对数幅相图(Nichols图)

合集下载

控制工程基础第4章控制系统的频率特性

控制工程基础第4章控制系统的频率特性

插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。

控制工程 第5章 系统的频率特性

控制工程 第5章 系统的频率特性
解:系统的频响函数(频响特性)、幅频特性和相频 特性分别为
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即

精品文档-自动控制原理(第二版)(千博)-第5章

精品文档-自动控制原理(第二版)(千博)-第5章
24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图

自动控制原理_第5章_3

自动控制原理_第5章_3
5.3 控制系统的频率特性
在绘制各个典型环节频率特性的基础上, 可以绘制控制系统的频率特性。
5.3.1 控制系统开环频率特性的Nyquist图
一个控制系统的开环传递函数可以写成典型
环节的连乘积形式。
1
举例 一个开环传递函数为
K ( s 1) G( s) 2 2 s(T1s 1)(T2 s 2 T2 s 1)
27
2
对于非单位反馈系统, 在其开环频率特性幅值
G( j)H ( j) 很大的频段内, 闭环频率特性
1 ( j ) H ( j )
即近似等于反馈环节频率特性的倒数。
对于开环放大倍数 K 很大的闭环系统,在低频段
具有这个特点。
28
3
对于非单位反馈系统, 一般来说, 其开环
频率特性的高频段幅值很小。在这一频段内, 闭环
1
当 0 时,放大环节、惯性环节、振荡环节、
一阶微分环节、二阶微分环节的幅角均为 00 。
。 只有积分环节, 0 时,相角为 900 当
如果开环传递函数中含有 v 个积分环节,开环频率 特性的Nyquist图在 0 的起始处幅角为 v 900 。


6
2
当 0 时, 放大环节的幅值为 K ,
21
[例5-5] 控制系统的开环传递函数为
10( s 1) G( s) s(2.5s 1)(0.04s 2 0.24s 1)
绘制系统的渐近开环对数幅频特性和相频特性。
22
100 Magnitude (dB)
Asymptotic Bode Diagram
-20dB/dec
50
20
频率特性近似等于系统前向通道的频率特性。 一般来说,闭环系统在高频段内显示这一性质。 在工程实践中, 当开环幅频特性

自动控制原理:第5章 频域分析法 (2)

自动控制原理:第5章 频域分析法 (2)
0 变化时,矢量端点的轨迹就表示频率特性的极坐标 图。极坐标图又称幅相图或奈魁斯特(Nyquist)图。在极坐标 图上,规定矢量与实轴正方向的夹角为频率特性的相位角, 且按逆时针方向为正进行计算。
自动控制原理
12
1. 典型环节频率特性的极坐标图
(1)比例环节。比例环节的幅频特性和相频特性都是常量, 分别等于K及0°,不随频率w 而变化。
(1)比例环节 比例环节的频率特性函数为
G (jw) =K∠0° (K >0) 由于幅值和相角都不随频率w变化,所以,对数幅频特性 是一条平行于横轴且纵坐标值为20lg|G(jw)|=20lgK(dB)的直线。 对数相频特性恒为0°。
自动控制原理
21
(2)积分环节和微分环节
1)积分环节 积分环节的传递函数为
配方后可得
(U K ) 2 V 2 ( K ) 2
2
2
所以,在复平面上G(jw)为一圆心在(K/2,0)点, 半径为K/2的半圆,如图下半部分所示。当-∞w 0时,因为G(-jw)与G(jw)互为共轭关系,关于实 轴对称,即如上半圆所示。
自动控制原理
14
(4)一阶微分环节 (5)振荡环节
(6)延滞环节
自动控制原理
16
3.系统开环频率特性的极坐标图
系统的开环传递函数是由一系列典型环节组成的,因此, 系统的开环频率特性通常是若干典型环节频率特性的乘积,即
k
G( j) G1( j)G2 ( j)Gk ( j) Gi ( j)
i1
若写成极坐标形式,为
k
k
ji
G( j) Gi ( j) e i1
(4) 绘制对数幅频特性的其它渐近线; (5) 给出不同w值,计算对应的φi ,再进行代数相加, 画出系统的开环相频特性曲线。

自动控制系统—— 第5章-1 频率特性及其表示法

自动控制系统—— 第5章-1 频率特性及其表示法
Mod5_1_1.mdl Mod5_1_1Prg.m
7
(1)输入为 ui (t) sin t 相对输入,输出有相位差,幅度不同
8
(2)输入为 ui (t) sin 2t 输出有相位差,峰值衰减,输入峰值不变
9
(3)输入为 ui (t) sin 3t 输出有相位差,初始段峰值衰减,之后峰值稳定
2
引言
频域分析法:应用频率特性研究线性系统的经典 方法称为频域分析法 引入频域模型:频率特性函数
线性定常系统的数学模型: 时域模型: 常微分方程
复数域模型: 传递函数 频域模型: 频率特性函数
3
频域分析的内容: 1.频率特性及其表示:幅相曲线,Bode图 2.典型环节的频率特性:一阶环节,二阶环节 3.Nyquist稳定判据:基于幅相曲线、Bode图 4.稳定裕度:幅值稳定裕度,相位稳定裕度 5.频域指标:带宽、谐振频率、谐振峰值等
cs (t) Kce jt K ce jt
K c 和 K c 可以由留数计算得到
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
22
由于 G( j) A()e j()
G( j) 与 G( j) 是共轭的
所以 G( j) A()e j()
Kc
G( j,) A
2j
A 2j
A()e j()
Kc
G( j)A
2j
A 2j
A()e
j ( )
代入 cs (t) Kce jt K ce jt

