初一数学期中考试卷
湖南省长沙市雅礼教育集团2023-2024学年上学期七年级期中考试数学试卷

23年秋初一雅礼教育集团期中考试数学试卷 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .20232.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒ 3C3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9310⨯C .10 310⨯D .114.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为()A .3.9B .3.90C .3.91D .3.905 5.(3分)下列计算正确的是() −=−36A .2B .a a 22321−=−−=C .110D .−=−a b a b 2(2)42−x 2+66.(3分)在代数式,1x x −+34,2,π, x57x ,3中,整式的个数有() A .2个B .3个C .4个D .5个 7.(3分)如图所示,直角三角尺的面积是()A .ab 21ab r −πB .2C .21ab r −π2D .21ab r −2 m n −+−=8.(3分)若|2|(3)02 −2024,则m n ()的值是()−A .1B .1C .2023 −D .20239.(3分)下列说法中正确的个数有 ( )±1①0是绝对值最小的有理数;②倒数等于本身的数有0和;a 的次数是1;④正整数、0③单项式和负整数统称为整数.A .1个B .2个C .3个D .4个10.(3分)多项式m x mx −+−|1|m (3)3− 是关于x 的二次三项式,则m 取值为()A .3−B .1−C .3或1−D .3或1二、填空题 (每小题3分,共18分)11.(3分)81的倒数等于.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为. −13.(3分)比较两个数的大小:0 5.14.(3分)单项式−x y 722的系数是.m n −2x y m 46x y 52n 15.(3分)单项式与是同类项,则+=.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122 化简后不含x 2 项,则m 的值是.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1) −÷+−⨯−2(24)4(4)()3(2;)−−+⨯−313518()22. 18.(6分)化简:(1)++−−−a a a a 62352222;x x x (2)−−−3[52(4)].+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值. 我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值; (2)如果3x y +=,求代数式6()332017x y x y +−−+的值.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A、B两种购票方案可供选择:方案A:教师全价,学生半价;方案B:不分教师与学生,全部六折优惠.(1)若该班级按方案A购票,4名老师全价购票的总费用为元,m名学生半价购票的总费用为元;若该班级按方案B购票,4名老师按6折优惠购票总费用为元,m 名学生按6折优惠购票总费用为元(请分别用数字或含m的代数式表示).(2)当学生人数40m=,且只能从A、B两种方案中选择一种购票时,请通过计算按A、=B两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4+名学生购票所需总费用)名教师购票所需总费用m23.(9分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,c a−0,a b−0.(2)化简:||||||−+−−−.c b a b c a24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” );(2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.23年秋初一雅礼教育集团期中考试数学试卷参考答案与试题解析 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .2023 【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.−【解答】解:2023的相反数为2023.故选:D .【点评】本题主要考查相反数,关键是掌握相反数的定义.2.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒3C 【分析】认真读懂题意,列算式,进行有理数的减法运算.【解答】解:−−=53(C)︒=+28(25)2825,故选:A .【点评】本题考查了有理数减法运算的应用,做题的关键是读懂题意理解正负数的意义,列出正确的减法算式.3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9 310⨯C .10 310⨯D .11【分析】运用科学记数法进行变形、求解.=⨯=⨯300010310811【解答】解:3000亿, 故选:D . 【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.4.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为(A .3.9B .3.90)D .C .3.91 3.905【分析】对千分位数字4进行四舍五入即可得.【解答】解:把3.90456精确到百分位,取得的近似值为3.90. 故选:B .【点评】本题考查近似数和有效数字,掌握四舍五入法解答是关键. 5.(3分)下列计算正确的是( ) A .236−=− B .22321a a −=C .110−−=D .2(2)42a b a b −=−【分析】根据合并同类项法则:把系数合并,字母部分不变;有理数的减法法则:减去一个数等于加上它的相反数;负整数指数幂:1((0p pa a a −=≠,p 为正整数)分别进行计算即可. 【解答】解:A 、239−=−,故原题计算错误;B 、22232a a a −=,故原题计算错误;C 、112−−=−,故原题计算错误;D 、2(2)42a b a b −=−,故原题计算正确; 故选:D .【点评】此题主要考查了合并同类项、有理数的减法、负整数指数幂,关键是掌握各计算法则.6.(3分)在代数式26x +,1−,234x x −+,π,5x,37x 中,整式的个数有( ) A .2个B .3个C .4个D .5个【分析】利用整式定义可得答案.【解答】解:在代数式26x +,1−,234x x −+,π,5x,37x 中,其中26x +,1−,234x x −+,π,37x 是整式,共有5个,故选:D .【点评】此题主要考查了整式,关键是掌握单项式和多项式合称为整式. 7.(3分)如图所示,直角三角尺的面积是( )A .12abB .2ab r π−C .212ab r π−D .212ab r −【分析】用三角形面积减去圆的面积即可.【解答】解:由三角形面积公式和圆的面积公式可得,直角三角尺的面积是212ab r π−,故选:C .【点评】本题考查列代数式,解题的关键是掌握三角形面积公式和圆的面积公式. 