大物例题(八)汇总

合集下载

大物课后部分参考答案及解析

大物课后部分参考答案及解析

第一章P171-2 已知j t A i v v ωωsin 0-=,则j t A i t v dt v rωcos 0+==⎰由 ⎝⎛==t A y t v x ωcos 0 可得A v xA y -=0cos ω〔以出发点为原点〕 j t mA a m F jt A a ωωωωcos cos 22-==∴-=1-4 如图,在B 点时,根据其受力情况,有⎝⎛==-20202130sin 60cos BB B mv mgl l mv mg T 解得)N (923==mg T B 在B 点时,根据其受力情况,有⎝⎛==-2221CC C mv mgl l mv mg T 解得)N (183==mg T C1-6 由题意设kv f = ,其受力方向在竖直方向上,则有dtdv mma kv F mg f F mg ==--=-- 变形可得dt dv kvF mg m=--两边同时积分⎰⎰=--t vdt dv kvF mg m00整理可得)1(t m ke kFmg v ---= 注意基本概念的理解和掌握:位移,速度,加速度之间的关系 注意受力分析,区分出B 点时的角度关系设沉降距离为y ,则dtdy v =)]1([)1(0-+-=--==--⎰⎰tm ktt m ke km t k F mg dt e k F mg vdt y1-9 由题意,当h=50m 时,桶中水已全部漏完,故木桶从井中提到井口所做的功为J)(3500)(J 3430)1.011(]2.0)[(1005050021005050或=+-=+-+=⎰⎰gh gh h Mgdhdh gh g m M W1-14 〔1〕子弹所受的冲量)m /s kg (9)50050(02.0⋅-=-⨯=∆=p I木块所受的冲量与子弹所受的冲量反向,即)m/s kg (9⋅=木块I〔2〕对木块,有)m/s kg (950⋅=⋅=∆=m p I木块,因此kg 18.0=m 。

