2钢液凝固的基本理论

合集下载

凝固过程的基本原理

凝固过程的基本原理
k
wS
wL
▪ 在平衡凝固过程中,固相和液相中的溶质质量分数wS与wL是由相图的固相线和
液相线确定的。相图只能确定平衡凝固条件下的溶质分配系数。但在实际情况
下,平衡凝固的情况非常罕见。
▪ 一般将合金的凝固过程分为平衡凝固、近平衡凝固和非平衡凝固过程。对应于 上述凝固过程,k的定义和名称也各不相同,分别称为:平衡溶质分配系数k0, 有效溶质分配系数ke, 非平衡溶质分配系数 (也叫实际溶质分配系数) ka 。
1.相图与凝固---多元合金的凝固过程分析
相图计算的基本原理就 是依据热力学原理,计算
收集评估相图与热力学试验数据
系统的相平衡关系及各种
选择各相的吉布斯自由能模型
热力学数据,并绘制出相 图。热力学计算技术不仅
重新评估实验数据
给模型参数赋初值
能获得多元合金的相图信 息如分凝系数、液相线 (面) 斜率等,同时也能够获得
1.相图与凝固---多元合金的凝固过程分析
▪ 多元合金的溶质再分配分析
同样,对于多元合金,一般是从热力学的基本原理出发,对其溶质再分
配规律作出分析。
在研究多元合金的凝固过程时,仅当发生单相析出时,讨论溶质分配系
数才是有意义的。此时,任一组元i在液相和固相j中的化学位为,
L i
(GL wi
)T,P,WCj
1.相图与凝固---二元合金凝固过程的溶质再分配
▪ 溶质再分配是凝固过程的重要伴随现象,对凝固组织有决定性的影响。正是50~ 60年代以来对凝固过程溶质再分配现象的发现和深入研究,推动了现代凝固理 论的形成和发展。
▪ 描述凝固过程溶质再分配的关键参数是溶质分配系数k,它是凝固过程中固相溶
质质量分数wS与液相溶质质量分数wL之比。可写为,

第一章 金属液态成形理论基础

第一章 金属液态成形理论基础

第一节 液态金属充型能力与流动性
0、什么是液态金属的充型能力
1)定义:
液体金属充满铸型型腔,获得尺寸精确、轮廓清晰的 成型件的能力,称为充型能力。
2)充型能力对成型的影响
充型能力不足时,会产生浇不足、冷隔、夹渣、气孔 等缺陷。
3)影响充型能力的因素
充型能力首先取决于金属本身的流动性(流动能力),同 时又受铸型性质、浇注条件和铸件结构等因素影响。
一、铸件的凝固方式
在铸件凝固过程中,其断面上一般存在三个区 域:固相区、凝固区和液相区。
1、分类
依据对铸件质量影响较大的凝固区的宽窄划分 铸件的凝固方式为如下三类:
(1)逐层凝固
纯金属和共晶成分的合金在凝固过程中不存在液、固并 存的凝固区,随着温度下降,固体层不断加厚,液体不 断减少,直达铸件中心,这种凝固方式称为逐层凝固。
机械应力
二、铸件的变形及其防止
1、变形的原因:
铸件内部残余内应力。 只有原来受拉伸部分产生压缩 变形、受压缩部分产生拉伸变 形,才能使铸件中的残余内应 力减小或消除。
平板铸件的变形
杆件的变形
床身铸件的变形
粱形铸件的弯曲变形
2、防止措施:
减小应力; 将铸件设计成对称结构,使其内应力互相平衡; 采用反变形法; 设置拉肋; 时效处理。
2、冷裂纹的特征
裂纹细小,呈连续直线状,裂缝内有金属光泽或轻 微氧化色。
3、防止措施
凡是能减少铸件内应力和降低合金脆性的因素 均能防止冷裂。 设置防裂肋亦可有效地防止铸件裂纹。
防裂肋
三、合金的吸气性
液态合金中吸入的气体,若在冷凝过程中不能溢 出,滞留在金属中,将在铸件内形成气孔。
一)气孔的危害
气孔破坏了金属的连续性,减少了其承载的有效 截面积,并在气孔附近引起应力集中,从而降低 了铸件的力学性能。 弥散性气孔还可促使显微缩松的形成,降低铸件 的气密性。

