浙教版七年级上 第四章 代数式 复习试卷

合集下载

【期末复习提升卷】浙教版2022-2023学年七上数学第4章 代数式 测试卷1(解析版)

【期末复习提升卷】浙教版2022-2023学年七上数学第4章 代数式 测试卷1(解析版)

【期末复习提升卷】浙教版2022-2023学年七上数学第4章 代数式 测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的. 1.a −2a = ( ) A .3a B .a C .−a D .-2 【答案】C【解析】 a −2a =−a . 故答案为:C.2.已知等式 13ax =4a ,则下列等式中不一定成立的是( )A .13ax −4a =0B .13ax −b =4a −bC .ax =12aD .13x =4【答案】D【解析】A 、如果 13ax =4a 移项得 13ax −4a =0 ,原变形成立,故此选项不符合题意;B 、如果 13ax =4a ,那么两边同时减b 得 13ax −b =4a −b ,原变形成立,故此选项不符合题意; C 、如果 13ax =4a ,那么两边同时乘以3得 ax =12a ,原变形成立,故此选项不符合题意;D 、如果 13ax =4a ,当a≠0时,两边同时除以a 得 13x =4 ,这里必须a≠0,原变形不一定成立,故此选项符合题意. 故答案为:D.3.代数式 x 2 , s t , 1x+y ,20%•x , √ab , √2 ab , 2a+b 3中,多项式有( )个A .0B .1C .2D .3 【答案】B【解析】多项式有:2a+b 3,共1个,故答案为:B.4.若﹣3a 2b x 与﹣3a y b 是同类项,则y x 的值是( ) A .1 B .2 C .3 D .4 【答案】B【解析】∵﹣3a 2b x 与﹣3a y b 是同类项, ∴x=1,y=2, ∴y x =21=2. 故答案为:B.5.根据语句“x 的5倍与y 的和”,列出的代数式为( ) A .x +5+y B .x +5y C .5(x +y) D .5x +y 【答案】D【解析】x 的5倍与y 的和,列代数式为:5x +y , 故答案为:D.6.若 m <0 , n >0 , m +n <0 ,则 m , n , −m , −n 这四个数的大小关系是( ) A .−m >n >−n >m B .m >n >−n >−m C .m >−n >n >−m D .−m >n >m >−n 【答案】A【解析】∵m <0,n >0, ∴n >m m+n <0, ∴-m >n , ∴-m >n >-n , ∴-m >n >-n >m. 故答案为:A.7.对于任意实数a 和b ,如果满足 a 3+b 4=a+b 3+4+23×4那么我们称这一对数a ,b 为“友好数对”,记为(a ,b ).若(x ,y )是“友好数对”,则2x ﹣3[6x+(3y ﹣4)]=( ) A .﹣4 B .﹣3 C .﹣2 D .﹣1 【答案】C【解析】∵(x ,y )是“友好数对”, ∴x 3+y 4=x+y 3+4+23×4, ∴x 3+y 4=x+y 7+16, 整理得: 16x +9y =14 , ∴2x −3[6x +(3y −4)] = −16x −9y +12 = −(16x +9y)+12 = −14+12 =-2故答案为:C. 8.一个关于a ,b 的多项式,除常数项为1外,其余各项次数都是4,系数为﹣1,并且各项都不相同,这个多项式最多有( )项? A .3 B .5 C .6 D .7 【答案】C【解析】∵一个关于a ,b 的多项式,除常数项为1外,其余各项次数都是4,系数为﹣1,并且各项都不相同,∴这个多项式可能为:-a 4-b 4-ab 3-a 2b 2-a 3b+1, ∴这个多项式最多有6项. 故答案为:C.9.如图①,在五环图案内,分别填写数字a ,b ,c ,d ,e ,其中a ,b ,c 表示三个连续偶数(a <b <c ),d ,e 表示两个连续奇数(d <e ),且满足a+b+c =d+e 如图②2+4+6=5+7.若b =﹣12,则d 2−e 2的结果为( )A .﹣72B .72C .﹣56D .56 【答案】B【解析】∵a ,b ,c 表示三个连续偶数,b=-12, ∴a=-14,c=-10, ∴a+b+c=-36,∵d ,e 表示两个连续奇数, ∴d=-19,e=-17, ∴d 2-e 2=361-289=72, 所以则d 2-e 2的结果为72. 故答案为:B.10.如图,在一个长方形中放入三个正方形,从大到小正方形的边长分别为 a 、 b 、 c ,则右上角阴影部分的周长与左下角阴影部分周长差为( )A .a+bB .b +cC .2aD .2b【答案】D【解析】设重叠部分的小长方形的长与宽分别为 x,y ,如图,在图上依次表示阴影部分的各边的长,所以右上角阴影部分的周长与左下角阴影部分周长差为:2(a+b−x−c)+2(b+c−y)−2(b−x)−2(a−y)=2a+2b−2x−2c+2b+2c−2y−2b+2x−2a+2y=2b.故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.单项式−3x2y的次数是.【答案】3【解析】单项式−3x2y的次数是:2+1=3,故填:3.12.写出一个含有字母x、y的三次单项式,这个单项式可以是.【答案】x2y(答案不唯一)【解析】∵这个单项式中要含有字母x、y,且次数是3,∴这个单项式可以是x2y(答案不唯一).故答案为:x2y(答案不唯一).13.已知铅笔每支m元,橡皮每块n元,若买两支铅笔和三块橡皮,则一共需付款元.【答案】(2m+3n)【解析】一共需付款(2m+3n)元,故答案为:(2m+3n).14.如图,是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第 1 层包括 6 个正方形和 6 个正三角形,第2 层包括6 个正方形和18 个正三角形,依此递推,第50 层中含有正三角形个数为个.【答案】594【解析】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第50层中含有正三角形个数是6+12×49=594个.故答案为:594.15.如图,将边长为10的正方形的四个角向内翻折,使得翻折的四个三角形无缝连接,若中间没有重叠的空白部分是边长为4的正方形,则折痕AB的长是.【答案】√58【解析】如图,取线段a 、b ,{a +b =10a −b =4, ∴{a =7b =3, ∴AB=√a 2+b 2=√72+32=√58.(解法二:最大的正方形面积100,最小的正方形面积16,所以8个三角形的面积和为84,则4个黑色三角形面积和为42,以AB 为边的正方形面积,16+42=58,得出AB=√58) 故答案为: √58 . 16.有4个不同的整数m 、n 、p 、q 满足(5﹣m )(5﹣n )(5﹣p )(5﹣q )=9,那么m+n+p+q = . 【答案】20【解析】因为(5﹣m )(5﹣n )(5﹣p )(5﹣q )=9,每一个因数都是整数且都不相同, 那么只可能是﹣1,1,﹣3,3,由此得出m 、n 、p 、q 分别为6、4、8、2, 所以,m+n+p+q =20. 故答案为:20.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤. 17.求值:(1)已知 5x −2y =3 ,求 15x −6y −8 的值.(2)已知 a −b =5,−ab =3 ,求 (7a +4b +ab)−6(56b +a −ab) 的值.【答案】(1)解: 15x −6y −8=3(5x −2y)−8 , 当 5x −2y =3 时,原式 =3×3−8=1 ,(2)解:原式 =7a +4b +ab −5b −6a +6ab , =a −b +7ab ,∵−ab =3,∴ab =−3,当 a −b =5 , ab =−3 时,原式 =5−21=−16 .18.已知A =2a 2+3ab −2a −1,B =−a 2+12ab +23.(1)化简A +2B .(2)当a =−1,b =−2时,求(1)中式子的值. (3)若(1)中式子的值与a 的取值无关,求b 的值.【答案】(1)解:∵A =2a 2+3ab −2a −1,B =−a 2+12ab +23,∴A+2B=2a 2+3ab −2a −1+2(−a 2+12ab +23)=2a 2+3ab −2a −1−2a 2+ab +43=4ab −2a +13;(2)解:∵a =−1,b =−2,∴4ab −2a +13=4×(−1)×(−2)−2×(−1)+13=1013;(3)解:∵4ab −2a +13=(4b −2)a +13,4ab −2a +13的值与a 的取值无关, ∴4b -2=0, ∴b=12.19.