8.(3分)若2|2|(3)0m n −+−=,则2024()m n −的值是( ) A .1−B .1C .2023D .2023−【分析】根据非负数的性质,可求出m 、n 的值,然后代入代数式求解即可. 【解答】解:2|2|(3)0m n −+−=,20m ∴−=,30n −=, 解得2m =,3n =,20242024()(1)1m n ∴−=−=. 故选:B .【点评】本题考查了非负数的性质:偶次方,绝对值都是非负数,几个非负数的和为0时,这几个非负数都为0.9.(3分)下列说法中正确的个数有( )①0是绝对值最小的有理数;②倒数等于本身的数有0和1±; ③单项式a 的次数是1;④正整数、0和负整数统称为整数. A .1个B .2个C .3个D .4个【分析】根据绝对值,倒数,单项式的定义,有理数的分类逐项进行判断即可. 【解答】解:①0是绝对值最小的有理数,故符合题意; ②倒数等于本身的数有1±,故不符合题意; ③单项式a 的次数是1,故符合题意;④正整数、0和负整数统称为整数,故符合题意. 故选:C .【点评】本题考查单项式,绝对值,倒数,有理数的分类,掌握这些定义是正确判断的前提. 10.(3分)多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,则m 取值为( ) A .3B .1−C .3或1−D .3−或1【分析】多项式中次数最高的项的次数叫做多项式的次数,单项式的个数就是多项式的项数,由此即可计算.【解答】解:多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,∴−=m |1|2∴=m ,3m =−,或1m −≠,30,∴=−m1,B 故选:.【点评】本题考查多项式的有关概念,绝对值的概念,关键是掌握多项式的次数,项的概念,并注意多项式的二次项不等于0.二、填空题 (每小题3分,共18分)11.(3分)818的倒数等于.. 【分析】根据倒数的定义即可得到结论.【解答】解:81的倒数等于8,故答案为:8.【点评】此题考查倒数的定义.此题比较简单,解题的关键是掌握倒数的定义.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为12. 【分析】求数轴上两点间的距离,用较大数减去较小数即可.【解答】解:−−= 10(2)12 , 故答案为:12.【点评】本题考查了求数轴上两点间的距离的方法,知道用较大数减较小数是即可.13.(3分)比较两个数的大小:0 >−5. 【分析】根据负数都小于0解答即可.−【解答】解:5 ∴>−是负数,05. 故答案为:>.【点评】本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0是解题的关键.14.(3分)单项式 −72x y 2的系数是−72. 【分析】根据单项式系数的定义解答.【解答】解:单项式−x y 722的系数是−2.7故答案为:− 72.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解题的关键. 6x y 5215.(3分)单项式n−2x y m 与4m n 是同类项,则+=7.m =5【分析】根据同类项的定义求出,m n +n =2,再代入求出答案即可.【解答】解:6x y 52单项式n−2x y m 与4是同类项,∴=m 5n ,=24∴=n ,2m n +=+=,解得:527,故答案为:7.【点评】本题考查的是同类项的含义,熟记同类项的定义是解本题的关键.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122化简后不含x 2 项,则 m 的值是2.【分析】先合并同类项,再根据题意列出方程,解方程得到答案.【解答】解:−+−−+x x mx x 4352122=−−+m x x (42)462,由题意得:−=m 420m =,解得:2,故答案为:2.【点评】本题考查的是合并同类项,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1)−÷+−⨯−2(24)4(4)()3;(2)−−+⨯−313518()22.【分析】(1)先算乘除法,再算加法即可;(2)先算乘方,再算乘法,最后算加减法即可.【解答】解:(1)−÷+−⨯−2(24)4(4)()3 ==−+(6)60;(2)−−+⨯−313518()22=−−+⨯995181=−=−−+95212.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.18.(6分)化简:(1)x x x ++−−−;(2a a a a 62352222)−−−3[52(4)].【分析】(1)原式合并同类项即可;(2)原式去括号合并即可得到结果.【解答】解:(1)++−−−a a a a 62352222=−+−+−=+a 21a a a a 65223222;x x x (2)−−−3[52(4)]=−−+x x x 3(528)=−+−x x x 3528=−8.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.【分析】利用整式的运算,化简代数式,代入数据求值.【解答】解:1x =−,2y =,222(32)2()xy xy y xy y ∴+−−−2223222xy xy y xy y =+−−+3xy =3(1)2=⨯−⨯6=−.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?【分析】(1)根据正负数的意义求出第三天的路程即可;(2)根据平均数的定义计算即可.【解答】解:(1)第三天行驶了(5014)36−=(千米),答:第三天行驶了36千米;(2)平均每天行驶的路程为811148411650507−−−++−+=(千米), 答:这7天中平均每天行驶50千米.【点评】本题考查正负数的意义,解题的关键是理解用正负数表示两种具有相反意义的量.21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值.我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值;(2)如果3x y +=,求代数式6()332017x y x y +−−+的值.【分析】将各式变形后代入已知数值计算即可.【解答】解:(1)2231x x +=−,∴原式12025=−+2024=;(2)3x y +=,∴原式6()3()2017x y x y =+−++3()2017x y =++332017=⨯+92017=+2026=.【点评】本题考查整式的化简求值,将原式进行正确的变形是解题的关键.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m 名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A 、B 两种购票方案可供选择:方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠.(1)若该班级按方案A 购票,4名老师全价购票的总费用为 120 元,m 名学生半价购票的总费用为 元;若该班级按方案B 购票,4名老师按6折优惠购票总费用为 元,m 名学生按6折优惠购票总费用为 元(请分别用数字或含m 的代数式表示). (2)当学生人数40m =,且只能从A 、B 两种方案中选择一种购票时,请通过计算按A 、B 两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4=名教师购票所需总费用m +名学生购票所需总费用)【分析】(1)根据题意列出两个代数式即可;(2)把40m =代入(1)中的两个代数式进行计算,即可得出答案.