钢液凝固的基本原理

钢液凝固的基本原理

钢液凝固的基本原理1 钢液的凝固与结晶众所周知,在不同的温度条件下,物质都具有不同的状态。

钢也一样,在加热到一定的温度时,可从固态转化成液态;钢液冷却到某个温度时,将从液态转化为固态。

钢从液态转化成固态称为凝固;从固态转化成液态叫熔化。

钢水凝固的过程主要是晶体或晶粒的生成和长大的过程,所以也叫做结晶。

1.1 钢液的结晶条件(钢液凝固的热力学条件)通常把固体转变为液态的下限温度称为熔点;把液态转变为固态的上限温度叫凝固点,又称理论结晶温度。

凝固点即物质在冷却过程中开始凝固的温度,钢液的结晶只有降温到凝固点以下才能发生。

因为钢液的液相温度在冶炼和浇注操作中是一个关键参数,因此,准确知道要生产的钢的液相线温度对整个炼钢过程至关重要.出于操作安全性和希望得到尽量多的等轴晶凝固组织而采用低过热度浇铸等因素考虑,一般要求浇注温度确定在液相线以上的一个合适的值。

一般根据钢中元素含量可以计算出该钢的液相线温度值。

通常用T S表示钢的凝固点或理论结晶温度。

对某一具体的钢种,凝固点通常可用以下公式理论计算出:T S=1536℃-(78C%+7。

6Si%+4.9Mn%+34P%+30S%+5Cu%+3。

1Ni%+2Mo%+2V%+1。

3Cr%+3。

6Al%+18Ti%)℃降温到T S以下某温度T叫过冷,并把T S与T的温度差值△T叫过冷度,即:△T=T S-T过冷是钢液结晶的必要条件,过冷度的大小决定结晶趋势的大小,即过冷度越大,结晶速度越快;反之,过冷度越小,结晶速度越慢。

1。

2 晶核的形成(1)自发形核在过冷钢液中,有一些呈规则排列的原子集团,其中尺寸最大的集团,就是晶体产生的胚,称之为晶胚。

晶胚时而长大,时而缩小,但最终必有一些晶胚达到某一规定的临界尺寸以上,它就能够稳定成长而不再缩小了,这就形成晶核。

(2)非自发开核因在钢液的凝固过程中,液相中非自发形核比自发形核所要求的过冷度小得多,只要几度到20℃过冷度就可形核,这是因为钢液中存在悬浮质点和表面不光滑的器壁,均可作为非均质形核的核心。

钢液凝固的基本理论

钢液凝固的基本理论
钢液凝固的根本理论
(二)理论结晶温度:
凡是纯元素(金属 非金属)都有一个严格不变的温 度点,在这温度下,液体与晶体永远共存,这个温 度就称为理论结晶温度 。T0符号 。
理论上,上述温度 T0 当T>T0 S→L 当T<T0 L→S 当T=T0 LS
(三)自由能:
(由固态转变为液态) (由液态转变为固态) (液态、固态平衡共存)
图2—2是用热分析测定液态金属结晶时3种冷却曲线的情况。曲线中各转点表 示结晶的开始或终结。其中:a表示接近平衡的冷却,结晶在一定的过冷度下 开始、进行和终结,由于潜热的释放和逸散相等,所以结晶温度始终保持恒定, 一直到完全结晶后,温度才下降3b表示金属液冷却速度较快(实际生产的通常 倩况)的状态,结晶在较大的过冷度下开始,所以进行较快,而使潜热的释放 大于热的逸散,这样便使湿度逐渐回升,直至两者相等,而后结晶便在恒温下 进行;直到结晶完成后,温度才会下降;c表示冷却很快,结晶在更大的过冷 度下开始,而且浴热的释放始终小于热的逸散,所以结晶一直在连续降温的过
T0 Tn
作出的τ-T曲线。(如右图)
冷却曲线中出现的水平台阶的
温度就是实际结晶温度。
纯金属结晶冷却曲线示意图
NETZSCH 404G3 高温差示扫描量热仪
主要用于对材料进展高温热分析,包括相转变温度及转变焓、多晶 形转变温度和转变焓、物质的比热、材料的玻璃化转变温度与比热 变化程度、熔点与熔化焓、晶体的结晶温度与结晶热焓、结晶度、 固化温度等。
程中进行,直到结晶终结后,温度便又更快地下降。这后一种情况只能在较小 体积的液体中,或在大体积液体的局部区域内进行。
冷却速度越大,那么过冷度越大。
• 过冷现象:过冷是结晶的必要条件。 • 过冷度 : ΔT = T0 – T1 • 结晶热力学条件:必须具有一定的过冷度。