定义:若a +b =2,则称a 与b 是关于1的平衡数.(1)3与 是关于1的平衡数,5−x 与 是关于1的平衡数(用含x 的代数式表示)(2)若a =2x 2−3(x 2+x)+4,且a 与b 是关于1的平衡数,请求出b .(用含x 的代数式表示) 【答案】(1)-1;x -3(2)解:∵a =2x 2−3(x 2+x)+4=2x 2−3x 2−3x +4=−x 2−3x +4 a 与b 是关于1的平衡数, ∴−x 2−3x +4+b =2,∴b =2−(−x 2−3x +4)=2+x 2+3x −4=x 2+3x −2. 【解析】(1)∵2-3=-1,∴3与-1是关于1的平衡数, ∵2-(5-x )=x -3,∴5-x 与x -3是关于1的平衡数, 故答案为:-1,x -3; 20.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进80个手机充电宝,然后每个加价n 元到市场出售.(1)求售出80个手机充电宝的总售价为多少元?(结果用含m ,n 的式子表示)(2)由于开学临近,小丽在成功售出50个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.相比不采取降价销售,实际销售少盈利多少元?(结果用含m 、n 的式子表示) 【答案】(1)解:∵从某批发市场以批发价每个m 元的价格购进80个手机充电宝,然后每个加价n 元到市场出售.∴每一个的售价为(m+n )元,∴售出80个手机充电宝的总售价为80(m+n )=(80n+80m )元. (2)解:原售价=80(m+n), 实际售价=50(m+n)+30(m+n)×0.8 =74(m+n),∴少盈利=80(m+n)-74(m+n) =(6m+6n)元.21.先阅读材料,再解决问题. ⑴ √13=√12=1 ⑴ √13+23=√32=3⑴ √13+23+33=√62=6⑴ √13+23+33+43=√102=10 …根据上面的规律,解决问题:(1)√13+23+33+43+53+63 = = (2)√13+23+33+⋯+n 3 (用含n 的代数式表示). 【答案】(1)√212;21 (2)解: √13+23+33+⋯+n 3 =1+2+3+…+n= n(n+1)222.已知多项式x 3-3xy 2-4的常数项是a ,次数是b(1)则a = ,b = ,并将这两数在数轴上所对应的点A 、B 表示出来 (2)数轴上在B 点右边有一点C 到A 、B 两点的距离和为11,求点C 在数轴上所对应的数(3)若A 点、B 点同时沿数轴向正方向运动,A 点的速度是B 点速度的2倍,且3秒后,2OA =OB ,求点B 的速度.【答案】(1)-4;3;(2)解:设点C 在数轴上所对应的数为x , ∵C 在B 点右边, ∴x >3. 根据题意得x -3+x -(-4)=11, 解得x=5,即点C 在数轴上所对应的数为5(3)解:设B 速度为v ,则A 的速度为2v , 3秒后点,A 点在数轴上表示的数为(-4+6v ),B 点在数轴上表示的数为3+3v , 当A 还在原点O 的左边时,由2OA=OB 可得-2(-4+6v )=3+3v ,解得v= 13;当A 在原点O 的右边时,由2OA=OB 可得2(-4+6v )=3+3v ,v= 119.即点B 的速度为 13 或 119【解析】(1)∵多项式x 3-3xy 2-4的常数项是a ,次数是b , ∴a=-4,b=3,点A 、B 在数轴上如图所示: (023.阅读材料:材料1:如果一个四位数为 abcd̅̅̅̅̅̅̅ (表示千位数字为 a ,百位数字为 b ,十位数字为 c ,个位数字为 d 的四位数,其中 a 为1~9的自然数, b 、 c 、 d 为0~9的自然数),我们可以将其表示为: abcd̅̅̅̅̅̅̅=1000a +100b +10c +d ; 材料2:把一个自然数(个位不为0)各位数字从个位到最高位倒序排列,得到一个新的数,我们称该数为原数的兄弟数,如数“123”的兄弟数为“321”.(1)四位数 x5y3̅̅̅̅̅̅̅= ;(用含 x , y 的代数式表示) (2)设有一个两位数 xy̅̅̅̅ ,它的兄弟数与原数的差是45,请求出所有可能的数 xy ̅̅̅̅ ; (3)设有一个四位数 abcd̅̅̅̅̅̅̅ 存在兄弟数,且 a +d =b +c ,记该四位数与它的兄弟数的和为 S ,问 S 能否被1111整除?试说明理由. 【答案】(1)1000x+10y+503(2)解:由题意得, xy̅̅̅̅ 的兄弟数为 yx ̅̅̅̅ , ∵两位数 xy̅̅̅̅ 的兄弟数与原数的差为45, ∴yx ̅̅̅̅ - xy ̅̅̅̅ =45, ∴10y+x -(10x -y )=45, ∴y -x=5,∵x ,y 均为1~9的自然数, ∴xy̅̅̅̅ 可能的数为16或27或38或49. (3)解:S 能被1111整除,理由如下: ∵abcd̅̅̅̅̅̅̅ =1000a+100b+10c+d , ∴它的兄弟数为 dcba̅̅̅̅̅̅̅ =1000d+100c+10b+a , ∵a+d=b+c ,∴S= abcd ̅̅̅̅̅̅̅ + dcba̅̅̅̅̅̅̅ =1000a+100b+10c+d+1000d+100c+10b+a =1001a+110b+110c+1001a =10001a+110(b+c )+1001d=10001a+110(a+d)+1001d=1111a+1111d=1111(a+d),∵a,d为1~9的自然数,∴1111(a+d)能被1111整除,即S能被1111整除.̅̅̅̅̅̅̅=1000x+5×100+10y+3=1000x+10y+503.【解析】(1)解:x5y3故答案为:1000x+10y+503;24.对于有理数a,b,n,d,若|a﹣n|+|b﹣n|=d,则称a和b关于n的“相对关系值”为d,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“相对关系值”为3.(1)﹣4和6关于2的“相对关系值”为;(2)若a和3关于1的“相对关系值”为7,求a的值;(3)若a0和a1关于1的“相对关系值”为1,a1和a2关于2的“相对关系值”为1,a2和a3关于3的“相对关系值”为1,…,a30和a31关于31的“相对关系值”为1.①a0+a1的最大值为▲ ;②直接写出所有a1+a2+a3+…+a30的值.(用含a0的式子表示)【答案】(1)10(2)解:∵a和3关于1的“相对关系值”为7,∴|a﹣1|+|3﹣1|=7.∴|a﹣1|=5.解得a=﹣4或6,答:a的值为﹣4或6;(3)解:①3;②30a0+465或525﹣30a0【解析】(1)由“相对关系值”的意义可得,﹣4和6关于2的“相对关系值”为|﹣4﹣2|+|6﹣2|=6+4=10,故答案为:10;(3)①根据题意得,|a0﹣1|+|a1﹣1|=1,分为四种情况:当a0≥1,a1≥1时,有a0﹣1+a1﹣1=1,则a0+a1=3;当a0≥1,a1<1时,有a0﹣1+1﹣a1=1,则a0﹣a1=1,得a0+a1=1+2a1<3;当a0<1,a1≥1时,有1﹣a0+a1﹣1=1,则a1﹣a0=1,得a0+a1=1+2a0<3;当a0<1,a1<1时,有1﹣a0+1﹣a1=1,则a0+a1=1<3;由上可知,a0+a1的最大值为3;故答案为3;②分为3种情况,当a0=0,时a1=1,a2=2,•••,a30=30,∴a1+a2+a3+…+a30=1+2+•••+30=465;当a0=1时,a1=0,则,|a1﹣2|+|a2﹣2|≠1,此种情形,不存在.当0<a0<1时,|a0﹣1|+|a1﹣1|=1,|a1﹣2|+|a2﹣2|=1,|a2﹣3|+|a3﹣3|=1,…,|a29﹣30|+|a30﹣30|=1,∴1<a1<2,2<a2<3,…,29<a29<30,∴1﹣a0+a1﹣1=1,即a1﹣a0=1;2﹣a1+a2﹣2=1,即a2﹣a1=1;同理可得:a3﹣a2=1,…,a30﹣a29=1,∴a1=1+a0,a2=1+a1=2+a0,a3=1+a2=3+a0,…,a30=1+a29=30+a0,∴a1+a2+a3+…a30=1+a0+2+a0+3+a0+…+30+a0=30a0+(1+2+3+ (30)=30a0+(1+30)× 302=30a0+465;当1<a0≤2,1≤a1<2时,a0+a1=3,a2﹣a1=1,a3﹣a2=1,…,a31﹣a30=1,∴a1=3﹣a0,a2=4﹣a0,a3=5﹣a0,…,a30=32﹣a0,∴a1+a2+a3+…+a30=3﹣a0+4﹣a0+5﹣a0+…+32﹣a0=(3+4+5+…+32)﹣30a0=(3+32)× 302﹣30a0=525﹣30a0,综上所述:a1+a2+a3+…+a30的值为30a0+465或525﹣30a0.。

