角形,如图1,此三角形的外接圆的直径为最大边10,则此三角形的外接圆半径为5,故选:B.。

昆山市数学九年级上册期末试卷(带解析)

昆山市数学九年级上册期末试卷(带解析)

昆山市数学九年级上册期末试卷(带解析)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数 B .方差 C .中位数 D .极差 2.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π3.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2425.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 6.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数7.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .8.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+9.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y =23x +D .y =x 2+1x+1 10.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4 B .4.5C .5D .611.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠D B .∠C =∠E C .AD ABAE AC= D .AC BCAE DE= 12.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.cos60︒的值等于( ) A .12B .22C 3D 3 14.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论: ①∠BAE =30°;②射线FE 是∠AFC 的角平分线; ③CF =13CD ; ④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个15.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 18.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 19.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.20.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.21.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).22.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 23.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.24.抛物线()2322y x =+-的顶点坐标是______.25.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.26.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.27.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.28.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.29.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.30.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.三、解答题31.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .32.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.33.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QABS=,求出此时点Q 的坐标.34.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形? (2)当AB=3时,求□ABCD 的周长.35.如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.四、压轴题36.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.37.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.38.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.39.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.40.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.3.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P 点的运动轨迹是解答此题的关键.4.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得2b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.D解析:D【解析】【分析】 只要证明AC AB AE AD =,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差7.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.9.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y =12x 是正比例函数,不符合题意; B. y =2x 2-1是二次函数,符合题意;C. yD. y =x 2+1x+1不是二次函数,不符合题意. 故选:B .【点睛】 本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.10.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.11.D解析:D【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;C 、添加AD AB AE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意; D 、添加AC BC AE DE =不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D .【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.12.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值. 14.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩,∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴=5AE AF,=5BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF ⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x 2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0,x 1=2,x 2=4,当x =2时,2+3<6,不符合三角形的三边关系定理,所以x =2舍去,当x =4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.17.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,,∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 18.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴13=,CQ=AC-AQ=9,∴15=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.19.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.20.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.21.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.22.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm .故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.23.【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB 是 解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.24.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .25.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=,3∴AB =【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.26.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==,2设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.27..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】 平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.28.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.29.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 30.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题31.(1)见解析;(2)12 5【解析】【分析】(1)连接OD,如图,先证明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根据切线的判定定理得到结论;(2)证明△ABD∽△ADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接OD∵AD平分∠BAC∴∠BAD=∠DAC∵OA=OD∴∠BAD=∠ODA∴∠ODA=∠DAC∴OD∥AE∴∠ODE+∠E=180°∵DE⊥AE∴∠E=90°∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE∵点D在⊙O上∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.32.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.33.(1)223y x x =--;(2)(1,2)P -;(3)1(1Q - ,2(1Q + ,3(1,4)Q -【解析】。