大学物理习题答案解析第八章

大学物理习题答案解析第八章

第八章 电磁感应 电磁场8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2的变化电流且,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A ) , (B ) , (C ),ti t i d d d d 21<2112M M =1221εε=2112M M ≠1221εε≠2112M M =1221εε<(D ) ,分析与解 教材中已经证明M21 =M12 ,电磁感应定律;.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ). 8 -5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) ,因而线圈的自感系数与回路的电流成反比 (D ) ,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,求在时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链. 解 线圈中总的感应电动势当 时,.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.2112M M =1221εε<t i M εd d 12121=tiM εd d 21212=LI Φm =LI Φm =()Wb π100sin 100.85t Φ⨯=s 100.12-⨯=t tψt ΦN ξd d d d -=-=ΦN ψ=()()t tΦNξπ100cos 51.2d d =-=s 100.12-⨯=t V 51.2=ξtId d分析 本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁通量就需用来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则,所以,总磁通量可通过线积分求得(若取面元,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式求解.解1 穿过面元dS 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为tΦξd d -=⎰⋅=SΦS B d ()B B x =x d S d d =y x S d d d =tl ME M d d -=()x d xIμx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B ()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd=-+==⎰⎰⎰tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-=43ln π20dI μΦ=43ln π20d μI ΦM ==当电流以变化时,线圈中的互感电动势为 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量,它表现为变量I 和ξ的二元函数,将Φ代入 即可求解,求解时应按复合函数求导,注意,其中,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值.问此均匀磁场的磁感强度B 的值为多少? 分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为因此,流过导体截面的电量为则 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.tld d tI d μt I ME d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-=()ξf ΦS,1d =⋅=⎰S B tΦE d d -=v =tξd d 54.010C q -=⨯NBS NBS ΦΦΦ=-=-=0Δ12ii R R NBSR R Φq +=+=Δ()T 050.0=+=NSR R q B i分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用来计算线圈在始、末两个位置的磁链. 解 (1) 在始、末状态,通过线圈的磁链分别为, 则线圈中的平均感应电动势为电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?NBS ψ=1011π2r IS μN S NB ψ==2022π2r ISμN S NB ψ==V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE tΦE d d -=分析 本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势.在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则即由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量常数.由法拉第电磁感应定律可知,E =0 又因 E =E OP +E PO 即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法. 8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.tΦE d d -=()l B d ⋅⨯=⎰lE v ()l B d d ⋅⨯=v E B R Rx Φ⎪⎭⎫⎝⎛+=2π212B R txRB t ΦE v 2d d 2d d -=-=-=()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B v B R θθBR E v v 2d cos d E π/2π/2===⎰⎰-==BS ΦtΦE d d -=分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果. 解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则因此棒两端的电势差为当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中, 则8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.()()r L lB ωl lB ωE L-rr ABAB 221d d --=-=⋅⨯=⎰⎰-l B v ()r L lB ωE U AB AB 221--==221r ωB E OA =()221r L B ωE OB -=()r L BL ωE E E OB OA AB 221--=-=分析 如前所述,本题既可以用法拉第电磁感应定律 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的. 解1 由上分析,得由矢量的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿 过回路的磁通量Φ为零,则回路的总电动势显然,E QO =0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况. 8 -13 如图(a)所示,金属杆AB 以匀速平行于一长直导线移动,此导线通有电流I =40A.求tΦE d d -=()l B d ⋅⨯=⎰lE v ()l B d ⋅⨯=⎰OPOP E v l αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L θL B ωl l θB ω022sin 21d sin B ⨯v QO PQ OP E E E tΦE ++==-=0d d ()221PQ B ωE E E QO PQ OP ==-=12.0m s -=⋅v杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式求解,建立图(a )所示的坐标系,所取导体元,该处的磁感强度.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式求得穿过该回路的磁通量,再代入公式,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为穿过回路的磁通量为回路的电动势为由于静止的形导轨上电动势为零,所以()l B d ⋅⨯=⎰lE v x l d d =xIμB π20=⎰⋅=SΦS B d tΦE d d -=()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B x y xIμΦd 2πd d 0=⋅=S B 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦV 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高. 8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足],因而线框中的总电动势为其等效电路如图(b)所示.2.用公式求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有.在求得线框在任意位置处的电动势E(ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势. 解1 根据分析,线框中的电动势为由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为相应电动势为V 1084.35-⨯-==E EAB ()0l B =⋅⨯d v ()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v tΦE d d -=v =tξd d hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d I I μ+=1vI ()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰令ξ=d ,得线框在图示位置处的电动势为由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即.根据牛顿运动定律,此时线框的运动微分方程为,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在时间内,线框为自由落体运动,于是其中时,()()1120π2d d l ξξl l I μt ΦξE +=-=v ()1120π2l d d l l I μE +=v ()A A F F =v ()tvv d d mF mg A =-1t t ≤()11t t gt ≤=v 1t t =gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为根据牛顿运动定律,可得线框运动的微分方程令,整理上式并分离变量积分,有积分后将代入,可得(3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为式中ρ 为铜的电阻率,d 为铜的密度.解 圆形回路导线长为,导线截面积为,其电阻R ′为在均匀磁场中,穿过该回路的磁通量为,由法拉第电磁感应定律可得回路中的感应电流为而,即,代入上式可得v Rl B IlB F A 22==tv m v d d 22=-R l B mg mRl B K 22=⎰⎰=-t t t g 110d d vv Kv vgh 210=v ()()[]1212t t K e gh K g g K----=v ()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v td d Btd d π4Bd ρm I =πR 22πr 22rR ρS l ρR =='BS Φ=tt t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='=2ππ2r R d m =dmRr π2π2=td d π4Bd ρm I =8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率等)密切相关,即.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当时,电场线绕向与B 方向满足右螺旋关系;当 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向. (1) r <R ,r >R ,td d B1s T 010.0d d -⋅=tBtd d B S Bl E d d ⋅∂∂-=⎰⎰S S k t 0d d <t B 0d d >tBtB r t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tBr E k d d 2-=tB R t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tBr R E k d d 22-=由于,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此将r 、R 、的数值代入,可得,式中负号表示E k 的方向是逆时针的. 8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l的金属棒放在磁场中,设B 随时间的变化率为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势. 证1 由法拉第电磁感应定律,有证2 由题8 -17可知,在r <R 区域,感生电场强度的大小 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为0d d >tBtB r R E k d d 22-=tB d d 15m V 100.4--⋅⨯-=k E tBdd ⎰⋅=lk E l E d 0d =⋅l E k 22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQtBr E k d d 2=讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式计算L .式中E L 和都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为则若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E lk k PQ -=-==⋅=⎰⎰x E IΦL =tI E L Ld /d =t I d d xNIμB π20=12200lnπ2d π2d 21R R hI N μx h x NI μN N ψSR R ==⋅=⎰⎰S B 1220lnπ2R R h N μI ψL =8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果. 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为, 通过N 匝回路的磁链为则自感8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l 的一对导线的自感(导线内部的磁通量可略去不计).I L N μnl μB 111==I LN μnl μB 222==221121S NB S NB ΨΨΨ+=+=2211221S μS μlN I ψL L L +==+=分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为穿过图中阴影部分的磁通量为则长为l 的一对导线的自感为如导线内部磁通量不能忽略,则一对导线的自感为.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为,()r d Iμr I μB -+=π2π200aa d l μr Bl ΦSad a-==⋅=⎰⎰-ln πd d 0S B aad l μI ΦL -==ln π0212L L L +=8π02lμL=0221=-=ΦΦΦΦΦΦΦ4222=+=故. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则 . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径. 解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度穿过小线圈A 的磁链近似为 则两线圈的互感为(2) 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?L IΦI ΦL 4422===21212I ΦM M ==RIμN B B200=A BA A A A S RIμN N S B N ψ200==H 1028.6260-⨯===RSμN N I ψM A B A A V 1014.3d d 4-⨯=-=tIME A解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10-3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.()2/322202dR IR μB +=()22/32220π2r dR IR μBS ψC +==()2/3222202πd R R r μI ψM +==解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度则通过线圈C 的磁链为设断开电源过程中,通过C 的感应电荷为q C ,则有由此得相对磁导率8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即,式中为磁场能量密度,积分遍及磁场存在的空间.由于,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感,电流稳定后,线圈中电流,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度 处处相等, 110I n μμB r =S I n μμN BS N ψr c 11022==()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-=T 10.02110===SN RqcI n μμB r 1991102==I n μS N Rqcμr 221LI W m =V w W Vmm d ⎰=mwμB w m 22=V w LI V m d 212⎰=l S N L 2=REI =J 1028.3221522202-⨯===lRSE N μLI W m m w 3m J 17.4-⋅==SLW w mm。