浙教版初中数学七年级上册第四章《代数式》单元复习试题精选 (30)

浙教版初中数学七年级上册第四章《代数式》单元复习试题精选 (30)

浙教版初中数学试卷2019-2020年七年级数学上册《代数式》精选试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2分)2008年苹果的价格比2007年上涨了10%,若2008年每千克苹果的价格是a 元,则2007年每千克苹果的价格是为( )A .(110%)a +元B .(110%)a - 元C .110%a +元D .110%a -元 2.(2分)把2222x xy yz x y -+-+的二次项放在前面有“+”的括号里,把一次项放在前面有“-”的括号里,按上述要求操作,结果正确的是( )A .222222()(222)x xy yz x y x y xy x y -+-+=+-+-B .22222(2)(22)x xy yz x y x xy y x y -+-+=-+--C .222222()(222)x xy yz x y x y xy x y -+-+=+---+D .22222(2)(22)x xy yz x y x xy y x y -+-+=-+--+3.(2分)a 的32大1的数”用代数式表示是( ) A .32a +1 B .23a +1 C .52a D .32a -1 4.(2分)若代数式2231a a ++的值是 6,则代数式2695a a ++的值是( )3.A .18B .16C .15D .205.(2分)下列各组两个式子中,是同类项的是( )A .34ab 与3a bB .1n n a bc +-与2235n n a bcC .210()()x y x y -+-与2()()x y x y -+D .235mn 与28nm6.(2分)下列各式:(1)213ab ;(2)2x ⋅;(3)30%a ;(4)2m -;(5)232x y -;(6)a b c -÷其中不符合代数式书写要求的有( )A .5 个B .4 个C .3 个D .2 个7.(2分)下列说法中正确的是( )A .0不是单项式B .32abc -的系数是-3 C .32223x y -的系数是13- D .2b πα的次数是2 8.(2分)如果一个多项式的次数是5,那么这个多项式的各项次数( )A . 都小于 5B .都大于 5C .都不小于 5D .都不大于5二、填空题9.(2分)对有理数x 、y 定义运算 *,使x *y =1axy b ++,若-1 * 2=869 , 2* 3=883 , 则2*9= .10.(2分)多项式22358ab a b M -++的结果是27a ab -,则M=________________. 226108a ab b --11.(2分)已知x 2+4x -2=0,那么3x 2+12x +2000的值为 .12.(2分)a 的 2倍的立方与b 的5倍的平方的差可表示为 .13.(2分)有五个连续奇数,中间的一个为21n +,则这五个数的和是 .14.(2分)已知多项式539ax bx cx +++,当1x =-时,多项式的值为17,则该多项式当x=1时的值是 .15.(2分)若 n 表示一个三位数,现把 3 放在它的右边,得到一个四位数,可表示为 ;若把3放在它的左边,则得到的四位数可表示为 .16.(2分)10 个小女孩去采花,其中 2个采到 x 朵花,其余每人都采到 12 朵花,则 10 个小女孩共采到 朵花.17.(2分)小明今年x 岁,那么代数式x+3 的意义可以解释为 .18.(2分) 若242m a b +-是7次单项式,则m= .19.(2分)当m= ,n= 时,32m x y 与33n xy -是同类项.20.(2分)下列各代数式是整式的是 .①1;②r ;③343r π ;④11x +;⑤213x +;⑥22x π 21.(2分)当 x= 0.5 时,||23x x -= .三、解答题22.(7分)2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a -1)米,三峡坝区的传递路程为(881a +2309)米.设圣火在宜昌的传递总路程为s 米.(1)用含a 的代数式表示s ;(2)已知a=11,求s 的值.23.(7分)化简并求值:(1)()()223321x y x y --++,其中2,0.5x y ==-.(2)()()2234222a ab a a ab ⎡⎤--+-+⎣⎦,其中2a =-.24.(7分)一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.25.(7分)由半圆和直角三角形组成的图形如图. 阴影I 与阴影Ⅱ这两个部分,哪一个面积较大?大多少?26.(7分)观察下列各式:3×5 =15,而15 =42-15×7 =35,而35 = 62 -1……11×l3 =143,而 143 =122 -1将你猜想到的规律用只含一个字母的式子表示出来.27.(7分)甲、乙两品牌服装的单价分别为 a 元和b 元,现实行打折销售,甲种服装按 8 折(即原价的 80%)销售,乙种服装按7 折销售,若购买两种品牌服装各一件,共需多少元?28.(7分)新华书店推出向外邮书的销售举措,售书数曼与售价之间的关系如下(表内售价栏 内的 0.2 是指每册书的邮费为书价的 0.2倍):(1)书的定价是多少?(2)选择适当的字母推导出向外邮书的图书售价公式,并利用售价公式计算当邮购 320 册图书时的售价.29.(7分)求k 为何值时,代数式643643154105x kx y x x y --++中,不含是43x y 的项. 12530.(7分)已有长为l的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t.(1)用关于l、t的代数式表示园子的面积;(2)当l=100 m,t=30 m 时,求园子的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.B3.A4.D5.C6.C7.D8.D二、填空题9.92510.11.200612.32(2)(5)a b -13.105n +14.115.103n +,3000n +16.96+2x17.小明今年x 岁,再过 3 年小明的年龄为(x+3)岁 18.119.1,120.①⑦③③⑥21.-1三、解答题22.解:(1)s =700(a -1)+(881a +2309)=1581a +1609.(2)a =11时,s =1581a +1609=1 581×11 +1 609=19000.23.(1)x-8y-1,5 ;(2)224a a --,024.设原来的两位数是10a+b ,则调换位置后的新数是10b+a . (10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除25.222121(1)022S S r r r ππ-=-=-> ∴S I 较大,大(2(1)2r π-cm 2 26.猜想的规律: 2(1)(1)1n n n -+=-27.80%a+70b%28.(1)3 元 (2)(3n+0.6n)元,1152元29.12530.(1) (2)t l t ⋅- (2)1200 (m 2 )。