江苏苏州昆山2018-2019学年九年级上期末试卷

江苏苏州昆山2018-2019学年九年级上期末试卷

昆山市2018-2019学年第一学期期末考试试卷初三化学注意事项:1.试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间为100分钟.试卷满分为100分.2.第Ⅰ卷的答案请填写在选择题后的表格中.3.可能用到的相对原子质量:H—1 C—12 O—16 Na—23 Mg—24 Ca—40 Zn—65第Ⅰ卷(选择题共40分)一、选择题(本大题共20小题,每小题2分,共40分.每小题只有一个....选项符合题意)1.下列造成空气污染的物质主要不是..由化学反应产生的是A.焚烧垃圾产生的大量烟尘 B.建筑施工时飞扬起的灰尘C.燃放烟花爆竹产生的气体 D.机动车行驶时排放的尾气2.“海天酱油”瓶上配料表:水、大豆、面粉、谷安酸钠、苯甲酸钠.说明“海天酱油”是A.混合物 B.化合物 C.纯净物 D.单质3.将下列家庭常用的调味品分别加入水中,不能..形成溶液的是A.食盐 B.食醋 C.芝麻油 D.蔗糖4.关于下列三种粒子的说法正确的是A.表示同一种原子 B.X表示阳离子 C.Y显电中性 D.Z表示阴离子5.在NH4NO3、N2、NO2、NO这4种化合物中N元素的化合价有A.3种 B.5种 C.4种 D.6种6.下列物质的用途,是利用其化学性质的是7.某同学用如图装置(倒扣钟罩)来测定空气中氧气的含量.对该实验认识不正确...的是A.使用红磷的量必须充足,不然会影响实验结果B.红磷一燃烧完,不要立即观察,要等到冷却后,再记录水进入容器的刻度C.红磷燃烧消耗空气中的氧气,使容器内压强下降,水面上升D.燃烧足够的红磷可使进入容器的水占容器容积的4/58.下列有关数据合理的是A.用托盘天平称量5.4g食盐 B.用镊子夹取0.1g砝码C.用托盘天平称量10.01g水 D.用100ml量筒量取23.15ml水9.下列对分子、原子、离子的认识,正确的是A.原子得到或失去电子后形成离子 B.原子是最小的粒子,不可再分C.分子是保持物质性质的最小粒子D.CO2和CO性质的差异主要是由于分子间的间隔不同10.实验室的药品和仪器要分类摆放,以下是四个药品橱柜所存放的药品.实验室新购进一瓶锌粒,应存放于那一组11.下列实验现象描述错误的是A .铁丝在氧气中燃烧火星四射B .镁在空气中燃烧,发出耀眼白光C .硫在氧气中燃烧产生淡蓝色火焰D .木炭在氧气中燃烧发出白光 12.下列对有关主题知识的归纳有错误的一组是A .安全常识B .性质与用途C .元素与人体健康D .环保与能源13.交警常用装有重铬酸钾(K 2Cr 2O 7)的仪器检测司机是否酒后驾车,重铬酸钾....中铬的化合价是A .+3B .+4C .+5D .+6 14.下列家庭小实验,不能..成功的是 A .用过滤的方法把硬水变成软水 B .用食醋除去热水瓶胆内壁的水垢 C .用肥皂水鉴别硬水和软水 D .用2B 铅笔芯做导电性实验 15.某气体由氢气、一氧化碳、甲烷(CH 4)中的一种或几种组成, 点燃该气体后,依次通过右图所示的装置,测得两装置的质 量均增加,则下列对气体组成的推断不正确...的是 A .可能只有甲烷 B .可能只有氢气 C .可能是甲烷和一氧化碳 D .可能三种气体都存在16.右图是实验室里标签破损的一瓶溶液,只能看清“K ”和“O 4”.某同学 对瓶中溶液是什么作了如下猜想,你认为她的猜想一定不合理...的是 A .高锰酸钾溶液 B .锰酸钾溶液 C .硫酸钾溶液 D .碳酸钾溶液 17.发射“嫦娥一号”的长三甲火箭燃料是偏二甲肼(X),氧化剂是四氧化二氮(N 2O 4),反应的化学方程式为:X+2N 2O 4===3N 2+2CO 2+4H 2O ,X 的化学式为 A .H 2 B .CH 4 C .C 2H 8N 2 D .C 2H 8N18.氯化氢气体溶于水得到盐酸.如图所示,将气体X 和气体Y 同时通入液体Z 中,最终一.定.能.看到液体变浑浊的是19.在氧化铁(Fe 2O 3)、氧化亚铁(FeO)和四氧化三铁(Fe 3O 4)这三种铁的氧化物中,铁的质量分数按由大到小顺序排列的是A .Fe 3O 4、Fe 2O 3、FeOB .FeO 、Fe 3O 4、Fe 2O 3C .FeO 、Fe 2O 3、Fe 3O 4D .Fe 2O 3、Fe 3O 4、FeO20.等质量的镁和锌分别放置在两只烧杯中,向其中分别逐滴加入溶质质量分数相等的稀硫酸到过量,下图正确的是第Ⅱ卷 (非选择题 共60分)二、填空题(本大题包括6个小题,共30分) 21.(4分)用化学符号填写下列空白①二个氮分子__________ ②三个铵根离子___________ ③五个氩原子__________ ④氯化亚铁中铁为+2价___________22.(6分)化学就在我们身边,它能改善我们的生活.请从“A .干冰、B .氮气、C .氢气、D.石油、E.碳酸钠、F.氢氧化钠、G.氧化铁”中选择适当的物质填空(填字母).(1)被称为理想的“绿色能源”是_________;(2)可用于人工降雨的物质是_________;(3)常用的纯碱是指_____________________;(4)被誉为“工业的血液”的是_______;(5)空气中体积分数最大的是_____________;(6)铁锈的主要成分是_______________.23.(4分)现有四个常见化学名词:①乳化、②结晶、③溶解、④蒸馏,请将上述各化学名词的序号填在与之相对应操作后面的横线上(每个序号只填写一次):(1)用酒精洗去衣服上的油污_________;(2)将洗发水洗去头发上的油污__________;(3)将硬水直接转变成软水___________;(4)降低饱和硝酸钾溶液的温度_________.24.(3分)某农场附近新建了一座燃煤火力发电厂后,发现该农场的小麦产量急剧下降.