【解答】解:(1)4名老师全价购票的总费用为430120⨯=(元),m 名学生半价购票的总费用为130152m m ⨯=(元), 4名老师按6折优惠购票总费用为43060%72⨯⨯=(元),m 名学生按6折优惠购票总费用为3060%18m m ⨯=;故答案为:120;15m ;72;18m ;(2)当40m =时,选择方案A 所需的费用为:1201540720+⨯=(元),选择方案B 所需的费用为:184072792⨯+=(元),720792<,∴选择方案A 更为优惠.【点评】本题考查了列代数式及代数式求值,理解题意正确列出代数式是解题的关键.23.(9分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” ); (2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.【分析】(1)根据新定义内容进行计算,从而作出判断;(2)根据新定义内容列方程求解;(3)将原式去括号,合并同类项进行化简,然后根据新定义内容列出等式并化简,最后代入求值.【解答】解:(1)①111122−=⨯,1(1,)2∴是“积差等数对”; ②2121−≠⨯,(2,1)∴不是“积差等数对”;③11(1)(1)22−−−=−⨯−,1(2∴−,1)−是“积差等数对”; 故答案为:是;否,是;(2)(,3)m 是“积差等数对”,33m m ∴−=,解得:32m =−,m ∴的值为32−; (3)原式224(322)646ab a ab a b a =−−+−++2212488646ab a ab a b a =−−+−++ 44416ab a b =−++,(,)a b 是“积差等数对”,a b ab ∴−=,∴原式44()16ab a b =−−+4416ab ab =−+16=. 【点评】本题属于新定义内容,考查解一元一次方程,整式的加减—化简求值,理解“积差等数对”的定义,掌握解一元一次方程的步骤以及合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.【分析】(1)根据题意列式计算即可;(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,根据题意列方程即可得到结论;(3)设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,根据题意列方程即可得到结论.【解答】解:(1)a 是最大的负整数,1a ∴=−;2(9)|12|0b c −+−=,90b ∴−=,120c −=,9b ∴=,12c =,1293BC CD ∴==−=,33915d ∴=++=,(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,∴点A 表示的数为:13t −−,点C 表示的数为:125t −,|(13)(125)||213|11AC t t t ∴=−−−−=−=,解得1t =或12;(3)线段MN 为定值,设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,则点:1A at −+,点:9B at +,点:12C bt +,点:15D bt +,由题意可知:点M 为AC 中点,点N 为BD 中点,因此,可求得:11211:222at bt a b M t −++++=+;915:1222at bt a b N t ++++=+, 111312()2222a b a b MN t t ++=+−+=. 【点评】本题考查一元一次方程的应用,解题的关键是学会设未知数,构建方程解决问题.。
初一数学试卷期中考试题目

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 已知一个数的平方是25,那么这个数可能是()A. 5B. -5C. 5或-5D. 无法确定3. 在下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形4. 下列代数式中,正确的是()A. 3a + 2b = 5a + bB. 2(a + b) = 2a + 2bC. (a + b)^2 = a^2 + b^2D. a^2 - b^2 = (a + b)(a - b)5. 一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是()A. 13厘米B. 26厘米C. 33厘米D. 40厘米6. 一个正方形的对角线长是10厘米,那么这个正方形的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米7. 下列分数中,最简分数是()A. $\frac{4}{6}$B. $\frac{8}{12}$C. $\frac{3}{4}$D. $\frac{5}{10}$8. 已知一个数的5倍加上3等于13,那么这个数是()A. 2B. 3C. 4D. 59. 下列方程中,正确的是()A. 2x + 3 = 5x + 1B. 3x - 2 = 2x + 4C. 4x + 5 = 3x - 2D. 5x + 2 = 4x + 310. 下列函数中,自变量的取值范围是全体实数的是()A. y = x^2 + 2x + 1B. y = $\sqrt{x}$C. y = $\frac{1}{x}$D. y = $\log_2(x)$二、填空题(每题3分,共30分)11. -2的平方根是________,$\frac{1}{3}$的倒数是________。
12. 等腰三角形的底边长是8厘米,腰长是6厘米,那么这个三角形的面积是________平方厘米。
初一期中考试的数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001…2. 下列运算正确的是()A. 3 + (-2) = 5B. (-3) × (-4) = 12C. 5 ÷ (-2) = -2.5D. 6 × 2 = 123. 若 |x| = 5,则 x 的值为()A. ±5B. 5C. -5D. 04. 下列图形中,轴对称图形是()A. 长方形B. 正方形C. 等腰三角形D. 以上都是5. 若 a > b,则下列不等式成立的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 3 < b + 3D. a - 3 > b - 36. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x^3 + 2x^2 - x + 1D. y = 2x^2 - 4x + 37. 若 a、b、c 是等差数列,且 a + b + c = 15,则 b 的值为()A. 5B. 7C. 9D. 118. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^29. 下列命题中,正确的是()A. 如果 a > b,则 a^2 > b^2B. 如果 a > b,则 -a < -bC. 如果 a > b,则 a - b > 0D. 如果 a > b,则 a + b > 010. 下列关于平行四边形的说法中,正确的是()A. 对角线互相平分B. 对边互相平行C. 对角线互相垂直D. 以上都是二、填空题(每题5分,共50分)11. 若 a = -2,b = 3,则 a^2 + b^2 的值为________。