大物b课后题08-第八章电磁感应电磁场

大物b课后题08-第八章电磁感应电磁场

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅=通过矩形面积CDEF 的总磁通量为0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ=通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

大物实验理论题库及答案—精选的八套题

大物实验理论题库及答案—精选的八套题

大物实验理论题库及答案Metaphorl一、填空题(20分,每题2分)1 •依照测量方法的不同,可将测量分为_________________ 和_______________ 两大类。

2•误差产生的原因很多,按照误差产生的原因和不同性质,可将误差分为疏失误差、和随机误差系统误差。

3. _________________________测量中的视差多属__ 随机_____________________________________ 误差;天平不等臂产生的误差属于____________ 系统误差。

4. 已知某地重力加速度值为9.794 m/s2,甲、乙、丙三人测量的结果依次分别为:9.790 ± 0.024m/s 2、9.811 ± 0.004m/s2、9.795 ±0.006m/s 2,其中精密度最高的是 _乙 _____ ,准确度最高的是丙。

5 •累加放大测量方法用来测量微小等量物理量,使用该方法的目的是减小仪器造成的误差从而减小不确定度。

若仪器的极限误差为0.4,要求测量的不确定度小于0.04,则累加倍数N>6 。

6. 示波器的示波管主要由电子枪、偏转板和荧光屏组成。

7. 已知y=2X1-3X2+5%,直接测量量X,%,X3的不确定度分别为△ X、△X3,则间接测量量的不I 2 2 2确定度△ y= 4X1 9X2 25X3。