经农场技术员测定:雨水pH约为4、土壤pH约为5.已知一些重要作物最适宜生长的土壤的pH如下表:(1)根据上表数据,你认为这种土壤最适合种植的作物是(填编号)___________.(2)若继续种小麦,你认为最好选用以下(填编号)________试剂来改良土壤.①工业盐酸②熟石灰③纯碱(3)该地区形成酸雨的主要原因是_______________________________________.25.(3分)图甲是两种元素在周期表中的信息,图乙是氟原子的原子结构示意图.请完成下列问题:(1)图甲方框的横线上填的是________,图乙方框横线上的数字是_____________;(2)图甲所示两种元素形成化合物的化学式是______________________________.26.(10分)碳与碳的化合物在工农业生产及日常生活中有广泛的用途.(1)碳原子的最外层电子数是_________,碳元素在元素周期表中位于第________周期.(2)古代用墨书写或绘制的字画虽年久仍不变色,原因是墨中主要成分碳在常温下具有________性.右图是木炭还原氧化铜的实验,大试管中的反应体现了碳的还原性,单质碳的还原性可以用于冶金工业.①酒精灯加灯罩的目的:____________________________________;②刚开始预热,试管②中立即产生气泡,但石灰水不变浑浊,原因是_____________________________________________________________;③继续加热,观察到石灰水逐渐变浑浊........,黑色粉末中出现红色物质.请你写出带点部分的化学方程式:_____________________________________________.④停止加热时,应先将导管从试管②中撤出,待试管①冷却后再把试管里的粉末倒出.这样操作的原因是A__________________________________________________________________;B__________________________________________________________________.(3)二氧化碳能参与光合作用完成大气中的“碳循环”,但是大气中二氧化碳的含量不断上升,会使全球变暖,从而导致______________.蔬菜大棚用作气肥的二氧化碳,可用多种方法制得,例如可以用稀硫酸与碳酸氢铵(NH4HCO3)反应制得,反应后生成硫酸铵、水和二氧化碳,这一反应的化学方程式是_________________________.三、填空题(本大题包括1小题,共11分)27.(11分)实验室常用下列装置来制取气体:(1)写出图中有标号仪器的名称:a___________、b_____________;(2)用双氧水和二氧化锰来制取氧气时,发生反应的化学方程式为____________________________________________________________.(3)用E装置收集氧气的依据是__________________,检验氧气是否集满的方法是___________________________________________________________.(4)实验室常用氯化铵固体与碱石灰固体共热来制取氨气.常温下NH3是一种无色、有刺激性气味的气体,密度比空气小,NH3极易溶于水.①制取氨气反应的方程式:2NH4Cl+Ca(OH) 2 CaCl2+2NH3↑+2X.X的化学式为:____________________.②若用F装置来收集NH3,气体应从_________导管口进入.(选填“M”或“N”)(5)小明用大理石与稀盐酸反应制取CO2,可选用的发生装置是_________,收集装置是___________________.下图是小明实验时的主要步骤,这些步骤的正确顺序是(填字母标号,下同)_________,其中操作有误的是_________.四、分析题(本大题包括1小题,共6分).28.“即食即热”型快餐适合外出旅行使用.小新和小意对它的原理产生浓厚的兴趣,于是进行了如下探究:【初步探究】小新和小意发现:快餐内层用铝箔包裹,外层是分开包装的两包化学物质.使用时拉动拉线,使这两种物质接触,便可对食物进行加热.打开来看:一包是无色液体,一包是白色粉末.小意作出如下猜想:猜想①:这两包物质分别是生石灰和水猜想②:这两包物质分别是熟石灰和水【查阅资料】常温下,可用铝罐车运输浓硫酸.【实验】根据下图进行实验,观察发生的现象,完成下表.小新建议把这两包物质换成浓硫酸和水.他的建议合理吗?_______________(填“合理”或“不合理”).原因是_________________________________________.五、计算讨论题(本大题包括2小题,共13分)29.(4分)为了配制100g10%的氯化钠溶液,需进行如下操作:①计算;②用托盘天平称量__________g氯化钠;③用量筒量取_____________mL水;④将两者置于烧杯中,用玻璃棒搅拌.⑤若要使该溶液的溶质质量分数增加一倍,下列做法中正确的是_______.(填序号)A .加入10g 氯化钠晶体B .加入12.5g 氯化钠晶体C .蒸发掉25g 水D .蒸发掉50g 水30.(9分)右图为“XX ”钙片商品标签图,请根据标签的有关信息完成下列各题.(1)主要成分碳酸钙由_________种元素组成. (2)碳酸钙中各元素的原子个数比为_____________.(3)每片钙片中至少含钙元素的质量为___________g . (4)小花同学为测定其中碳酸钙的含量标注是否属实, 她取出10片钙片,研碎后放入小烧杯中,再加入 50g 稀盐酸,在T 0至T 3时间段,测得反应剩余物的质量变化如下:①生成的二氧化碳的质量是多少?②通过计算....判断该钙片中碳酸钙的含量标注是否属实.。