初一数学期中考试试卷

初一数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -5B. 0C. 3D. -22. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形3. 如果a和b是两个连续的自然数,且a < b,那么a和b的和是:A. 2aB. 2bC. a + bD. 2ab4. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 65. 以下哪个选项是不等式?A. 3x + 2 = 11B. 2x - 5 > 3C. 4x = 8D. 5x - 76. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么这个三角形的周长是:A. 16厘米B. 17厘米C. 18厘米D. 19厘米7. 以下哪个选项是二次根式?A. √4B. √(-4)C. √2xD. √x^28. 如果一个数的平方是36,那么这个数是:A. 6B. -6C. ±6D. 369. 以下哪个选项是单项式?A. 3x^2 + 2xB. 5x - 3C. 2xD. x^2 - 4x + 410. 以下哪个选项是多项式?A. 2xB. 3x^2 - 5x + 7C. x^2D. 5二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。
12. 如果一个角的补角是120°,那么这个角的度数是______。
13. 一个数的立方是-8,那么这个数是______。
14. 一个数的平方根是2,那么这个数是______。
15. 一个等腰三角形的底角是45°,那么这个三角形的顶角是______。
16. 如果一个数的相反数是它本身,那么这个数是______。
17. 一个数的倒数是1/4,那么这个数是______。
18. 一个数的平方是25,那么这个数是______。
19. 如果一个数的绝对值是它本身,那么这个数是非负数,即这个数是______。
2024—2025学年人教版七年级数学上册期中考试试卷

七年级上册数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.将“1410000000”用科学记数法表示正确的是()A.14.1×108B.1.41×109C.0.141×1010D.1.41×10102.下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣27与(﹣2)73.下列表示数轴的方法正确的是()A.B.C.D.4.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.16毫米,则质量最差的零件是()A.第一个B.第二个C.第三个D.第四个5.下列有理数大小关系判断正确的是()A.﹣(﹣)>﹣|﹣|B.0>|﹣10|C.|﹣3|<|+3|D.﹣1>﹣0.016.下列说法正确的有()A.是整式B.是单项式C.不是整式D.是多项式7.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|a|一定是负数8.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.﹣3C.7或﹣3D.不能确定9.如图所示,点在数轴上,则将m、n、0、﹣m、﹣n从小到大排列正确的是()A.﹣m<﹣n<0<m<n B.m<n<0<﹣m<﹣nC.﹣n<﹣m<0<m<n D.m<n<0<﹣n<﹣m 10.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个二、填空题(6小题,每题3分,共18分)11.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.12.2024的倒数是.13.单项式的系数是14.若关于a,b的代数式﹣3a3b x与9a y b是同类项,则x y的值是15.已知x与y互为相反数,m与n互为倒数,且|a|=3,则=.16.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是第II卷七年级上册数学期中模拟考试试卷人教版2024—2025学年七年级上册姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算(1);(2).18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.20.足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门.请问在这段时间内,对方球员有几次挑射破门的机会?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,如表是该市自来水收费价格的价目表(注:水费按月结算)每月用水量单价不超过6立方米的部分2元/立方米超过6立方米但不超过10立方米的部分4元/立方米超过10立方米的部分8元/立方米(1)若某户居民2月份用水4立方米,则应缴纳水费元.(2)若某户居民3月份用水a(6<a<10)立方米,则该用户3月份应缴纳水费多少元(用含a的代数式表示,并化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x立方米,求该户居民4,5月份共缴纳水费多少元.(用含x的代数式表示,并化成最简形式)22.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.23.数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2+2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2﹣2a=2,则2a2﹣4a=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2+3a﹣3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为5,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.24.两个边长分别为a和b的正方形按如图1放置,记未叠合部分(阴影)的面积为S1.在图1大正方形的右下角再摆放一个边长为b的小正方形(如图2),记两个小正方形叠合部分(阴影)的面积S2.(1)用含a,b的代数式分别表示S1,S2.(2)若a=5,b=3,求S1+S2的值.(3)若S1+S2=64,求图3中阴影部分的面积S3.25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.。
湖南省长沙市湖南师大附中高新实验中学2023-2024学年上学期七年级期中考试数学试卷