浙教版初中数学七年级上册第四单元《代数式》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,书写规范的是( )A. −216PB. a ×14C. 73x 2D. 2y ÷z2. 一个两位数的个位数字是b ,十位数字是a ,那么能正确表示这个两位数的式子是.( )A. abB. baC. 10a +bD. 10b +a3. 对x 2−1y 的解释正确的是( )A. x 与y 的倒数的差的平方B. x 的平方与y 的倒数的差C. x 的平方与y 的差的倒数D. x 的平方与y 的倒数的和4. 在1,x 2−2,S =12ab ,nm 中,代数式的个数是( )A. 1B. 2C. 3D. 45. 当m = −1时,代数式2m +3的值是( )A. −1B. 0C. 1D. 26. 当a =2,b =13时,下列代数式的求值中,错误的是( )A. a(a +b)=2×(2+13)=423B. a 2+b =22+13=413C. a +ab =2+2×13=223D. (a +b)(a −b)=(2+13)×(2−13)=3137. 若x 是2的相反数,|y|=3,则x −y 的值为( )A. −5B. 1C. 5或−1D. −5或18. 下列说法中,正确的是( )A. x 2−3x 的项是x 2,3xB. a+b3是单项式C. 12,πa ,a 2+1都是整式 D. 3a 2bc −2是二次多项式9.下列单项式按一定规律排列:x3,−x5,x7,−x9,x11,⋯,其中第n个单项式为( )A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+110.下列各式中,与2a2b为同类项的是( )A. −2a 2bB. −2abC. 2ab 2D. 2a 211.下列算式中正确的是( )A. 4x−3x=1B. 2x+3y=3xyC. 3x2+2x3=5x5D. x2−3x2=−2x212.下列去括号的过程中,正确的是( )A. −(a+b−c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6cC. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,用20m长的铝合金做一个长方形的窗框.设长方形窗框的三根横条长为a(m),则长方形窗框的竖条长为m(用含a的代数式表示).14.已知x−2y=2,则−x+2y+6的值为.15.若a3b m与−2a n b是同类项,则n m=______.16.七年级某班有(3a−b)名男生和(2a+b)名女生,则男生比女生多___________名.三、解答题(本大题共9小题,共72.0分。

浙教版初中数学七年级上册第四章《代数式》单元复习试题精选 (130)

浙教版初中数学七年级上册第四章《代数式》单元复习试题精选 (130)

浙教版初中数学试卷2019-2020年七年级数学上册《代数式》精选试题学校:__________一、选择题1.(2分)两个5次多项式的和的次数一定( )A . 是5次B . 是10次C . 不大于5次D . 大于5次2.(2分)2008年苹果的价格比2007年上涨了10%,若2008年每千克苹果的价格是a 元,则2007年每千克苹果的价格是为( )A .(110%)a +元B .(110%)a − 元C .110%a +元D .110%a −元 3.(2分)甲数为2x -1,乙数为2-3x ,则乙数的2倍比甲数大( )A .5-8xB .8x -5C .5-4xD .3-8x4.(2分)若3−=b a ,则a b −的值是( )A .3B .3−C .0D .65.(2分)当122x =−,4y =−时,代数式222x xy y −+的值是( ) A .124− B .124 C .1424 D .1424− 6.(2分)若25x a b 与30.2y a b −是同类项,则 x 、y 的值分别是( ) A .3x =±,2y =± B .3x =,2y = C .3x =−,2y =− D .3x =,2y =−7.(2分) 用字母表示数,下列书写格式正确的是( )A .132abB .72abC .72abD .132ab 8.(2分)下列叙述正确的是( )A .5 不是代数式B .一个字母不是代数式C .x 的 5 倍与 y 的14的差可表示为 5x-14y D .2s R π=是代数式二、填空题9.(2分)请写出25ab 的两个同类项,且这两个同类项与25ab 合并后结果为0. 你给出的两个同类项是 ..10.(2分)被减式为232x xy −,差式为2243x xy y −+,则减式为 .11.(2分) 如果正方体的边长是a ,那么正方体的体积是 ,表面积是 .12.(2分)用代数式表示:(1)a 的平方根(a ≥0) ;(2)a 的立方根 .13.(2分)多项式2112a a −+的各项系数分别是 ;它是 次 项式. 14.(2分)p-2[q-2p-3(-p-q)]= .15.(2分)观察如下规律排列的一列数:2,4,6,8,10,…并回答下列问题.(1)排在第 5 位的数是 ; (2)排在第 n 位的数是 ;(3)排在第 100 位的数是 .16.(2分)三个连续自然数,中间的数为 n ,那么,其余两个数分别是 , .17.(2分)一 只蜘蛛有 8 条腿,n 只蜘蛛有 条腿.18.(2分) 观察下面一列数的规律并填空:0,3,8,15,24,…,则它的第 n 个数是 (n ≥1 正整数).19.(2分)已知142n a b −−与21n a b +是同类项,则2n m −= .三、解答题20.(7分)已知222A a b c =+−,222423B a b c =−++,且A+B+C= 0,求C 的代数式.21.(7分)计算:(1)222468a a a a −++− (2) 3(m -2n)-2(-2n+3m)22.(7分)合并同类项:(1) 1-(2a-1)-(3a+3 ) (2) -(5m+n)-7(m-3n)23.(7分)一列火车自A 城驶往B 城,沿途有n 个车站(包括始发站A 和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下前面每个站点发给该站的邮包各一个,还要装上该站发往后面每个车站的邮包各-个.例如:当列车停靠在第x 个车站时,邮政车厢上需要卸下前面(1x −)个车站发给该站的邮包共(1x −)个,还要装上下面行程中要停靠的(n x −)个车站的邮包共(n x −)个.(1)根据题意、完成下表:(2)根据上表,写出列车在第x 个车站启程时,邮政厢上共有邮包的个数y (用x 、n 表示).24.(7分)去括号,并合并同类项.(1) -2n-(3n-1)(2)a- (5a- 3b) + (2b-a)(3) -3(2s- 5)+ 6s(4) 1-(2a-1)-(3a+3 )(5)3(-ab+2a )-(3a-b)25.(7分)下列表述中字母各表示什么?(1)正方形的面积为2a;(2)买 5 斤桔子需5a元钱;(3)七年级甲班有40 人,乙班人数为40x+人.26.(7分)观察下列等式 (式子中的“ !”是一种数学运算符号):1! = 1,2! = 2×1 , 3! = 3×2×1 , 4! = 4×3×2×l,…,计算:!(1)!nn−(n 是正整数).27.(7分)用字母表示以下运算律.(1)加法交换律;(2)加法结合律;(3)乘法交换律;(4)乘法结合律;(5)分配律.28.(7分)合并同类项:(1)222442ayb a b ab a b−−++(2)2223232a a a a−−+−−29.(7分)右图是一块电脑主板的示意图,每一转角处都是直角. 数据如图所示,求该主板的周长.30.(7分)下图是一个数值转换机的示意图,请按要求先填写括号内的内容然后填写表格.x-1012y1-0.500.5输出【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C2.C3.A4.A5.B6.B7.B8.C二、填空题9.答案不唯一,如22ab 和27ab −10.223x xy y −−−11.3a ,26a12.(1);13.1,12−,1;2,3 14.8p q −−15.(1)10 (2)2n (3) 20016.n-1,n+117.8n18.21n −19.3三、解答题20.222222222()(423)332C a b c a b c a b c =−+−−−++=−−21.(1)244a a −;(2)-3m-2n22.(1)51a −−;(2)1220m n −+23.(1) 4(4)n −,5(5)n −,0;(2)()y x n x =−24.(1) 51n −+ (2)55a b −+ (3)15 (4)51a −− (5)33ab a b −++25.(1)a 表示正方形的边长 (2)a 表示桔子的单价 (3)x 表示乙班比甲班多x 人26.n27.(1)a+b=b+a (2)(a+b)+c=a+(b+c) (3)ab=ba (4)()()ab c a bc ⋅=⋅ (5)()m a b c ma mb mc ++=++28.(1)2234a b ab −+ (2)26a a −−29.96a mm30.1,116−,12,1216。