2018-2019学年苏科版九年级上期末考试数学试卷(含答案)

2018-2019学年苏科版九年级上期末考试数学试卷(含答案)

九年级(上)数学期末模拟试卷 2018-2019学年上学期期末考试九年级数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)已知(m-1)x2-3x+1=0是关于x的一元二次方程,则实数m的取值范围是.2.(2分)8与2的比例中项是.3.(2分)若一组数据7,3,5,x,2,9的众数为7,则这组数据的中位数是.4.(2分)若一个圆锥的底面半径长是10cm,母线长是18cm,则这个圆锥的侧面积= (结果保留π).5.(2分)如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC= .6.(2分)如图,⊙O的内接四边形ABCD中,AB=BC,∠D=72°,则∠BAC= °.7.(2分)已知二次函数y=x2+2x+3+b的图象与x轴只有一个公共点,则实数b= .8.(2分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不大于2的概率= .9.(2分)已知,那么= .10.(2分)如图是二次函数y=ax2+bx+c(a<0)的图象的一部分,过点(-3,0),对称轴是过点(-1,0)且平行于y轴的直线,点A(-)、B()在图象上.下列说法:①ac>0;②2a-b=0;③4a-2b+c<0;④y1>y2中,正确的是.(填序号)11.(2分)图中的每个点(包括△ABC的各个顶点)都在边长为1的小正方形的顶点上,在P、Q、G、H中找一个点,使它与点D、E构成的三角形与△ABC相似,这个点可以是.(写出满足条件的所有的点)12.(2分)对于二次函数y=ax2-3x-4(a>0),若自变量x分别取两个不同的值x1,x2时,所对应的函数值y相等,则当x取x1+x2时,所对应的y的值是.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)。

昆山、太仓市2017-2018学年第一学期初三数学期末教学质量调研测试(含答案)

昆山、太仓市2017-2018学年第一学期初三数学期末教学质量调研测试(含答案)

2017〜2018学年第一学期期末教学质量调研测试初三数学2018.1本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟.注意事项:1•答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上2•考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1•下列方程为一元二次方程的是()2 2 1A. x -3 二x(x 4)B. x 3x 2.—元二次方程x(x - 2) = 2 - x的根是()2C. x「10x=5D. 4x 6xy = 33A. -1A.4'33 C. 2、. 3 B. - 1 和2 C. 1 和2 D. 23.如图,在Rt ABC中,4.下表是某校女子排球队队员的年龄分布年龄/岁13141516频数1173则该校女子排球队队员的平均年龄是()岁A. 14.5B. 15C. 15.31 25.对于二次函数y x • x-4,下列说法正确的是()4A.当x>0, y随x的增大而增大D. 15.5B. 图像的顶点坐标为(-2,-7)C. 当x=2时,y有最大值-3D.图像与x轴有两个交点6.三角形两边的长分别是8和6,第三边的长是方程x2 T2x * 20 =0的一个实数根,则三角形的外接圆半径是( )7•如图,O O 是. ABC 的外接圆,• B = 60 , O O 的半径为4,则AC 的长等于()8•如图,在等腰Rt ABC 中,.C =90 , AC =6,D 是AC 上一点,若tan. DBA-丄,则AD5的长为( )10.如图,AB 是O O 的直径,弦CD _ AB 于点G ,点F 是CD 上一点,且满足连接AF 并延长交O O 于点E ,连接AD, DE ,若CF = 2, AF 二3.给出下列结论其中正确的是( )A.①②③B.①②④C.②③④D.①②③④、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)211.二次函数 y =x -4x-3的最小值是 _________________ . 12.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是8.9环,方差分别是 S 甲2=1.7, S 乙2=1. 2,则关于甲、乙两人在这次射击训练中成绩稳定A. 4B. 5C. 6D. 8A. 4 .3B. 6 3C. 2.3D. 8B. .3C . .2D. 19•如图,己知等腰ABC , AB = BC ,以AB 为直径的圆交 AC 于点D ,过点D 的O O 的切线交BC 于点E ,若CD =5,CE = 4,则O O 的半径是()A. 3B. 425C.6D. 258CF FD①■ ADFAED ;② FG = 2 ;③ tan E =④SDEF= 4*5第7題是_______ .(填“甲”或“乙”)13.已知扇形的圆心角为120°,弧长为6二,则扇形的面积是____________ .14•如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为____________15•正六边形的外接圆的半径为4,则这个正六边形的面积为____________ •16•如图,在ABC 中,AB 二AC =5,BC =8 若1 .BPC BAC ,则sin ZBPC = _____ .217•若关于x的一元二次方程X2-(k 3)x 2k ^0有一根小于1, 一根大于1,则k的取值范围是18.如图,AB =2,0是AB的中点,直线l经过点O.=120 ,P是直线l上一点.当APB为直角三角形时,AP = _________ .三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本小题满分6分)计算:⑴,4 sin60" T tan45 (2) tan2 60 4sin30 cos4520.(本小题满分6分)解方程:x x -3 5------- 十---------- =—x -3。