23年秋初一湖南师大附中高新实验中学期中考试数学试卷一、选择题 (本题共10小题,每小题3分,共30分)1.(3分)下列各数中不是有理数的是()A .0−B .1C .πD .352.(3分)已知太阳与地球之间的平均距离约为,则数据150000000150000000km 用科学记数法表示为()0.1510⨯A .9 1.510⨯B .8 1510⨯C .715010⨯D .6(1)−3.(3分)计算2023的结果是()A .2023−B .2023 −C .1D .14.(3分)下列等式是一元一次方程的是()A .x x+=−212B .+=C 257.= x yD y ab .+=326 5.(3分)下列计算正确的是 ()a a A .−=B 33.−−=−+x x 2(4)24−−=(3)9C .2D .÷⨯=÷= 45441454−−+()a b c 6.(3分)去括号的结果是()−+−A .a b c−−+B .a b c −++C .a b c D .+−a b c 3a b 221m 7.(3分)如果−−2a b 22m 与+是同类项,则m的值为()A .1B .3−C .1 −D .3 x 8.(3分)方程−=315的解为()A .2−B .2C .3−D .39.(3分)在下列式子中变形正确的是 ()a b =A .如果,那么+=−a b =B a c b c .如果,那么=c ca b C .如果a=26a =,那么3D .如果=a b ,那么=55a b 10.(3分)将两边长分别为a 和>的正方形纸片按图1、图2b a b ()两种方式置于长方形中,(图1、图2ABCD 中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则−C C 12的值()A .0B .−C a b .−D 22a b .−22b a 二、填空题 (本题共6小题,每小题3分,共18分) m −=11.(3分)已知30,则m 的相反数是. 12.(3分)3.1415用四舍五入法精确到千分位.13.(3分)比较大小:−52−1.14.(3分)如果 a ,ba b ++−=满足(3)|2|02,那么=a b .15.(3分)如果代数式− 34x x 2 的值为5,那么代数式x x 2347−−的值等于.16.(3分)下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n 个图形中白色正方形的个数为.三、解答题 (本题共9小题,共72分)17.(6分)计算:(1)−−+−−;(212(18)(7)15)(3)()(4)||104−⨯−−+÷−2.3318.(6分)化简(1)−−−a b b a 2(2)(23)xy y xy y +−−+.(2)52(41)22.19.(6分)把下列各数按要求分类. ①4−,②10%−,③| 1.3|−−,④0,⑤23,⑥2−,⑦0.6,⑧112−(请在横线上填各数序号) 负整数: ,负分数: ,非负数: .20.(8分)先化简,再求值:222(22)4(1)a b b a −+−++,其中1a =−,18b =.21.(8分)请帮助小华同学找出下列运算过程中出现的错误. 2231(8)32−−−÷⨯解:原式231(8)32=−−−÷⨯⋯第一步1(8)1=−−−÷⋯第二步 1(8)=−−−⋯第三步 18=−+⋯第四步 7=⋯第五步(1)小华同学在第 步开始出现错误; (2)请写出正确的解题过程.22.(9分)有理数a、b、c在数轴上的位置如图:(1)用“>”或“<”填空;−0,c a−0,b ca b−0.(2)化简:||||||−−−+−.a b b c c a23.(9分)为了全面提高学生的综合素养,启迪学生的数学思维,我校初一年级开展了“数学核心素养竞赛——有理数计算”活动,设立特等奖和一、二等奖共87人,其中二等奖人数比一等奖人数的2倍多10人.设一等奖的人数为x人.(1)请用含x的代数式表示:特等奖人数是人,二等奖人数是人(结果化为最简);(2)若特等奖奖品的单价为18元,一等奖奖品的单价为16元,二等奖奖品的单价为12元,请用含x的代数式表示该校本次购买所有奖品需要的总费用,并将结果化为最简;(3)在(2)的基础上,若一等奖的人数为20人,则该校本次购买所有奖品共花费多少元?24.(10分)对于一个各个数位上的数字均不为零的三位自然数m ,若m 的十位数字等于百位数字与个位数字之和,则称这个自然数m 为“三峡数”.当三位自然数m 为“三峡数”时,交换m 的百位数字和个位数字后会得到一个三位自然数n ,规定()99m nF m −=.例如:当671m =时,因为617+=,所以671是“三峡数”;此时176n =,则 671176495()5999999m n F m −−====. (1)判断253和142是否是“三峡数”?并说明理由; (2)求(891)F 的值;(3)若三位自然数10010()m a a b b =+++(即m 的百位数字是a ,十位数字是()a b +,个位数字是b ,19a ,19b ,a ,b 是整数,19)a b +为“三峡数”,且()4F m =时,求满足条件的所有三位自然数m .25.(10分)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,其中b是最小的正整数,且多项式32++++是关于x的二次多项式,一次项系数为c.(3)492a x x x(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则点B与某数表示的点重合,求出此数;(3)若点A、点B和点C分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小明同学发现:3m BC AB⋅+的值是个定值,求此时m的值.23年秋初一湖南师大附中高新实验中学期中考试数学试卷参考答案与试题解析一、选择题 (本题共10小题,每小题3分,共30分)1.(3分)下列各数中不是有理数的是()A .0−B .1C .πD .35【分析】有理数:有理数是整数和分数的统称,据此进行判断即可.−【解答】解:0和1是整数,35是分数,都是有理数,π不是有理数, C 故选:.【点评】本题主要考查了有理数,熟练掌握其定义是解题的关键.2.(3分)已知太阳与地球之间的平均距离约为,则数据150000000150000000km 用科学记数法表示为()0.1510⨯A .9 1.510⨯B .81510⨯C .715010⨯D .6a ⨯10n 【分析】科学记数法的表示形式为的形式,其中a 1||10<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10 时,<n 是正整数;当原数的绝对值1 时,n 是负整数.1.510⨯【解答】解:150000000用科学记数法表示为8.故选:B .a ⨯10【点评】本题考查用科学记数法表示较大的数,掌握形式为n a ,其中1||10< 是关键.(1)−20233.(3分)计算的结果是()A .2023 −B .2023−C .1D .1【分析】根据有理数的乘方法则进行解题即可. −=−【解答】解:(1)12023. C 故选:. 【点评】本题考查有理数的乘方,掌握有理数的乘方法则是解题的关键.4.(3分)下列等式是一元一次方程的是()A .x x+=−212B .+=C 257.=x yD y ab .+=326),且未知数的次数是1,这样的整式方程叫一元一次【分析】根据只含有一个未知数(元方程进行分析即可. 【解答】解:A .122xx +=−是一元一次方程,故本选项符合题意; B .257+=,没有未知数,不是一元一次方程,故本选项不符合题意; C .y ab =,含有多个未知数,不是一元一次方程,故本选项不符合题意;D .326x y +=,含有两个未知数,不是一元一次方程,故本选项不符合题意. 故选:A .【点评】此题主要考查了一元一次方程定义,关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.5.(3分)下列计算正确的是( ) A .33a a −= B .2(4)24x x −−=−+ C .2(3)9−−=D .54441445÷⨯=÷=【分析】根据合并同类项的法则判断A ;根据乘法分配律判断B ;根据乘方法则判断C ;根据有理数乘除法则计算判断D .