浙教版七年级数学上册第四章代数式单元测试题(含解析)

浙教版七年级数学上册第四章代数式单元测试题(含解析)

第四章代数式单元测试题一、单选题(共10题;共30分)1、某厂去年产值是x万元,今年比去年增产40%,今年的产值是()A、40%x万元B、(1+40%)x万元C、万元D、1+40%x万元2、下列各式符合代数式书写规范的是( )A、 B、a×3 C、3x-1个 D、2n3、下列语句中错误的是()A、数字0也是单项式B、xy是二次单项式C、单项式-a的系数与次数都是1D、- 的系数是—4、下列各式中,不是代数式的是()A、x—yB、xC、2x﹣1=6D、05、若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是(A、10B、1C、—4D、—86、已知代数式m2+m+1=0,那么代数式2018﹣2m2﹣2m的值是()A、2016B、-2016C、2020D、—20207、已知﹣2x m+1y3与x2y n﹣1是同类项,则m,n的值分别为()A、m=1,n=4B、m=1,n=3C、m=2,n=4D、m=2,n=38、为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品的价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为()A、元B、元C、40%元D、60%元9、如果A和B都是5次多项式,则下面说法正确的是()A、A﹣B一定是多项式B、A﹣B是次数不低于5的整式C、A+B一定是单项式D、A+B是次数不高于5的整式10、下列各式中运算错误的是()A、5x﹣2x=3xB、5ab﹣5ba=0C、4x2y﹣5xy2=﹣x2yD、3x2+2x2=5x2二、填空题(共10题;共36分)11、若a﹣2b=3,则9﹣2a+4b的值为 ________12、一个三位数,个位上的数为,十位上的数比个位上的数大2,百位上的数是个位上数的5倍,则这个三位数是________,当时,它是________13、若已知x+y=3,xy=﹣4,则(1+3x)﹣(4xy﹣3y)的值为________14、单项式﹣的系数是________ ,次数是________15、若3a3b n c2﹣5a m b4c2所得的差是单项式,则这个单项式为________16、若a x﹣3b3与﹣3ab2y﹣1是同类项,则x y=________.17、观察下列单项式:x,﹣3x2, 5x3,﹣7x4, 9x5,…按此规律,可以得到第2016个单项式是________.18、按照如图所示的操作步骤,若输入的值为3,则输出的值为________.19、当x=2017时,代数式(x﹣1)(3x+2)﹣3x(x+3)+10x的值为________.20、﹣的系数为________.三、解答题(共5题;共35分)21、某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2。

浙教版初中数学七年级上册第四章《代数式》单元复习试题精选 (150)

浙教版初中数学七年级上册第四章《代数式》单元复习试题精选 (150)