苏科版九年级2018--2019学年度第一学期期末考试数学试卷

苏科版九年级2018--2019学年度第一学期期末考试数学试卷

绝密★启用前 苏科版九年级2018--2019学年度第一学期期末考试 数学试卷 温馨提示:亲爱的同学们,考试只是检查我们对所学的知识的掌握情况,希望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功! 一、单选题(计30分) 1.(本题3分)一元二次方程32x -x=0的解是( ) A .x=0 B .1x =0,2x =3 C .1x =0,2x =13 D .x=13 2.(本题3分)如图,在⊙O 中,弦BC=1.点A 是圆上一点,且∠BAC=30°,则⊙O 的半径是( ) A 、1 B 、2 C 3.(本题3分)3.(本题3分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x ,根据题意列方程得( ) A . 10(1+x )2=16.9 B . 10(1+2x )=16.9 C . 10(1﹣x )2=16.9D . 10(1﹣2x )=16.9 4.(本题3分)若方程的一个解是,则值为( ) A . B . C . D . 5.(本题3分)某厂一月份生产某机器300台,计划二、三月份共生产980台.设二、三A .B .C .D . 6.(本题3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则的长为( )A .B .C . 2πD .7.(本题3分)某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛,随机抽取甲.乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S 2甲、S 2乙的大小( )A . S 2甲>S 2乙B . S 2甲=S 2乙C . S 2甲<S 2乙D . S 2甲≤S 28.(本题3分)100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A . 120 B . 19100 C . 14 D . 以上都不对9.(本题3分)正六边形的边心距与边长之比为( )A .1:2B :2C :1D :210.(本题3分)某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了右边的折线统计图,下列说法正确的是( )A . 极差是47B . 中位数是58C . 众数是42D . 极差大于平均数 二、填空题(计32分) 11.(本题4分)为了应对期末考试,老师布置了15道选择题作业,批阅后得到如下统计表,根据表中数据可知,由45名学生答对题数组成的样本的中位数是 . 12.(本题4分)如图,⊙O 的直径CD=20cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,若OM=6cm ,则AB 的长为 cm . 13.(本题4分)如果关于x 的方程x 2﹣2x+a=0有两个相等的实数根,那么a=_____. 14.(本题4分)若一个一元二次方程的两个根分别是的两条直角边长,且,请写出一个符合题意的一元二次方程_______. 15.(本题4分)如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.9,8,7,10,6,则该战士射击坏数的众数是______,中位数是______. 17.(本题4分)已知m 和n 是方程2x 2-5x -3=0的两个根,则1m +1n =________. 18.(本题4分)如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是____________.三、解答题(计58分)19.(本题8分)解下列方程:(1)(x ﹣3)2=2(x ﹣3) (2)x 2-4x+1=0(用配方法);20.(本题8分)九年级(1)班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有10人,请解答下列问题:(1)该班的学生共有 名;该班参加“爱心社”的人数为 名,若该班参加“吉他社”与“街舞社”的人数相同,则“吉他社”对应扇形的圆心角的度数为 ;(2)一班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.21.(本题8分)已知⊙O 的半径为2,点P 到圆心O 的距离OP=m ,且m 使关于x 的方程有实数根,求点P 与⊙O 的位置关系. 22.(本题8分)已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E . (1)求证:DE 是⊙O 的切线; (2)若∠CAB=120°,⊙O 的半径等于5,求线段BC 的长. 23.(本题8分)关于x 的一元二次方程的一个根是0,求n 的值.24.(本题9分)某班将2005年暑假勤工俭学挣得的班费2000元按一年定期存入银行.2006•年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待2007年毕业后全部捐给母校.若2007年到期后可取人民币(本息和)1069元,•问银行一年定期存款的年利率是多少.(假定不交利息税)25.(本题9分)如图,在⊙O 中,AB ,CD 是直径,BE 是切线,B 为切点,连接AD ,BC ,BD . (1)求证:△ABD ≌△CDB ; (2)若∠DBE=37°,求∠ADC 的度数.参考答案1.C【解析】试题分析:利用提取公因式法进行解方程,原方程可变为x (3x -1)=0,解得:1x =0,2x =13. 考点:一元二次方程的解法2.A .【解析】试题分析:连接OB 、OC ,先由圆周角定理求出∠BOC 的度数,再由OB=OC 判断出△BOC 的形状,故可得出结论.试题解析:连接OB 、OC∵∠BAC=30°∠BOC=2∠BAC=60°∵OB=OC∴△BOC 是等边三角形∴OB=OC=1故选A .考点:1.圆周角定理;2.等边三角形的判定与性质.3.A【解析】试题分析:设2013年底至2015年底该市汽车拥有量的年平均增长率为x ,根据题意,可列方程:10(1+x )2=16.9,故选A .考点:由实际问题抽象出一元二次方程.4.A【解析】【分析】把x=1代入已知方程,通过解方程来求a的值.【详解】解:依题意,得a×12-2×1-1=0,解得,a=3.故选:A.【点睛】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.5.B【解析】根据等量关系:二月份的产量+三月份的产量=980,可列方程.故选B.6.D【解析】【分析】先计算圆心角为120°,根据弧长公式=,可得结果.【详解】连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选D.【点睛】本题考查了弧长的计算和圆周角定理,熟练掌握弧长公式是关键,属于基础题.7.A【解析】【分析】先计算出平均数后,再根据方差的计算公式计算,再比较.【详解】甲的平均数=(10.05+10.02+9.97+9.96+10)÷5=10,乙的平均数=(10+10.01+10.02+9.97+10)÷5=10;S2甲=[(10.05﹣10)2+(10.02﹣10)2+(9.97﹣10)2+(9.96﹣10)2+(10﹣10)2]=,S2乙=[(10﹣10)2+(10.01﹣10)2+(10.02﹣10)2+(9.97﹣10)2+(10﹣10)2]=;故有S2甲>S2乙.故选A.【点睛】本题考查了方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=,故选C.点睛:本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.9.D.【解析】试题分析:如图:设正六边形的边长是a,则半径长也是a;过正六边形的中心O作边AB的垂线段OC,则AC=12AB=12a,由勾股定理得= a,所以正六边形的边心距与边长之比为: a:2.故选D.考点:正多边形和圆.10.B【解析】试题解析:A. 极差为:83−28=55,故错误;B. 中位数为:(58+58)÷2=58,正确;C. ∵58出现的次数最多,是2次,∴众数为:58,故错误;D.计算可知平均数为56.25大于极差.故错误.故选B.11.14.【解析】试题分析:∵一共有45人,∴中位数为第23人的成绩,∴中位数为14题.故答案为:14.考点:中位数.12.16.【解析】试题分析:连接OA ,∵⊙O 的直径CD=20cm ,∴OA=10cm ,在Rt △OAM 中,由勾股定理得:,∴由垂径定理得:AB=2AM=16cm .故答案为:16.考点:垂径定理.13.1【解析】22410a =--⨯⨯= (), 解得a=1.故答案为1.14.【解析】试题分析:∵一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,∴一元二次方程的两个根的乘积= 6,∵6=2×3=1×6,∴一元二次方程的两个根可为2和3,1和6,∴此方程可以为;x 2-5x+6=0,x 2-7x+6=0,故答案为:x 2-5x+6=0(答案不唯一). 考点:一元二次方程根与系数的关系.15.35r <<.【解析】试题分析:根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<.考点:勾股定理;点和圆的位置关系.16.98【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】根据这组数据得出,出现次数最多的数据是9,所以众数为9;将这10个数按从小到大的顺序排列,发现第五位和第六位都是8,根据中位数定义求出中位数即为8.【点睛】理解中位数和众数的定义是解题的关键.17.-5 3【解析】∵m,n是2x2-5x-3=0的两个根,∴m+n=52,m·n=-32∴1m+1n=m nmn+=52÷(-32)=-53.18.8【解析】试题分析:连接OC,则OC=OD=2,根据切线的性质可知∠ACO=90°,根据tan∠OAB 的值可知:AC=2OC=4,根据垂径定理可得:AB=2AC=8.19.(1) x1=3,x2=5,(2) x1x2【解析】试题分析:(1)先移项,再利用因式分解法求解即可.(2)用配方法求解即可.试题解析:(1)∵(x﹣3)2=2(x﹣3)(x﹣3)2-2(x﹣3)=0(x﹣3)(x﹣5)=0∴x1=3,x2=5(2) x2-4x+1=0x2-4x+4-3=0(x-2)2=3x-2=∴x1x2考点:解一元二次方程.20.(1)40,8,36°;(2)1 3【解析】试题分析:(1)利用参加“读书社”的学生数和它所占比例可计算出调查的学生总数,再用学生总数乘以“爱心社”所占的百分比得到该班参加“爱心社”的人数,然后计算出该班参加“吉他社”的百分比,用此百分比乘以360度即可得到“吉他社”对应扇形的圆心角的度数;(2)画树状图展示所有8种等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解.试题解析:(1)因为参加“读书社”的学生有10人,且在扇形统计图中,所占比例为25%,所以该班的学生共有10÷25%=40(人);该班参加“爱心社”的人数=40×20%=8(名);参加“吉他社”的学生在全班学生中所占比为12(1﹣25%﹣15%﹣20%﹣20%)=10%,所以“吉他社”对应扇形的圆心角的度数为:360°×10%=36°;故答案为40,8,36°;(2)画树状图如下:共有8种等可能的结果数,其中恰好选中甲和乙的情况有2种,所以P(选中甲和乙)=26=13.考点:列表法与树状图法21.点P在圆上或圆内。

2018-2019学年九年级数学(上)期末模拟试卷(苏州市有答案)

2018-2019学年九年级数学(上)期末模拟试卷(苏州市有答案)