【解答】解:A 、32a a a −=,故本选项错误;B 、2(4)28x x −−=−+,故本选项错误;C 、2(3)9−−=,故本选项正确;D 、54446444455525÷⨯=⨯⨯=,故本选项错误;故选:C .【点评】本题考查了整式的加减,乘方运算,有理数乘除混合运算,掌握相关法则是解题的关键.6.(3分)()a b c −−+去括号的结果是( ) A .a b c −+−B .a b c −−+C .a b c −++D .a b c +−【分析】根据去括号规律:括号前是“−”号,去括号时连同它前面的“−”号一起去掉,括号内各项都要变号可得答案. 【解答】解:()a b c a b c −−+=−+−. 故选:A .【点评】此题主要考查了去括号,关键是注意符号的改变.7.(3分)如果2213m a b −与222m a b +−是同类项,则m 的值为( ) A .1B .3C .1−D .3−【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:212m m −=+,解得:3m =. 故选:B .【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键. 8.(3分)方程315x −=的解为( ) A .2B .2−C .3D .3−【分析】移项,合并同类项,再把未知数的系数化“1”,从而可得答案. 【解答】解:移项得351x =+, 合并同类项得:36x =, 系数化“1”得:2x =, 故选:A .【点评】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的步骤. 9.(3分)在下列式子中变形正确的是( ) A .如果a b =,那么a c b c +=− B .如果a b =,那么a b c c=C .如果62a=,那么3a = D .如果a b =,那么55a b =【分析】根据等式的性质,依次分析各个选项,选出变形正确的选项即可.【解答】解:A 、等式a b =两边都加上c 得:a c b c +=+,原变形错误,故此选项不符合题意;B 、当0c =时,等式a b =两边都除以c 是错误的,原变形错误,故此选项不符合题意;C 、等式62a=两边都乘2得:12a =,原变形错误,故此选项不符合题意; D 、等式a b =两边都乘5得:55a b =,原变形正确,故此选项符合题意; 故选:D .【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.(3分)将两边长分别为a 和>的正方形纸片按图1、图2b a b ()两种方式置于长方形中,(图1、图2ABCD 中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则−C C 12的值()A .0B .−C a b .−D 22a b .− 22b a 【分析】根据周长的计算公式,列式子计算解答.【解答】解:由题意知:=+−+−+−++−C AD CD b AD a a b a AB a 1,因为四边形ABCD是长方形,所以=AB CD ∴=+−+−+−++−=+−C AD CD b AD a a b a AB a AD AB b 2221, 同理,=−+−+−++−+=+−222C AD b AB a a b a BC a AB AD AB b 2,C C 12−=故0.故选:A . 【点评】此题主要考查了整式的加减,掌握整式的加减的法则是解题的关键.二、填空题 (本题共6小题,每小题3分,共18分)m −=3011.(3分)已知,则−m 的相反数是3. m 【分析】直接求出的值,再利用相反数的定义得出答案.m −=【解答】解:30 ∴=m ,3∴,m−的相反数是:3 . −故答案为:3 . 【点评】此题主要考查了相反数,正确掌握相关定义是解题关键.12.(3分)3.1415用四舍五入法精确到千分位 3.142.【分析】根据四舍五入法可以将题目中的数据精确到千分位.【解答】解:≈3.1415 3.142(精确到千分位),故答案为:3.142.【点评】本题考查了近似数和有效数字.解答本题的关键是明确精确到哪位,就是对它后边的一位进行四舍五入.13.(3分)比较大小:25− > 1−. 【分析】两个负数比较大小,绝对值大的反而小,依据此法则,首先求出22||55−=,|1|1−=,由215>,进而得出答案. 【解答】解:22||55−=,|1|1−=,215>,又215>,∴215−>−, 故答案为:>.【点评】本题主要考查了比较两个负数大小的知识,熟练掌握比较大小的法则是解决本题的关键.14.(3分)如果a ,b 满足2(3)|2|0a b ++−=,那么b a = 9 .【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【解答】解:2(3)|2|0a b ++−=,2(3)0a +,|2|0b −,30a ∴+=,20b −=, 解得3a =−,2b =,2(3)9b a ∴=−=.故答案为:9.【点评】本题考查平方数和绝对值的非负性,两个非负数的和为零,那么这两个非负数也为零是关键.15.(3分)如果代数式234x x −的值为5,那么代数式2347x x −−的值等于 2− .【分析】利用代入法,代入所求的式子即可.【解答】解:当2345x x −=时,原式572=−=−.故答案为:2−.【点评】本题考查代数式求值,把代数式中的字母用具体的数代替,按照代数式规定的运算,计算的结果就是代数式的值.16.(3分)下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n 个图形中白色正方形的个数为 32n + .【分析】根据题目中图形,可以发现白色正方形的个数的变化规律,从而可以求得第n 个图形中白色正方形的个数.【解答】解:图(1)中白色正方形的个数为:+⨯=2315,图(2)中白色正方形的个数为:+⨯=2328,图(3)中白色正方形的个数为:+⨯=23311,⋯,则第23+n 个图形中白色正方形的个数为:n ,n 故答案为:+32.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中白色正方形的个数的变化规律,利用数形结合的思想解答.三、解答题 (本题共9小题,共72分)17.(6分)计算:(1)−−+−−;(212(18)(7)15)33(3)()(4)||104−⨯−−+÷−2.【分析】(1)按照从左到右的顺序进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)−−+−−=+−−12(18)(7)151218715=−−30715==−23158;(2)33(3)()(4)||104−⨯−−+÷−2=⨯−−⨯349()4103=−−303=−33.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.18.(6分)化简(1)−−−a b b a 2(2)(23)xy y xy y +−−+.(2)52(41)22.【分析】(1)先去括号,再合并同类项即可得;(2)先去括号,再合并同类项即可得.【解答】解:(1)原式=−−+=−a b b a a b 422374;(2)原式=+−+−=−−xy y xy y 582222332y xy 2.【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.19.(6分)把下列各数按要求分类.