浙教版初中数学试卷2019-2020年七年级数学上册《代数式》精选试题学校:__________一、选择题1.(2分)如果M 是3次多项式,N 是3次多项式,则M+N 一定是( )A .6次多项式B .次数不高于 3的整式C .3次多项式D .次数不低于 3的多项式2.(2分)2008年苹果的价格比2007年上涨了10%,若2008年每千克苹果的价格是a 元,则2007年每千克苹果的价格是为( )A .(110%)a +元B .(110%)a − 元C .110%a +元D .110%a −元 3.(2分)已知946ab −和4m 45a b 是同类项,则代数式1210m −的值是( )A . 17B .37C .-17D . 984.(2分)A 、B 两家公司都准备招聘技术人才,两家公司其它条件类似,工资待遇如下:A 公司 年薪2 万元,每年加工龄工资 400 元;B 公司半年工资 1 万元,每半年加工龄工资 100 元,从经济收入来考虑,选择哪一家公司更 有利( )A .A 公司B .B 公司C . 两家公司一样D . 不能确定5.(2分)下列去括号,正确的是( )A .()a b a b −+=−−B .(32)32x x −−=−−C .22(21)21a a a α−−=−−D .2()2z x y z x y −−=−+ 6.(2分)下列合并同类项正确的是( )A .22523x x −=B .6713x y xy +=C .2222a b a b a b −+=D .523x x −=7.(2分) 用代数式表示“a 、b 两数和的平方的 2倍”,正确的表示是( )A .222a b +B .22()a b +C .222a b +D .222()a b +8.(2分)如图,为做一个试管架,在 a (cm )长的木条上钻了 4 个圆孔,每个孔的直径为 2 cm ,则图中x 等于( )A .85a + cmB .165a −cmC .45a −cmD .85a −cm9.(2分)下列说法中正确的有( )①单项式212x y π−的系数是12− ②多项式3a b ab ++是一次多项式③多项式23342a b ab −+ 的第二项是4ab④2123x x+−是多项式A .0 个B .1 个C .2 个D . 3 个 10.(2分)下列整式中,属于单项式的有( )①32−;②23x y π;③21x −;④a ;⑤3265x y −;⑥2x y +;⑦22x xy y ++;⑧3x A .2 个B .3 个C .4 个D .5 个评卷人得分 二、填空题11.(2分)一个两位数,个位上的数字为a ,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .12.(2分) 如果正方体的边长是a ,那么正方体的体积是 ,表面积是 .13.(2分)已知多项式539ax bx cx +++,当1x =−时,多项式的值为17,则该多项式当x=1时的值是 .14.(2分)写出代数式223a b c −与32x c 的两个相同点:(1) ;(2) .15.(2分)一年期存款的年利率为 p ,利息个人所得税的税率为 20%. 某人存入的本金为 a 元,则到期支出时实得本利和为 元.16.(2分)如图是 2002 年 6 月份的日历,现用一矩形在日历中任意框出 4 个数,请用一个等式表示 a 、b 、c 、d 之间的关系: .17.(2分) 若242m a b +−是7次单项式,则m= .18.(2分)在多项式2343253x x y x π−+−中,最高次项的系数是 ,最低次项是 . 评卷人得分 三、解答题19.(7分)一列火车自A 城驶往B 城,沿途有n 个车站(包括始发站A 和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下前面每个站点发给该站的邮包各一个,还要装上该站发往后面每个车站的邮包各-个.例如:当列车停靠在第x 个车站时,邮政车厢上需要卸下前面(1x −)个车站发给该站的邮包共(1x −)个,还要装上下面行程中要停靠的(n x −)个车站的邮包共(n x −)个.(1)根据题意、完成下表: 车站序号 在该站启程时邮政车厢邮包总数11n − 2(1)1(2)2(2)n n n −−+−=− 32(1)2(3)3(3)n n n −−+−=− 45…… n(2)根据上表,写出列车在第x 个车站启程时,邮政厢上共有邮包的个数y (用x 、n 表示).20.(7分)一辆出租车从A 地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正)记录如下(9<x<26,单位:km):第1次 第2次 第3次 第4次(1)说出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)这辆出租车一共行驶了多少路程?21.(7分) (1)计算并填表:(2)观察上表,描述所得的这一列数的变化规律;(3)当 x 非常大时,213xx−的值接近于什么数?22.(7分)观察下列各式:3×5 =15,而15 =42-15×7 =35,而35 = 62 -1……11×l3 =143,而 143 =122 -1将你猜想到的规律用只含一个字母的式子表示出来.23.(7分)去括号,并合并同类项:(1) -(5m+n)-7(m-3n)(2)2222(3)[2(5)2]xy y y xy x xy−−−−++24.(7分)求当19x=,3y=−时,代数式2222111(2)(2)(3)(9)122389x y x y x y x y ++++++++⨯⨯⨯ 的值.25.(7分)试说明不论 x 、y 取何值时,代数式322333222332(3561)(222)(4731)x x y xy y x y xy x y x y y x xy +−++−−−−−−+−−−的值是一个常数.26.(7分)如图所示的每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有 n(n ≥2)个棋子,每个图案的棋子总数为S ,按其排列规律推断,S 与n 之间的关系可以用式子来表示.44S n =−27.(7分)樱桃树下有 a 个红樱桃,甲猴拿走15,又扔掉 1 个,乙猴拿走剩下的15,又扔掉2个,丙猴吃掉剩下的15,又扔掉3 个,试用代数式表示剩下的红樱桃. 444[(1)2]3555a −−−28.(7分)某地区夏季高山上的温度从山脚处开始每升高 100 m 降低 0.7℃,如果山脚温度是 28℃,那么山上 300 m 处的温度是多少度?一般山上 x(m)处的温度是多少?29.(7分)右图是一块电脑主板的示意图,每一转角处都是直角. 数据如图所示,求该主板的周长.30.(7分)已有长为l的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t.(1)用关于l、t的代数式表示园子的面积;(2)当l=100 m,t=30 m 时,求园子的面积.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B2.C3.A4.B5.A6.C8.D9.A10.B二、填空题11.1120a +12.3a ,26a13.114.答案不唯一. (1)它们都是单项式 (2)它们的次数都是 5 次15.125ap a + 16.a d b c +=+17.118.2π−,-3三、解答题19.(1) 4(4)n −,5(5)n −,0;(2)()y x n x =−20.(1)第 1 次向东,第 2 次向西,第 3 次向东,第 4 次向西(2)1152(9)13022x x x x x −+−+−=−>.在A 地东(1132x −)km 处 (3) (9232x −)km 21.(1)上表依次填:53,1,23,1130,101300,10013000,1000l 30000,100001300000 (2)变化规律:随 x 的值变大,代数式的值变得越来越小. (3)当x 非常大时,213x x− 的值接近于23 22.猜想的规律: 2(1)(1)1n n n −+=−23.(1)1220m n −+ (2)224y x xy ++24.3126.44S n=−27.444[(1)2]3555a−−−28.25.9℃, (7281000x−)℃29.96a mm30.(1) (2)t l t⋅− (2)1200 (m2 )。

浙教版数学七年级上册第4章《代数式》测试卷含答案解析和双向细目表-七上4

浙教版数学七年级上册第4章《代数式》测试卷含答案解析和双向细目表-七上4

浙教版数学七年级上册第4章《代数式》测试考生须知:●本试卷满分120分,考试时间100分钟。

●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。

●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。

●保持清洁,不要折叠,不要弄破。

一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知买a 斤大米,花费了b 元,则大米的单价是每斤( ) A.ba B.ab C.a D.b2. 下列用字母表示数的写法中,规范的是( )A.23xy B.(x+y)23C.121xyD.3x × y × 213. 当x = 3,y = 2时,代数式3xy3x 22+的值为( )A.312B.4C. 12D.34. 单项式2xy 3的系数为( )A.2B.3C.23 D.21 5. 在代数式2b a 22+,0, - 3m 2 - n ,3a ,3a 中,单项式的个数是( ) A.1B.2C.3D.46. 某人从A 城出发,以20km/h 的速度骑行到B 城。

已知A 、B 两城相距s 千米,如果他的骑行速度增加v (km/h ),那么他从A 城到B 城需要的时间为( ) A.20s B.vs C.v20s+D.t7. 下列选项中,属于整式的是( )A .2t+ sB .t s + stC .y2x 3+ + x D .ab 2 - c8. 如果x 2y 5和x 2y m + 2是同类项,那么2m 的值是( ) A.2B.3C.4D.89. 某商店举办促销活动,促销的方法是将原价x 元的衣服以(54x - 20)元出售,则下列说法中,能正确表达该商店促销方法的是为( ) A.原价打八折,再减去20元 B.原价减去20元,再打八折 C.原价打四折,再减去20元 D.原价减去20元,再打四折10.字母x 表示一个两位数,字母y 也表示一个两位数,若用x ,y 组成一个四位数,且把x 放在y 的右边,则这个四位数用代数式表示为( ) A.yxB.y + xC.100x + yD.x + 100y二.填空题:本大题有6个小题,每小题4分,共24分。

浙教版七年级(上)数学 第4章 代数式 单元测试卷(含答案)

浙教版七年级(上)数学  第4章 代数式 单元测试卷(含答案)