江苏省苏州市2018-2019学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A.点A B.点B C.点C D.点D2.计算:得()A.B.C.D.3.下列运算错误的是()A.(x2)3=x6B.x2•x3=x5C.x2﹣2xy+y2=(x﹣y)2D.3x﹣2x=14.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70 5.设M=﹣x2+4x﹣4,则()A.M<0B.M≤0C.M≥0D.M>06.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+57.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)8.下列说法正确的个数是()①平分弦的直径垂直于弦;②三点确定一个圆;③在同圆中,相等的弦所对的圆周角相等;④直径为圆中最长的弦.A.1个B.2个C.3个D.4个9.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°10.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1B.2C.3D.4二.填空题(共8小题,满分24分,每小题3分)11.当x时,分式有意义.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.13.化简:(1+)÷=.14.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.15.若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为.16.抛物线y=3x2﹣6x+a与x轴只有一个公共点,则a的值为.17.已知点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x≤1时,y的取值范围是.18.如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.则PD的长为.三.解答题(共10小题,满分66分)19.(5分)计算:﹣()﹣1+﹣(π﹣3.14)0+|2﹣4|.20.(5分)分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.21.(6分)先化简,再求值:(+)÷,且x为满足﹣3<x<2的整数.22.(7分)2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为100分)进行统计,绘制了图中两幅不完整的统计图.(1)a=,n=;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.(7分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完..........,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?24.(8分)如图,已知⊙O的直径AB垂直弦CD于点E,连接AD、BC、OC,且OC=5.(1)若,求CD的长;(2)若∠OCD=4∠BCD,求扇形OAC(阴影部分)的面积(结果保留π).25.(8分)二次函数y=ax2+bx+c(a≠0,a,b,c为常数)图象如图所示,根据图象解答问题.(1)写出过程ax2+bx+c=0的两个根.(2)写出不等式ax2+bx+c>0的解集.(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.26.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?27.如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.28.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.参考答案一.选择题1.解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选:A.2.解:原式=﹣××,=﹣.故选:B.3.解:A、(x2)3=x6,正确;B、x2•x3=x5,正确;C、x2﹣2xy+y2=(x﹣y)2,正确;D、3x﹣2x=x,选项D错误;故选:D.4.解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.解:M=﹣x2+4x﹣4=﹣(x﹣2)2.∵(x﹣2)2≥0,∴﹣(x﹣2)2≤0,即M≤0.故选:B.6.解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.7.解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.8.解:平分弦(非直径)的直径垂直于弦,所以①错误;不共线的三点确定一个圆,所以②错误;在圆中,任何一条弦都对应着两条弧,而这两条弧一般是不相等的,只有弦是直径时,所对的两条弧才相等,故③错误;直径为圆中最长的弦,故④正确;故选:A.9.解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.10.解:由图知:当点B的横坐标为1时,抛物线顶点取C(﹣1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即与x轴的交点为(2,0)或(4,0)(舍去),∴点A的横坐标的最大值为2.故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:当1﹣2x≠0,即x≠时,分式有意义.故答案为x≠.12.解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.13.解:(1+)÷===,故答案为:.14.解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.15.解:设圆锥的底面圆的半径为r,圆锥的侧面展开图的圆心角为n°,根据题意得πr2=16π,解得r=4,所以2π×4=,解得n=120,即圆锥的侧面展开图的圆心角为120°.故答案为120°.16.解:∵抛物线y=3x2﹣6x+a与x轴只有一个公共点,∴△=36﹣12a=0,解得:a=3,故答案为:317.解:∵二次函数y=2(x+1)2﹣3,∴该函数对称轴是直线x=﹣1,当x=﹣1时,取得最小值,此时y=﹣3,∵点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,∴当﹣2<x≤1时,y的取值范围是:﹣3≤y≤5,故答案为:﹣3≤y≤5.18.解:如图,连接AD.∵∠ADC=∠B,∠B=60°,∴∠ADC=60°.又∵CD是⊙O的直径,∴∠DAC=90°,∵AC=3,∴AD=AC•cot60°=.∵AP=AC,∴∠P=∠ACP=30°.又∵∠ADC=∠P+∠DAP=60°,∴∠P=∠DAP=30°,∴PD=AD=.故答案是:.三.解答题(共10小题,满分66分)19.解:原式=2﹣2+﹣1+4﹣2=.20.解:(Ⅰ)原式=3m(x﹣2y);(Ⅱ)原式=y(y2+6y+9)=y(y+3)2.21.解:原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2所以x=﹣1原式=﹣2﹣3=﹣522.解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°,故答案为:75、54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.23.解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.24.解:(1)∵⊙O的直径AB垂直弦CD于点E,∴CE=DE设EB=3x,则BC=5x,∴CE=4x,在直角三角形OCE中,OC2=CE2+OE2,52=(4x)2+(5﹣3x)2,解得x=0或x=1.2,∴CE=4x=4.8,∴CD=2CE=9.6;(2)∵AB⊥CD,∴∴∠COB=2∠BCD∵∠OCD=4∠BCD,∠OBC=∠OCB,∠OCB+∠OBC+COB=180°,∴∠BCD=15°,∴∠OBC=75°,∴∠BOC=30°,∴∠AOC=150°∴S==.25.解:(1)由图象得:ax2+bx+c=0的两个根为x1=﹣1,x2=3;(2)由图象得:不等式ax2+bx+c>0的解集为﹣1<x<3;(3)设抛物线解析式为y=a(x+1)(x﹣3),把(0,2)代入得:﹣3a=2,解得:a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∵方程ax2+bx+c=k有两个不相等的实数根∴二次函数与y=k有两个交点,由图象得:k的范围为k<.26.解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.27.解:(1)①当∠AOM=60°时,∵OM=OA,∴△AMO是等边三角形,∴∠A=∠MOA=60°,∴∠MOD=30°,∠D=30°,∴DM=OM=10②过点M作MF⊥OA于点F,设AF=x,∴OF=10﹣x,∵AM=12,OA=OM=10,由勾股定理可知:122﹣x2=102﹣(10﹣x)2∴x=,∴AF=,∵MF∥OD,∴△AMF∽△ADO,∴,∴,∴AD=∴MD=AD﹣AM=(2)当点M位于之间时,连接BC,∵C是的中点,∴∠B=45°,∵四边形AMCB是圆内接四边形,此时∠CMD=∠B=45°,当点M位于之间时,连接BC,由圆周角定理可知:∠CMD=∠B=45°综上所述,∠CMD=45°28.解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。