自动控制原理简答题

自动控制原理简答题

概念:设动态系统为)()()(,)()()(t Du t Cx t y t Bu t Ax t x+=+= ,(1)若At e t =Φ)(,则)(t Φ称为(状态转移矩阵 )(2)若D B A sI C s G +-=-1)()(,则)(s G 称为( 传递函数矩阵 )(3)若],,,,[],[12B A B A AB B B A n c -=Γ ,则],[B A c Γ称为(能控性矩阵) (4)若Tn o CA CA CA C A C ],,,,[],[12-=Γ ,则],[A C o Γ称为(能观性矩阵) (5)若],,,,,[],,[12D B CA B CA CAB CB B A C n oc -=Γ ,则],,[B A C oc Γ称为(输出能控性矩阵) (6)李雅普诺夫方程Q PA P AT-=+,其中Q 为正定对称阵,当使方程成立的P 为( 正定对称阵 )时,系统为渐近稳定。

(7)设系统0)0(,0,)(=≥=f t x f x ,如果存在一个具有一阶导数的标量函数)(x V ,0)0(=V ,并且对于状态空间X 中的且非零点x 满足如下条件:)(x V 为(正定);)(x V 为(负定);当∞→x 时,∞→)(x V 。

则系统的原点平衡状态是(大范围渐近稳定的)。

(8)状态反馈不改变系统的(可控性)。

输出至状态微分反馈不改变系统的(可观测性)。

输出至参考输入反馈,不改变系统的(可控性和可观测性)。

状态反馈和输出反馈都能影响系统的(稳定性和动态性能)。

(9)状态反馈控制的极点任意配置条件是系统状态(完全可控)。

状态观测的极点任意配置条件是系统状态(完全可观)。

(10)系统线性变换Px x =时,变换矩阵P 必须是(非奇异的,或满秩)的。

二:已知系统传递函数 )2()1(5)(2++=s s s G ,试求约当型动态方程。

解:2515)1(5)2()1(5)(22+++-+=++=s s s s s s G 由上式,可得约当型动态方程[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321555110200010011x x x y u x x x x x x三:试求下列状态方程的解 x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=300020001 的解 解:由题意可得:⎪⎪⎩⎪⎪⎨⎧-=-==-=---011010)()()()(xA sI L t x x A sI x xx A sI Ax x0320111000000310002100011300020001)(x e e e x s s s L x s s s L t x t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=------五:设系统状态方程为0111x x u a b ⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,并设系统状态可控,试求,a b 。

(完整版)自动控制原理简答题

(完整版)自动控制原理简答题

47、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。

48、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。

49、主导极点:如果系统闭环极点中有一个极点或者一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。

51、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。

52、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。

53、动态结构图:把系统中所有环节或者元件的传递函数填在系统原理方块图的方块中,并把相应的输入输出信号分别以拉氏变换来表示从而得到的传递函数方块图就称为动态结构图。

54、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。

55、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的变换()R z 之比,即()()()C z G z R z=。

56、Nyquist 判据(或者奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣57、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统。

58、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数幅相图(Nichols图)
对数幅相特性图(Nichols图)是描述系统频率特性的第三种图示方法。

该图纵坐标表示频率特性的对数幅值,以分贝为单位;横坐标表示频率特性的相位角。

对数幅相特性图以频率ω作为参变量,用一条曲线完整地表示了系统的频率特性。

区别于极坐标图的乃氏图,Nichols 图的幅值和相角组成直角坐标。

一些基本环节的对数幅相特性特性图如图4-41所示。

图4-41 一些基本环节的对数幅相图
对数幅相特性图很容易将伯德图上的幅频曲线和相频曲线合合成而得到。

对数幅相特性图有以下特点:
①由于系统增益的改变不影响相频特性,故系统增益改变时,对数幅相特性图只是简单地向上平移(增益增大)或向下平移(增益减小),而曲线形状保持不变;
②G(ω)和1/G(jω)的对数幅相特性图相对原点中心对称,即幅值和相位均相差一个符号;
③利用对数相幅特性图,很容易由开环频率特性求闭环频率特性,可方便地用于确定闭环系统的稳定性及解决系统的综合校正问题。

相关文档
最新文档