331-其他资源-钢液的物理性质

331-其他资源-钢液的物理性质

炉料中 w[P]<0.30% 时
R
wCaO wSiO 2
0.30%≤w[P] < 0.60% 时 R w CaO (wSiO 2 wP2O5 )
熔渣 R<1.0 时为酸性渣,由于 SiO2 含量高,高温下可拉成细丝 ,称为长渣,冷却后呈黑亮色玻璃状;
R>1.0 为碱性渣,称之短渣。炼钢熔渣 R≥3.0 。
w[C]/%
1500℃
铁碳熔体密度 (kg/m3)
1550℃
1600℃
1650℃
1700℃
0.00
7460
7040
7030
7000
6930
0.10
6980
6960
6950
6890
6810
0.20
7060
7010
6970
6930
6810
0.30
7140
7060
7010
6980
6820
0.40
7140
7050
目的。 转炉炼钢造碱性氧化渣,而电炉炼钢造碱性还原渣,它们在物理化学性 质和冶金反应特点上有明显的差别。
碱性氧化渣因碱性氧化物 CaO 和 FeO 含量较高,具有脱磷、脱硫能力
,碱性还原渣因含有 CaC2 ,不仅具有脱硫能力,而且有脱氧能力。
转炉和电炉的炉渣成分和性
类别 酸性氧化渣
碱性氧化渣
碱性还原渣 (白渣)
计算钢的熔点经验式:
T 熔 =1538-90[%C]-28[%P]-40[%S]-17[%Ti]- 6.2[%Si]-2.6[%Cu] -1.7[%Mn]-2.9[%Ni]- 5.1[%Al]-1.3[%V]-1.5[%Mo]-1.8[%Cr] -1.7[%Co]-1.0[%W]-1300[%H]-90[%N]-100[%B]-65[%O] -5[%Cl]-14[%As]

金属凝固理论

金属凝固理论
33
2. 负温度梯度下生长的晶体形态
34
如:白磷在低长大速度时(小过冷度ΔT)为小晶面界面,在长大速度增大到一定时,却转变为非小晶面。 非均质形核临界晶核半径: 粗糙界面也称“非小晶面”或“非小平面”。 在相变驱动力的驱使下,借助 得临界晶核半径 r*: 一、 液-固界面自由能及界面结构 非均质形核与均质形核时临界曲率半径大小相同,但球缺的体积比均质形核时体积小得多。 由于前面讨论的热力学因素,生长过程中仍可维持粗糙面的界面结构。 其生长方向为界面的法线方向,即垂直于界面生长。 1、粗糙界面与光界滑面 三、晶体宏观生长方式 只要原子沉积供应不成问题,可以不断地进行“连续长大”。 由金属原子穿越界面过程所引起 液态相间的界面,界面具有界面 只要原子沉积供应不成问题,可以不断地进行“连续长大”。 凝固动力学是研究形核、界面结构及晶体长大。 凝固是物质由液相转变为固相的过程,是液态成形技术的核心问题,也是材料研究和新材料开发领域共同关注的问题。
3
Chapter 4 Thermodynamics and kinetics of solidification
4
主要内容
4.1 凝固热力学 4.2 凝固动力学 4.3 纯金属的晶体长大
4.1 凝固热力学
4.1.1 ห้องสมุดไป่ตู้-固相变驱动力
4.1.2 溶质平衡分配系数(K0)
4.1.1 液-固相变驱动力
错配 度 aCaNaN10% 05%完 , 全共 格 25% ; 完 , 全不共
晶格结构越相似,它们之间的界面能越小 ,越易形核。
杂质表面的粗糙度对非均质形核的影响 凹面杂质形核效率最高,平面次之,凸面最差 。
4.3 纯金属的晶体长大
一、 液-固界面自由能及界面结构 二、 晶体长大机制 三、 晶体宏观生长方式