2018-2019学年苏科版九年级数学上册期末检测试题及答案

2018-2019学年苏科版九年级数学上册期末检测试题及答案

2018-2019学年苏科版九年级数学上册期末检测试卷一、单选题(共10题;共30分)1.下列方程中是关于x的一元二次方程的是()=0 B. ax2+bx+c=0 C. x−1x−2=0 D. 3x2−2xy−5y2=0A. x2+1x2.用配方法解方程x2−4x+1=0,下列变形正确的是().A. (x−2)2=4B. (x−4)2=4C. (x−2)2=3D. (x−4)2=33.下列说法中,正确的是()A. 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B. 两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C. 抛掷一个正方体骰子,点数为奇数的概率是13D. “打开电视,正在播放广告”是必然事件4.商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如下表所示:经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是. ()A. 众数B. 平均数C. 中位数D. 方差5.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()A. PA=PBB. ∠APO=20°C. ∠OBP=70°D. ∠AOP=70°6.圆锥的母线长为5cm,底面半径为3cm,那么它的侧面展开图的圆心角是( )A. 180°B. 200°C. 225°D. 216°7.方程x2﹣3x+2=0的最小一个根的倒数是()D. 4A. 1B. 2C. 128.扇形的周长为16,圆心角为360°,则扇形的面积是()πA. 16B. 32C. 64D. 16π9.某商场将某种商品的售价从原来的每件200元经两次调价后调至每件162元,设平均每次调价的百分率为x ,列出方程正确的是()A. B. C. D.10.已知a,b是方程x2+2013x+1=0的两个根,则(1+2015a+a2)(1+2015b+b2)的值为()A. 1B. 2C. 3D. 4二、填空题(共10题;共30分)11.已知一元二次方程x2−3x−1=0的两根为x1、x2,则x1+x2=________12.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD=________度.13.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是________.14.如图,四边形ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=100∘,则∠FBE=________°15.如果m、n是两个不相等的实数,且满足m2﹣m=2016,n2﹣n=2016,那么代数式n2+mn+m的值为________.16.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是________ 度.17.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sinE的值为________.18.已知:△ABC中,∠C=90°,AC=5cm ,AB=13cm ,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B________.19.某超市今年一月份的营业额为60万元.三月份的营业额为135万元.若每月营业额的平均增长,则二月份的营业额是________万元.20.如图,在Rt△AOB中,OA=OB=32 ,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为________ .三、解答题(共9题;共60分)21.解方程x2﹣5x﹣6=022.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,BD=2,连接CD,求BC的长.23.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩如下:(单位:环)请你运用所学的统计知识做出分析,从三个不同角度评价甲、乙两人的打靶成绩.24.如图,一拱桥所在弧所对的圆心角为120°(即∠AOB=120°),半径为5 m,一艘6 m宽的船装载一集装箱,已知箱顶宽3.2 m,离水面AB高2 m,问此船能过桥洞吗?请说明理由.25.“五一”假日期间,某网店为了促销,设计了一种抽奖送积分活动,在该网店网页上显示如图所示的圆形转盘,转盘被均等的分成四份,四个扇形上分别标有“谢谢惠顾”、“10分”、“20分”、“40分”字样.参与抽奖的顾客只需用鼠标点击转盘,指针就会在转动的过程中随机的停在某个扇形区域,指针指向扇形上的积分就是顾客获得的奖励积分,凡是在活动期间下单的顾客,均可获得两次抽奖机会,求两次抽奖顾客获得的总积分不低于30分的概率.26.某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:(1)分别求出甲、乙、丙三人的面试成绩的平均分、和;(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.27.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线.28.如图S2-1所示,要建一个面积为130 m2的仓库,仓库有一边靠墙(墙长16 m),并在与墙平行的一边开一道宽1 m的门,现有能围成32 m的木板,求仓库的长与宽?(注意:仓库靠墙的那一边不能超过墙长).29.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】A4.【答案】A5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】D10.【答案】D二、填空题11.【答案】312.【答案】6013.【答案】x+6=﹣414.【答案】5015.【答案】116.【答案】15017.【答案】1218.【答案】上19.【答案】9020.【答案】22三、解答题21.【答案】解:(x﹣6)(x+1)=0,x1=6,x2=﹣1.22.【答案】解:在⊙O中,∵∠A=45°,∴∠D=45°.∵BD为⊙O的直径,∴∠BCD=90°,∴BC=BD·sin45°=2× 2=2223.【答案】解答:解:根据题意得:甲这6次打靶成绩的平均数为(10+9+8+8+10+9)÷6=9(环),乙这6次打靶成绩的平均数为(10+10+8+10+7+9)÷6=9(环),说明甲、乙两人实力相当,甲的方差为:=[(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2+(9-9)2]÷6=,乙的方差为:=[(10-9)2+(10-9)2+(8-9)2+(10-9)2+(7﹣9)2+(9-9)2]÷6=,甲打靶成绩的方差低于乙打靶成绩的方差,说明甲的打靶成绩较为稳定;甲、乙两人的这6次打靶成绩中,命中10环分别为2次和3次,说明乙更有可能创造好成绩.24.【答案】解:如图所示,连接OE,过点O作OH⊥EF于点H,∵∠AOB=120°OA=5m,∴∠OAB=30°,OK=2.5m,则OH=2.5+2=4.5m,∵OE=5m,∴在Rt△OEH中,EH= 52−(92)2=192,∴EF=2EH= 19>3.2,∴此船能过桥洞.25.【答案】解:将指针指向“谢谢惠顾”记为“0分”,列表得:由表可知,所有等可能结果有16种,其中两次抽奖顾客获得的总积分不低于30分的结果有10种,所以两次抽奖顾客获得的总积分不低于30分的概率P= 1016= 5826.【答案】解:(1)=(94+89+90)÷3=273÷3=91(分)=(92+90+94)÷3=276÷3=92(分)=(91+88+94)÷3=273÷3=91(分)∴甲的面试成绩的平均分是91分,乙的面试成绩的平均分是92分,丙的面试成绩的平均分是91分.(2)甲的综合成绩=40%×95+60%×91=38+54.6=92.6(分)乙的综合成绩=40%×94+60%×92=37.6+55.2=92.8(分)丙的综合成绩=40%×94+60%×91=37.6+54.6=92.2(分)∵92.8>92.6>92.2,∴乙将被录用.27.【答案】(1)∵∠ABC与∠ADC都是弧AC所对的圆周角,∴∠ADC=∠B=60°.(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=30°.∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.∴AE是⊙O的切线.28.【答案】解:设仓库的宽为x,则长为(32-2x+1),列方程得(32-2x+1)x=130,解得x1=,x2=10,当x=时,长为20,不合题意,则只能长为13,宽为10.29.【答案】解:设这种玩具的销售单价为x元时,厂家每天可获利润20000元,由题意得,(x-360)[160+2(480-x)]=20000(x-360)(1120-2x)=20000(x-360)(560-x)=10000x2−920x+211600=0(x−460)2=0x1=x2=460∴这种玩具的销售单价为460元时,厂家每天可获利润20000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【市级联考】江苏省苏州市昆山市2018届九年级
(上)期末数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列方程为一元二次方程的是( )
A.x2﹣3=x(x+4)
C.x2﹣10x=5 D.4x+6xy=33
B.
2. 一元二次方程的根是
A.﹣1 B.2 C.1和2 D.﹣1和2
3. 如图,在Rt△ABC 中,∠C=90°,∠B=30°,AB=8,则 BC 的长是
( )
B.4C.8D.4
A.
年龄/岁13 14 15 16
频数 1 1 7 3
则该校女子排球队队员的平均年龄是( )岁
A.14.5 B.15 C.15.3 D.15.5
5. 对于二次函数,下列说法正确的是()
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
6. 三角形两边的长分别是 8 和 6,第三边的长是方程 x2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是( )
A.4 B.5 C.6 D.8
7. 如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()
A.4B.6C.2D.8
8. 如图,在等腰中,,,是上一点,若
,则的长为().
A.2 B.C.D.1
9. 如图,已知△ABC,AB=BC,以 AB 为直径的圆交 AC 于点 D,过点 D 的⊙O的切线交 BC 于点 E,若 CD=5,CE=4,则⊙O 的半径是( )
A.2 B.4
C.D.
10. 如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足
=,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结
论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4其中正确的是()
A.①②④B.①②③C.②③④D.①③④
二、填空题
11. 二次函数的最小值是_______.
12. 在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均
数均是9.1环,方差分别是S
甲2=1.2,S