−4,①②−10%,③−−| 1.3|,④0,⑤32−2,⑦0.6,,⑥⑧ −211 (请在横线上填各数序号) 负整数:①⑥,负分数:②③⑧,非负数:④⑤⑦.【分析】根据负整数,负分数,非负数的定义即可求解.【解答】解:| 1.3| 1.3−−=−,负整数:①⑥,负分数:②③⑧,非负数:④⑤⑦. 故答案为:①⑥;②③⑧;④⑤⑦.【点评】本题考查了有理数,相反数,绝对值,关键是熟练掌握有理数的分类方法.20.(8分)先化简,再求值:222(22)4(1)a b b a −+−++,其中1a =−,18b =. 【分析】先去括号,再合并同类项,然后再代值计算即可.【解答】解:222(22)4(1)a b b a −+−++22244444a b b a =−+−−−228a b =−−, 当1a =−,18b =时,原式212(1)82138=−⨯−−⨯=−−=−. 【点评】本题考查了整式加减—化简求值,正确进行计算是解题关键.21.(8分)请帮助小华同学找出下列运算过程中出现的错误.2231(8)32−−−÷⨯ 解:原式231(8)32=−−−÷⨯⋯第一步 1(8)1=−−−÷⋯第二步1(8)=−−−⋯第三步18=−+⋯第四步7=⋯第五步(1)小华同学在第 二 步开始出现错误;(2)请写出正确的解题过程.【分析】先计算乘方,再计算乘除,最后计算加减.【解答】解:(1)解:由题意得:小华同学在第二步开始出现错误,运算顺序弄错了,故答案为:二;(2)解:2231(8)32−−−÷⨯231(8)32=−−−÷⨯331(8)22=−−−⨯⨯1(18)=−−−118=−+17=. 【点评】本题考查了有理数的混合运算,先计算乘方、再计算乘除、最后计算加减,同级运算中,从左往右依次计算,熟练掌握运算顺序与运算法则是解此题的关键.22.(9分)有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空;a b − < 0,b c − 0,c a − 0.(2)化简:||||||a b b c c a −−−+−.【分析】(1)根据图示,可得:0a b c <<<,据此判断出a b −、b c −、c a −与0的大小关系即可.(2)根据(1)的结果,以及绝对值的含义和求法,化简||||||a b b c c a −−−+−即可.【解答】解:(1)根据图示,可得:0a b c <<<,a b <,b c <,c a >,0a b ∴−<,0b c −<,0c a −>.故答案为:<、<、>.(2)0a b −<,0b c −<,0c a −>,||||||a b b c c a ∴−−−+−()()()b a c b c a =−−−+−22b a =−.【点评】此题主要考查了实数大小比较的方法,绝对值的含义和求法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大.23.(9分)为了全面提高学生的综合素养,启迪学生的数学思维,我校初一年级开展了“数学核心素养竞赛——有理数计算”活动,设立特等奖和一、二等奖共87人,其中二等奖人数比一等奖人数的2倍多10人.设一等奖的人数为x 人.(1)请用含x 的代数式表示:特等奖人数是 (773)x − 人,二等奖人数是 人(结果化为最简);(2)若特等奖奖品的单价为18元,一等奖奖品的单价为16元,二等奖奖品的单价为12元,请用含x 的代数式表示该校本次购买所有奖品需要的总费用,并将结果化为最简;(3)在(2)的基础上,若一等奖的人数为20人,则该校本次购买所有奖品共花费多少元?【分析】(1)根据题意和题目中的数据,可以写出相应的代数式;(2)根据题目中的数据,可以用含x 的代数式表示购买87件奖品所需的总费用;(3)将20x =代入(2)中的代数式,计算即可.【解答】解:(1)一等奖的人数为x 人,二等奖人数比一等奖人数的2倍多10人, ∴二等奖有(210)x +人,特等奖有87(210)(773)x x x −−+=−人,故答案为:(773)x −,(210)x +;(2)由题意可得,购买87件奖品所需的总费用为:18(773)1612(210)x x x −+++1386541624120x x x =−+++(150614)x =−元,即购买87件奖品所需的总费用为(150614)x −元;(3)当20x =时,150614150614201226x −=−⨯=(元),答:该校购买87件奖品共花费1226元.【点评】本题考查列代数式,有理数的混合运算,一元一次方程的应用,解答本题的关键是明确题意,列出相应的代数式.24.(10分)对于一个各个数位上的数字均不为零的三位自然数m ,若m 的十位数字等于百位数字与个位数字之和,则称这个自然数m 为“三峡数”.当三位自然数m 为“三峡数”时,交换m 的百位数字和个位数字后会得到一个三位自然数n ,规定()99m n F m −=.例如:当671m =时,因为617+=,所以671是“三峡数”;此时176n =,则 671176495()5999999m n F m −−====. (1)判断253和142是否是“三峡数”?并说明理由;(2)求(891)F 的值;(3)若三位自然数10010()m a a b b =+++(即m 的百位数字是a ,十位数字是()a b +,个位数字是b ,19a ,19b ,a ,b 是整数,19)a b +为“三峡数”,且()4F m =时,求满足条件的所有三位自然数m .【分析】(1)根据新定义进行解答便可;(2)根据公式()99m n F m −=计算便可; (3)根据()4F m =列出a 、b 的方程,再根据题目字母的取值范围求得方程的整数解便可得答案.【解答】解:(1)253是“三峡数”,142不是“三峡数”.理由如下:235+=,124+≠,253∴是“三峡数”,142不是“三峡数”;(2)891198(891)799F −==; (3)10010()m a a b b =+++,10010()n b a b a ∴=+++,10010()10010()()99a ab b b a b a F m a b +++−−+−∴==−, 19a ,19b ,a ,b 是整数,19a b +,5a ∴=,1b =或6a =,2b =, 561m ∴=或682.【点评】本题主要考查了新定义,不定义方程的应用,关键是读懂新定义,正确求不定方程的解.25.(10分)如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,其中b 是最小的正整数,且多项式32(3)492a x x x ++++是关于x 的二次多项式,一次项系数为c .(1)a = 3− ,b = ,c = ;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与某数表示的点重合,求出此数;(3)若点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小明同学发现:3m BC AB ⋅+的值是个定值,求此时m 的值.【分析】(1)根据多项式与单项式的概念即可求出答案;(2)求出AC 的中点对应的数值,由于点B 关于这个中点对称,利用这一性质即可得出结论;(3)分两种情形讨论解答:①当点C 在点B 右侧时,②当点C 在点B 左侧时,设三点运动的时间为t 秒,依据图形分别表示出线段BC ,AB 的长度,代入3m BC AB ⋅+中,整理后利用3m BC AB ⋅+的值是个定值可令t 的系数为0即可求出答案.【解答】解:(1)b 是最小的正整数,1b ∴=.多项式32(3)492a x x x ++++是关于x 的二次多项式,30a ∴+=,3a ∴=−.∴多项式为:2492x x ++.它的一次项系数为c ,9c ∴=.3a ∴=−,1b =,9c =,故答案为:3−,1,9;(2)线段AC 的中点对应的数为:3932−+=, 点B 到3的距离为2,∴与点B 重合的数是:325+=.(3)当点C 在点B 右侧时:设三点运动的时间为t 秒,则3m BC AB ⋅+(941)3(132)m t t t t =−−++−++8123(1)m t m =++−,3m BC AB ⋅+的值是个定值,10m ∴−=,1m ∴=.即当1m =时,3m BC AB ⋅+为定值20.当点C 在点B 左侧时:设三点运动的时间为t 秒,则3m BC AB ⋅+[1(94)]3(132)m t t t t =−−−+−++8123(1)m t m =−+++,3m BC AB ⋅+的值是个定值,10m ∴+=,1m ∴=−.即当1m =−时,3m BC AB ⋅+为定值20.综上:当1m =±时,3m BC AB ⋅+为定值20.【点评】本题考查实数与数轴,涉及整式的概念,追及问题,列代数式等问题,综合程度较高,属于难题.。