第四讲 钢液的凝固原理—结晶器、二次冷却

第四讲 钢液的凝固原理—结晶器、二次冷却

1.1.1 结晶器的构造
按结晶器的构造可以分直结晶器和弧形结 晶器,直结晶器主要是用在立式、立弯式 和直弧形连铸机上,而弧形结晶器是用在 全弧形和椭圆形连铸机。
按结构可分为整体结晶器、管式结晶器和 组合结晶器,第一种结晶器目前已经很少 采用,下面主要是介绍后两种结晶器。小 方坯或小矩形坯采用管式结晶器,而大方 坯、大矩形坯及板坯多采用组合结晶器。
➢ 钢水在结晶器中形成凝固坯壳及过热度的降低所放出的热 量主要是由冷却水带走的,因此要合理设定的水缝面积。 通常采用下式来计算结晶器水缝的面积F〔3〕:

F 10000 QS ,
mm2
3600 v
(8)
➢ 式中 Q 结晶器单位周长耗水量,m3/(h∙m),经验为 100~160 m3/(h∙m);
图 5 弧形管式结晶器结构
1-结晶器外罩;2-内水套;3-润滑油管;4-结晶器铜管;5- 放射源容器;6-盖板;7-外水套;8-给水管;排水管;10-接 受装置;11-水环;12-足辊;13-定位销
1) 结晶器铜管的内腔尺寸
若冷态铸坯的公称尺寸为a×b,a为铸坯厚度,b为弧面宽 度,at,bt为结晶器铜管上口尺寸,ab,bb为结晶器下口 尺寸,则结晶器铜管的内腔尺寸可按下式计算:
2) 结晶器铜管的壁厚
➢ 结晶器铜管要有一定的抗变形能力,同时要保证一定的传 热效果,因此要有一定的厚度,对于不同断面的铸坯,其 铜管的壁厚也不相同,随着断面的增大,铜管的壁厚也增 加,通常结晶器铜管的壁厚为10~15mm,磨损后可加工 修复,但最薄不小于3-6mm。考虑到铸坯的冷却收缩作 用,在铜管的角部要有一定的圆角过渡。
图6 组合式结晶器
1-调厚与夹紧装置;2-窄面内壁;3-宽面内壁;4-框架;5-振动框架; 6-调宽机构;7-装放射源处

钢水的浇铸——精选推荐

钢水的浇铸——精选推荐

钢水的浇铸1 什么是钢水的浇铸作业?钢的生产包括炼钢、浇铸两大环节。

浇铸作业是将合格钢水铸成适合于轧制或锻压加工所需要的一定形状、尺寸和单重的铸坯(或钢锭)。

钢水的浇铸有两种工艺方式。

一种是钢锭模浇铸,也称模铸工艺,成品为钢锭;另一种是连续铸钢,也称连铸工艺,产品为连铸坯。

2 钢液的结晶条件是什么?物质原子从不太规则排列的液态转化为有规则排列的固态,这个过程就是结晶,也称凝固。

钢液结晶需要两个条件:一是热力学条件,一是动力学条件,两者缺一不可。

A 热力学条件金属处在熔化温度时,液相与固相处于平衡状态;排出或供给热量,平衡向不同的方向移动;当排出热量时,液相金属转变为固相金属。

钢是合金,钢液的冷凝过程是非平衡过程:钢液在快速冷却至理论结晶温度以下一定程度时,才开始结晶。

由此可见,实际结晶温度比理论结晶温度要低,两者之差称为“过冷度”。

钢液只有处于过冷态下才可能结晶,具有一定的过冷度是钢液结晶的热力学条件。

B 动力学条件钢液必须在过冷条件下才能结晶,其过程为形成核心和晶核长大。

钢是合金,钢液中悬浮着许多高熔点的固相质点,是自然的结晶核心,这属于异质形核(即非均质形核)。

所以,钢液在过冷度很小的情况下,就可以形成晶核开始结晶。

钢液形成核心后即迅速长大,晶核开始生长时具有与金属晶体结构相同的规则外形;随后,由于排出的热量不均衡,使晶体向着排出热量最快的方向优先生长,于是便形成了树枝状晶体。