2=1.6,则关于甲、乙两人在这次射击
训练中成绩稳定的________. (填“甲或乙”)
13. 已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.
14. 如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为
_____________.
15. 正六边形的外接圆的半径为 4,则这个正六边形的面积为_________.
16. 在△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,
tan∠BPC=_______________.
17. 若关于 x 的一元二次方程 x2﹣(k+3)x+2k+2=0 有一根小于 1,一根大于1,则 k 的取值范围是______.
18. 如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l
上一点.当△APB为直角三角形时,AP=.
三、解答题
19. 计算:
(1)+|sin60°﹣1|+tan45°;(2)tan260°+4sin30°cos45°.
20. 解方程:
21. 已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.
(1)求 k 的取值范围;
(2)写出一个满足条件的 k 的值,并求此时方程的根.
22. 在一只不透明的布袋中装有红球 3 个、黄球 1 个,这些球除颜色外都相同,均匀摇匀.
(1)从布袋中一次摸出 1 个球,计算“摸出的球恰是黄球”的概率;
(2)从布袋中一次摸出 2 个球,计算“摸出的球恰是一红一黄”的概率(用“ 画树状图”或“列表”的方法写出计算过程).
23. 如图⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点A.
(1)求线段AB的长;
(2)求以直线AC为图象的一次函数的解析式.
24. 如图在塔底的水平面上某点 A 测得塔顶 P 的仰角为α,由此点向塔沿直线行走 m(单位米)到达点 B,测得塔顶的仰角为β,求塔高 PQ 的长.(用
α、β、m 表示)
25. 如图,锐角△ABC 中 BC=a,AC=b,AB=c,记三角形 ABC 的面积为 S.(1)求证:S=absinC;
(2)求证:.
26. 某专卖店经市场调查得知,一种商品的月销售量 Q(单位:吨)与销售价格x(单位:万元/吨)的关系可用下图中的折线表示.
(1)写出月销售量 Q 关于销售价格 x 的关系;
(2)如果该商品的进价为 5 万元/吨,除去进货成本外,专卖店销售该商品每月
的固定成本为 10 万元,问该商品每吨定价多少万元时,销售该商品的月利润
最大?并求月利润的最大值.
27. 如图,二次函数 y=ax2﹣2ax+c(a>0)的图象与 x 轴的负半轴和正半轴分别交于 A、B 两点,与 y 轴交于点 C,它的顶点为 P,直线 CP 与过点B 且
垂直于 x 轴的直线交于点 D,且 CP:PD=1:2,tan∠PDB=.
(1)则 A、B 两点的坐标分别为 A( ,);
B( ,);
(2)求这个二次函数的解析式;
(3)在抛物线的对称轴上找一点M 使|MC﹣MB|的值最大,则点M 的坐标
为.
28. 如图,在Rt△ABC中,∠ACB=90°,AC=6cm,∠ABC=30°,动点P从点B 出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点Q从点C出发,
在CB边上以每秒cm的速度向点B匀速运动,运动时间为t秒
(0≤t≤6),连接PQ,以PQ为直径作⊙O.
(1)当t=1时,求△BPQ的面积;
(2)设⊙O的面积为y,求y与t的函数解析式;(3)若⊙O与Rt△ABC的一条边相切,求t的值.。

相关文档
最新文档