七年级上册数学第4章代数式单元测试卷一.选择题(共10小题)1.在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有()A.2个B.3个C.4个D.5个2.单项式﹣5a2b2c的系数和次数分别是()A.﹣5,5B.﹣5,4C.5,5D.5,43.如果单项式3x2m y n+1与x2y m+3是同类项,则m、n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣3 4.若单项式xy m+3与x n﹣1y2的和仍然是一个单项式,则m、n的值是()A.m=﹣1,n=1B.m=﹣1,n=2C.m=﹣2,n=2D.m=﹣2,n=1 5.某商店对店内的一种商品进行双重优惠促销﹣﹣将原价先降低m元,然后在此基础上再打五折.按该方案促销后,若此商品的售价为n元,则它的原价是()A.(2n+m)元B.(2n﹣m)元C.(0.5n+m)元D.(0.5n﹣m)元6.按下面的程序计算,若开始输入的值x为正整数,输出结果86,那么满足条件的x的值有()A.4个B.3个C.2个D.1个7.下列说法正确的个数有()①单项式﹣的系数是﹣,次数是3;②xy2的系数是0;③﹣a表示负数;④﹣x2y+2xy2是三次二项式;⑤是单项式.A.1个B.2个C.3个D.4个8.已知x=﹣,那么4(x2﹣x+1)﹣3(2x2﹣x+1)的值为()A.﹣2B.2C.4D.﹣49.下列各式符合代数式书写规范的是()A.m×6B.C.x﹣7元D.2xy210.下列各式中,去括号正确的是()A.﹣(7a+1)=﹣7a+1B.﹣(﹣7a﹣1)=7a+1C.﹣(7a﹣1)=﹣7a﹣1D.﹣(﹣7a﹣1)=﹣7a+1二.填空题11.若多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,则m=.12.若单项式x2y m与单项式2x n+1y2是同类项,则m+n =.13.﹣2的相反数是;﹣2的倒数是;﹣的系数是.14.如图是一数值转换机,若输入的x为﹣4,y为6,则输出的结果为.15.若a+b=2,则﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=.16.多项式﹣8ab2+3a2b与多项式3a2b﹣2ab2的差为.17.已知多项式(M﹣1)x4﹣x N+2x﹣5是三次三项式,则(M+1)N=.18.某个体户将标价为每件m元的服装按8折售出,则每件服装实际售价为元.19.去括号:x﹣(y﹣z)=.20.下列各式中,整式有(只需填入相应的序号).①;②;③;④a三.解答题21.如图是数值转换机示意图.(1)写出输出结果(用含x的代数式表示);(2)填写下表;x的值…﹣3﹣2﹣10123…输……出值(3)输出结果的值有什么特征?写出一个你的发现.22.合并同类项:5m+2n﹣m﹣3n.23.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.24.计算:(1)﹣2+(﹣8)﹣(﹣24);(2)﹣22+[(﹣4)2﹣(1﹣3)×3];(3)2xy+1﹣(3xy+2);(4)3(a2﹣ab)﹣2(﹣2a2+2ab).25.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b=1,且a、b满足|a+2|+|c ﹣7|=0.(1)a=,c=;(2)①若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.②点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,AC=(用含t的代数式表示).(3)在(2)②的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.27.在七年级我们学习了许多概念,如A:有理数;B:无理数;C:负无理数;D:实数;E:整式;F:整数;G:分数;H:多项式.请根据下面的关系图将以上各概念前的字母填在相应的横线上.参考答案与试题解析一.选择题1.解:在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有:﹣1,m,x3y2,x﹣3y共4个.故选:C.2.解:单项式﹣5a2b2c的系数是﹣5,次数是2+2+1=5,故选:A.3.解:∵3x2m y n+1与x2y m+3是同类项,∴2m=2,n+1=m+3,∴m=1,n=3,故选:B.4.解:由题意,得n﹣1=1,m+3=2解得m=﹣1,n=2,故选:B.5.解:∵售价为n元,∴打折前价格为n÷0.5=2n(元),∴原价为(2n+m)元,故选:A.6.解:设输入x,则直接输出4x﹣2,且4x﹣2>0,那么就有(1)4x﹣2=86,解得:x=22.若不是直接输出4x﹣2>0,那么就有:①4x﹣2=22,解得:x=6;(2)4x﹣2=6,解得:x=2;(3)4x﹣2=2,解得:x=1,(4)4x﹣2=1,解得:x=,∵x为正整数,∴符合条件的一共有4个数,分别是22,6,2,1,7.解:单项式﹣的系数是﹣,次数是4,所以①错误;xy2的系数是1,所以②错误;﹣a可以表示正数,也可以负数,还可能为0,所以③错误;﹣x2y+2xy2是三次二项式,所以④正确;是单项式,所以⑤正确.故选:B.8.解:4(x2﹣x+1)﹣3(2x2﹣x+1)=4x2﹣4x+4﹣6x2+3x﹣3=﹣2x2﹣x+1,当x=﹣时,原式=﹣2×(﹣)2﹣(﹣)+1=﹣2,故选:A.9.解:A、不符合书写要求,应为6m,故此选项不符合题意;B、符合书写要求,故此选项符合题意;C、不符合书写要求,应为(x﹣7)元,故此选项不符合题意;D、不符合书写要求,应为xy2,故此选项不符合题意.故选:B.10.解:A、﹣(7a+1)=﹣7a﹣1,故本选项错误;B、﹣(﹣7a﹣1)=7a+1,故本选项正确;C、﹣(7a﹣1)=﹣7a+1,故本选项错误;D、﹣(﹣7a﹣1)=7a+1,故本选项错误;故选:B.二.填空题11.解:5x2﹣(m+2)xy+7y2﹣2xy﹣5=5x2﹣(m+2+2)xy+7y2﹣5=5x2﹣(m+4)xy+7y2﹣5,∵多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,解得,m=﹣4,故答案为:﹣4.12.解:∵x2y m与单项式2x n+1y2是同类项,∴m=2,n+1=2,∴n=1,∴m+n=3,故答案为:3.13.解:﹣2的相反数是2;﹣2的倒数是﹣;﹣的系数是﹣,故答案为:2;﹣;﹣.14.解:根据题意可得,x=﹣4,y=6,可得﹣4×2+6÷3=﹣8+2=﹣6.故答案为:﹣6.15.解:﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=﹣2a2b﹣ab2+2a2b+2a+2b+ab2=2(a+b),∵a+b=2,∴原式=4.故答案为:4.16.解:由题意可知:﹣8ab2+3a2b﹣(3a2b﹣2ab2)=﹣8ab2+3a2b﹣3a2b+2ab2=﹣6ab2,故答案为:﹣6ab2.17.解:由题意可知:N=3,M﹣1=0,∴M=1,N=3,∴原式=23=8,故答案为:818.解:∵8折=0.8,∴每件服装实际售价为:0.8×m=0.8m(元).故答案为:0.8m.19.解:x﹣(y﹣z)=x﹣y+z.故答案为:x﹣y+z.20.解:①是整式;②中分母含有未知数,则不是整式;③是整式;④是整式.故答案为:①③④.三.解答题21.解:(1)由题意可知,输出结果为:3x2+2;(2)当x=﹣3时,3x2+2=3×(﹣3)2+2=29,当x=﹣2时,3x2+2=3×(﹣2)2+2=14,当x=﹣1时,3x2+2=3×(﹣1)2+2=5,当x=0时,3x2+2=2,当x=1时,3x2+2=3×12+2=5,当x=2时,3x2+2=3×22+2=14,当x=3时,3x2+2=3×32+2=29,故答案为:29;14;5;2;5;14;29;(3)由(2)可知,互为相反数的x的输出结果相等.22.解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.23.解:∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.24.解:(1)原式=﹣10+24=14;(2)原式=﹣4+(16+6)=﹣4+22=18;(3)原式=2xy+1﹣3xy﹣2=﹣xy﹣1;(4)原式=3a2﹣3ab+4a2﹣4ab=7a2﹣7ab.25.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7.故答案为:﹣2,7;(2)①(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4;②AC=t+4t+9=5t+9;故答案为:5t+9;(3)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.26.解:(1)若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0;(2)因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x﹣1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.27.解:如图所示,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章代数式复习
一、知识回顾
1. 一个代数式一般由数、表示数的字母和运算符号组成,这里的运算是
指、、、、、。