我们希望钢液在结晶过程中形成细晶粒组织,这就要求对形成核心的数量与晶核长大速度加以控制。

增大过冷度,形成核心数量的增加很快,而晶核长大的速度增加较慢;由此可知,增大过冷度可形成细晶粒组织。

可见,过冷度的大小是影响晶粒度的因素。

此外通过人为加入异质晶核的办法,钢也可以得到细晶粒组织。

3 钢液结晶有哪些特点?钢是合金,属于非平衡结晶。

从本书第1-39题所示的Fe-Fe3C相图可知,开始结晶的温度称液相线温度,结晶终了的温度称固相线温度,钢液结晶是在这个温度范围内完成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结晶过程的一般规律
• 形核 • 长大
形核、长大
形核和(晶核)长大的过程动态演示:
液态金属
形核
长大
完全结晶
• (结构条件:晶胚临界形核半径晶核 ) • 稳定存在的晶核:自发形核、非自发形核
晶核的形成
• 从液态金属中产生晶核一般有两种形式,一种是均 质形核(自发形核),另一种是异质形核非自发形核)。 实际金属结晶时,大多数是以异质形核的方式进行的。
金属的结晶热力学条件
一、结晶的基本概念
(一)凝固与结晶: 凝固 L→S 的过程 (由液态转变为固态的过程) 结晶 L→S晶的过程 (由液态转变为固态的过程) “一次结晶”、“二次结晶”
晶体
(二)理论结晶温度:
凡是纯元素(金属 非金属)都有一个严格不变的温 度点,在这温度下,液体与晶体永远共存,这个温 度就称为理论结晶温度 。T0符号 。
的原子集团,在足够的过冷度条件下,这些原子集 团变成规则排列,并稳定下来而成为晶核,这一过 程即为均质形核; • 而以金属液相中已存在的固相质点和表面不光滑的 器壁作为形成核心的“依托”发展成为晶核的过程, 称为非均质形核。由于钢液的内部含有熔点不同的 杂质,因此钢液的结晶主要为非均质形核。实践证 明,均质形核需要很大的过冷度,而非均质形核需 要的过冷度很小,只要过冷度达到20℃就能形成晶 核。
理论上,上述温度 T0 当T>T0 S→L 当T<T0 L→S 当T=T0 LS
(三)自由能:
(由固态转变为液态) (由液态转变为固态) (液态、固态平衡共存)
物质中能够自动向外界释放出其多余的或能够 对外作功的这部分能量(G)称为自由能。
任何物体都具有释放能量,降低能量使其趋于 稳定平衡的趋势,如高处的物质,不同温度的两物 体接触,而结晶或凝固的过程就是一个降低能量的 过程,其驱动力,就“是自由能差”(ΔG) 。
图2—2是用热分析测定液态金属结晶时3种冷却曲线的情况。曲线中各转点表 示结晶的开始或终结。其中:a表示接近平衡的冷却,结晶在一定的过冷度下 开始、进行和终结,由于潜热的释放和逸散相等,所以结晶温度始终保持恒定, 一直到完全结晶后,温度才下降3b表示金属液冷却速度较快(实际生产的通常 倩况)的状态,结晶在较大的过冷度下开始,所以进行较快,而使潜热的释放 大于热的逸散,这样便使湿度逐渐回升,直至两者相等,而后结晶便在恒温下 进行;直到结晶完成后,温度才会下降;c表示冷却很快,结晶在更大的过冷 度下开始,而且浴热的释放始终小于热的逸散,所以结晶一直在连续降温的过
r>r*时,随晶胚长大,系统自由能降低, 凝固过程自动进行。
• 晶核形成的形式: *自发形核(均质形核) △T =200℃ *非自发形核(异质形核)△T =20℃