初一数学七年级期中考试卷

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,哪个数是整数?A. 3.14B. -2.5C. 0D. 1.0012. 下列哪个图形是轴对称图形?A. 长方形B. 三角形C. 圆形D. 平行四边形3. 下列哪个方程的解是x=3?A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 1 = 11D. 5x - 2 = 134. 一个长方形的长是6厘米,宽是4厘米,它的周长是多少厘米?A. 20B. 24C. 18D. 225. 如果一个正方形的边长增加了10%,它的面积增加了多少?B. 20%C. 21%D. 30%6. 下列哪个数是质数?A. 4B. 9C. 11D. 157. 一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?A. 24B. 28C. 32D. 368. 下列哪个分数是最简分数?A. $\frac{18}{24}$B. $\frac{24}{36}$C. $\frac{30}{45}$D. $\frac{42}{60}$9. 如果一个数的倒数是$\frac{1}{5}$,这个数是多少?A. 5B. 10C. 2510. 下列哪个图形的面积是18平方厘米?A. 直径为6厘米的圆B. 边长为3厘米的正方形C. 面积为18平方厘米的矩形D. 面积为18平方厘米的三角形二、填空题(每题5分,共25分)11. 0.125的分数形式是______。
12. 4的平方根是______。
13. 下列数的倒数是$\frac{2}{3}$的是______。
14. 一个圆的半径是5厘米,它的直径是______厘米。
15. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,它的体积是______立方厘米。
三、解答题(每题15分,共60分)16. 解方程:2x - 5 = 13。
17. 一个长方形的长是12厘米,宽是8厘米,求它的周长和面积。
初一期中考试卷数学试卷

一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 如果a<0,那么下列不等式中正确的是()A. a+b<b+aB. -a<aC. -a+b<b-aD. a-b<b-a3. 在下列各式中,能被3整除的是()A. 12a+9B. 10a+3C. 15a+2D. 9a+64. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. 2.5D. $\sqrt{5}$5. 已知a=3,b=-2,则a²+b²的值为()A. 1B. 5C. 7D. 9二、填空题(每题5分,共25分)6. 若x=2,则2x²-3x+1=______。
7. 下列各式中,二次根式是______。
8. 两个数的乘积是-6,它们的和是2,这两个数是______。
9. 若a、b是方程2x²+5x+3=0的两个实数根,则a²+b²=______。
10. 在直角坐标系中,点P(2,3)关于y轴的对称点是______。
三、解答题(每题15分,共45分)11. (15分)解下列方程:(1)3x²-5x+2=0;(2)2x²-7x+3=0。
12. (15分)已知函数f(x)=x²-2x+1,求:(1)函数f(x)的图像的顶点坐标;(2)函数f(x)在x=1时的函数值。
13. (15分)已知等腰三角形ABC中,底边BC=6,腰AB=AC,求:(1)等腰三角形ABC的周长;(2)若三角形ABC的面积是18,求底边BC上的高。
四、应用题(每题20分,共40分)14. (20分)某商店进购一批商品,进价为每件100元,售价为每件150元。
为了促销,商店决定对商品进行打折,设打折后的售价为x元,销售量为y件。
(1)求出打折后的总利润与销售量的函数关系式;(2)若要使总利润达到最大,求出最佳的打折幅度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学期中考试卷
(满分120分,完卷90分钟)
一、填空题(每小题2分,共30分)
1、a的倒数与b的倒数的差,用代数式表示是。
2、甲身高acm,乙比甲矮bcm,乙身高cm。
3、代数式a2+b2的意义是。
4、当x= ,y= 时,代数式x(x—y)= 。
5、规定了原点、正方向、和的直线叫做数轴。
6、绝对值等于5的数是。
7、与的大小关系是。
8、在—3 6中,底数是。
9、(—1)2001= 。
10、—(—3)= 。
11、假如—2x=10,那么x= 。
12、设a的相反数是最大的负整数,b的绝对值是最小的数,则b—a= 。
13、用科学计数法表示80340,应记作。
14、—|—2|的相反数是。
15、一个数的倒数是它本身,那个数是。
二、选择题(从下面四个答案选出一个正确的答案,每小题3分,共18分)。
1、在x=y,a,x+1,3x—2=0中有个是代数式。
()
A、1
B、2
C、3
D、4
2、绝对值小于3的整数,有个。
()
A、7
B、6
C、5
D、2
3、设a为任意,一个有理数,那么a2总是()
A、比a大,
B、非负数,
C、正数
D、比a小4、不等于零的两个互为相反数的数,它们的()
A、积为—1
B、积为1
C、商为—1
D、商为1
5、下列四个近似数中,含有三个有效数字的是()
A、0.3140
B、0.03140
C、1.314
D、314万
6、下列说法正确的是()
A、非负数是指正数和零,
B、最小的整数的是0,
C、整数确实是正整数、负整数的统称,
D、|—6|的相反数是6,
三、解答题(共50分)
1、运算(每小题6分,共18分)
(1)、12—(—18)+(—7)—15
(2)()×()÷()
(3)—10+8÷(—2)2—(—4)×(—3)
2、解方程(6分)3x—8=—24
3、在数轴上表示下列各数,再用“<”号把各数连接起来。
(8分)+2,—(+4),+(),|—3|,—1.5
4、当a=—7,b=—9,c=—6时,求代数式。
C2—的值。
(8分)
5、设(x—3)2+|y+1|=0,求代数式x2y2的值。
(10分)四、列方程的应用题。
(10分)
甲以6千米/时的速度步行前往某地,过2.5小时之后,乙以18千米/时的速度骑自行车追甲,乙动身多少时刻后可追上甲?
五、设a是绝对值大于1而小于5的所有整数的和,b是不大于2的非负整数的和,求a、b,以及b—a的值。
(12分)。