单独的、也是代数式。

用数代替代数式里的字母,计算后所得的结果叫做。

2、由数与字母或字母与字母相乘组成的代数式叫做。

单项式中叫做这个单项式的系数。

叫做这个单项式的次数。

几个相加组成的代数式叫做多项式。

在多项式中,叫做多项式的项。

不含字母的项叫做。

就是这个多项式的次数。

、统称为整式。

3、多项式中,所含相同,并且也相同的项,叫做同类项。

4、主要运算法则
(1)合并同类项法则:把同类项的相加,所得的结果作为系数,不变。

(2)去括号法则:括号前面是号,把去掉,括号里各项;括号前面是号,把去掉,括号里各项。

去括号法则的依据是,
a(b+c)=
(3)整式的加减运算可归结为和。

5、主要方法和技能
(1)用代数式表示实际生活中的量,求代数式的值;
(2)整式的加减,并解决简单的实际问题。

二、解题指导
例1.下列代数式中,哪些是整式?哪些是单项式?哪些是多项式?
,,,(1-20%)x,-x3+4xy-5y4,,-2,2πr,,
属于整式的有:___________ ____;
属于单项式的有:______ ___________;
属于多项式的有:________ _________。

例2. -3x的系数是______,次数为 ;ab2的系数是______,次数为 .
例3.下列多项式各由哪些项组成?各是几次多项式?
(1)3x-7 (2) x2-3x+4 (3) 4ab3-a2-1
例4.用代数式表示下列各题
1、运动员经过S秒跑完了400米,则他的平均速度为多少?
2、棱长为X的立方体的体积为多少?
3、 m与-2两数的平方和为多少?
4、 a的平方与c的差为多少?
5、 a除b、c两数和所得的商为多少?
例5.去掉下列各式中的括号
(1)a+(b-c)=________(2)a-(b+c)=___________(3)a-(b-c)=_________
(4)a-(-b-c)=_________(5)-3(m-2n)_=_______(6)5(3a-4b)=_________
例6.合并下列各式的同类项
⑴-8x+5x= ⑵-a2b+3a2b-7a2b =
⑶xy2-y3-3x2y+y3-x2y-2xy2=

⑷ 8x3-4x2-5x3-2x2+x+1 =
例7.⑴若单项式x m y4 与-2x3y n-2是同类项,则m=____,n=____
⑵已知n是自然数,多项式y n+1+3x3-2x是三次三项式,那么n=
例8.(1)已知a=,b=4, (2)化简、求值
求多项式2a2b-3a-3a2b+2a 的值 2(a2- ab)- 3(1/3a2 - ab),其中
a= -2,b= 3
二.课堂练习
1.填空:
(1) 单项式-5y的系数是_____,次数是_____
(2) 单项式a3b的系数是_____,次数是_____
(3) 单项式2πr的系数是_____,次数是____
(4) 单项式-√7 xy2 的系数是___,次数是____
(5)5a2-3ab2-2的项分别有_____________,第二项为系数为 ,次数为 ,常数项是
_________,最高次项的次数是___________,该多项式为次项式。

2.下列多项式各由哪些项组成?每一项的系数是什么?各项的次数分别是多少?
(1)7x+4y (2)-2x2+2x-1 (3)bc-b-c
下列代数式中,哪些是整式?哪些是单项式?哪些是多项式?
,,2xy2,-2x+y2,, a2+3a-2,, a ,-3x,-3x+4y, ab,a2-b2+3 ,2a2 , 属于整式的有:
____________ _____;.
属于单项式的有:_________ ________;
属于多项式的有:________ _________。

4.练习:列出表示下列各题结果的代数式,并指出这些代数式是单项式还是多项式:⑴.一个三角形的底边长为a,高线长为b+1,则他的面积为多少?⑵.X与Y两数的立方和为多少?
⑶. a与c两数和的立方为多少?
⑷. a除以b、c两数和所得的商为多少?
⑸. a的三倍与b的差为多少?
5.下列各组中,不是同类项的是()
(A). (B). (C). (D) .
6 .如果 m= ,n= .
7.合并同类项
(1) 3x-8x-9x= , (2) 5a2+2ab-4a2-4ab=
(3) 2x-7y-5x+11y-1= , (4) 6xy-10x2-5yx+7x2=
8.去括号
1.a+(a-2b-c)= 2、a-(b+c-d)= 3. -3(2a+4b)=
4、4(3x-5y)=
5、m-2(p-q)=
9.化简
(1)(m-3n)-(-3m-2n)(2)2(x y-4)-4(2x y+1)
10 .求代数式的值
⑴⑵
三.课外练习
1.用代数式表示:
⑴.甲、乙两地相距200千米,汽车从甲地到乙地,每小时行驶V千米。

①汽车从甲地到乙地所需时间
②如果汽车速度每时加快2.5千米,汽车从甲地到乙地所需时间.
⑵.一场赛车比赛的门票价格是每张50元共售出了n张,总收入为
⑶.某城市预计明年固体污染物排放的增长率为-11.2%,设今年该固体污染物排放总量为x万吨,那么预计明年该市固体污染物的排放量为
⑷.已知一个二位数的个位数是b,十位数字是a,用关于a和b的代数式表示这个二位数
⑸.设在排成每行7天的日历表中某个数是a,那么它下方第1个数是 ,这是次多项式.若a表示7月16日,那么它下方第1个数表示
⑹.X与Y两数积的2倍 .⑺.X与Y的平方和加上这两数的积的2倍 . ⑻.棱长分别为a,b,2的立方体的体积和表面积
2.当x=-2,y=-3时, (1)y2-2x= , (2)-y2= , (3)3|y|-|x|= , (4)3|y+x|=
3.化简下列各式(1) 2+5x2y-7x2y+2xy2-1(2)5a2 -3b2 +2ab-4a2 -b2 -2ab+a2
(3)7(p3+p2-p-1)-2(p3+p)(4)
4.已知A=2a2-3ab,B=a2+2ab求(1)A+B (2)A-2B
5.化简求值
(1) 2y2-2x+3,其中x=-5,y=3; (2) x3-2x2+3x+5 的值,其中x=-2.
(3). 当a=-2,b=1,c=-3时,求b2-a2-3ab (4)
6、已知是同类项,求5m+3n的值。

7、用不同的方法化简多项式3(a-b)+4(a-b)-2(a-b)+6(a-b)
8 小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍,预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的总收入是增加,还是减少?。

相关文档
最新文档