• A 均质形核 • 均质形核是在液相中直接产生晶核。即在一定的过
冷度下,液态金属中一些体积很小的近程有序排列的 “原子集团”转变成规则排列并稳定下来的胚胎晶核, 这一过程称为均质形核。从热力学的观点出发,这一 过程只有引起系统自由能的降低才能自发进行。形成 新相晶核系统自由能的变化包括: • (1)在液相中形成品核时引起体积自由能的降低; • (2)形成晶核时产生固、液交界面导致表面自由能 的增加。
(五)冷却曲线:
ΔT
物体在液态冷却结晶过程中所
T0 Tn
作出的τ-T曲线。(如右图)
冷却曲线中出现的水平台阶的
温度就是实际结晶温度。
纯金属结晶冷却曲线示意图
NETZSCH 404G3 高温差示扫描量热仪
主要用于对材料进行高温热分析,包括相转变温度及转变焓、多晶 形转变温度和转变焓、物质的比热、材料的玻璃化转变温度与比热 变化程度、熔点与熔化焓、晶体的结晶温度与结晶热焓、结晶度、 固化温度等。
可见,自由能差ΔG是靠ΔT=T0-Tn来获得的, 所以,ΔT是结晶过程中的一个重要参数。
说明:金属的实际结晶温度Tn总是要低于理论结晶温 度T0。
(四)过冷度:
实际结晶温度(Tn)与平衡结晶温度(T0)之差: ΔT=T0-Tn
一般情况下,过冷度ΔT越大则ΔG越大、则结晶驱动 越大,结晶倾向也越大。
利用上述现象,我们可以进行晶体实际结晶温度
的测量,这种测量方法称为“热分析法”。此法是将被
测定的晶体先加热融化,然后以缓慢的速度进行冷却,
冷速越慢,过冷度ΔT就越小,测得的实际结晶温度
就越接近理论结晶温度。在冷却过程中,将温度随时
间的变化记录下来,对纯元素晶体,就可得到如下图
所示的“冷却曲线”。 T
结晶潜热: 在液体向晶体结晶过程中,自由能差所产 生的剩余能量将以热的形式向外界释放, 我们称之为“结晶潜热”。
过冷度越大,则自由能差越大,结晶潜热也越大;另外, 结晶时的潜热析出将补偿晶体物质向环境散热引起的温度下降, 使过冷度减小。其结果将形成一种动态平衡,可使过冷度ΔT保 持不变,换句话说,在一定的环境条件下,晶体的结晶温度是 不变的,结晶过程是在恒温下进行的,直至结晶结束。
• 在一定的过冷度下,当G体≥G表时,晶 核就形成。
• 临界形核半径(假设球形)随过冷度 增大而减小。 当过冷液体中出现晶坯时,一方面 由于原子由液态的聚集状态转变为固 态的排列状态,使体系的自由能降 低);另一方面,由于晶坯构成新的 表面,又会引起表面自由能的增加。
r<r*时,晶胚长大将导致系统自由能的 增加,这种晶胚同,所以,其自由能
G随温度T的变化也不同。
自 由
T↑ G↓;
能 G
但GL↓>GS↓, 交点T0
GL GS
ΔG=GL- GS ΔT
当Tn<T0时 ΔG=GL-GS L →S晶
Tn
T0 温度T
当Tn>T0时 ΔG=GS-GL S晶→L 无驱动力,如平面上
当Tn=T0时 ΔG=0 S晶L 的球、等温的两物体
程中进行,直到结晶终结后,温度便又更快地下降。这后一种情况只能在较小 体积的液体中,或在大体积液体的局部区域内进行。
冷却速度越大,则过冷度越大。
• 过冷现象:过冷是结晶的必要条件。 • 过冷度 : ΔT = T0 – T1 • 结晶热力学条件:必须具有一定的过冷度。
结晶的动力学条件
• 液体的结晶必须有核心 • 液态金属中有许多与固态金属结构相似、体积很小
相关文档
最新文档