&用光杠杆测定钢材杨氏弹性模量,若光杠杆常数(反射镜两足尖垂直距离) d=7.00cm,标尺至平面镜面水平距离D=105.0 cm,求此时光杠杆的放大倍数 K=30o9、对于0.5级的电压表,使用量程为3V,若用它单次测量某一电压U,测量值为2.763V,则测量结果应表示为 U= 2.763 ± 0.009V,相对不确定度为 B= 0.3 %。

10、滑线变阻器的两种用法是接成分压线路或限流线路。

二、判断题(“对”在题号前( )中打V, “错”打X) (10分)(t ) 1、误差是指测量值与真值之差,即误差 =测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。

大学物理练习题

大学物理练习题

大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。

求物体的加速度。

2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。

3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。

4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。

5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。

二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。

2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。

3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。

4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。

5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。

三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。

2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。

3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。

4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。

5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。

四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。

2. 一束光从水中射入空气,折射角为45°,求入射角。

3. 一平面镜反射一束光,入射角为60°,求反射角。

4. 一凸透镜焦距为10cm,物距为20cm,求像距。

5. 一凹透镜焦距为15cm,物距为30cm,求像距。

大学物理习题与答案解析

大学物理习题与答案解析

dvy dt
kv
2 y
v dvy kdt
2 y
设入水时为计时起点,水面为坐标原点, 0 时,y=0, v y v0 , t 运动过程中t时刻速度为 v y ,将上式两侧分别以 v y和t为积分变量, k 以 和 y 2 为被积函数作积分得: v
v v0 (kv0 t 1)
x x0 vdt A costdt A sin t
0 0
t
t
x A sin t
大学物理
4、一质点在XOY平面内运动,其运动方程为 x at , y b ct 2 式中a、b、c为常数,当质点运动方向与x 轴成 450角时,它的速率为 v 2a 。
则解得
2 t 9
3
3
2 于是角位移为 2 3t 2 3 0.67(rad) 9
大学物理 2 4、一质点作平面运动,加速度为 ax A cost , a y B 2 sin t ,A B,A 0 ,B 0。当 t 0
时,v x 0 0 ,x0 点的运动轨迹。
2 2 t 1s时,v 2e i 2e j (m/s)
t 1s时,a 4e2i 4e2 j (m/s2 )
dv 2t 2t a 4e i 4e j (m/s 2 ) dt
dr 2t 2t v 2e i 2e j (m/s) dt
0
大学物理 6、一质点沿x轴作直线运动,在 t 0时,质点位于x0 2m
2 处,该质点的速度随时间的变化规律是 v 12 3t , 当质点瞬时静止时,其所在的位置和加速度分别为(A) x=来自6m, a=-12 m/s2 .

大物习题册答案全套

练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。

5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o sa m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。

大学物理难题集


解、(1)这是一个RCL串联的放电电路,电路的微分方程为 d 2q R dq q dt 2 L dt LC 0
上述微分方程的特征方程为
P2 R P 1 0 L LC
PR
R
2
1
L 2L LC

R 2L
2
1 LC
0
时电路处于过阻尼状态;

R 2L
2
1 LC
0
时电路处于临阻尼状态;
应再并联的电容为 C 160 10 150F
4、在-d<x<d的空间区域内,电荷密度>0为常数,其它区 域均为真空。若在x=2d处将质量为m,电量为q(<0)的带 电质点自静止释放。试问经过多少时间它能到达x=0的位置。
d
0
d
x
x
解、由高斯定理可得电场分布
E d 0
E x 0
xd d xd
为了求上式积分,取如图所示的圆柱面。利用高斯定理有:
E1
E2
x d
xd
2r
d
d Er dz
r 2 ( E2 E1 ) 0
d d
Er dz
r 2
(E2
E1 )
e d
er
vr mv z d Erdz 2mv z ( E1 E2 )
电子通过圆孔后的偏转角,则
tg
vr vz
er 2mv 2z
Fr eEr
设电子的径向速度为Vz,则在通过轴向距离 dz期间,径向速度 的增量为
dvr
eEr m
dt
eEr m
dz vz
设电子的径向初速度为0, 通过圆孔后径向速度的增量为
d
vr d

大物实验练习题库合集(内附问题详解)

使用说明:该习题附答案是我整理用以方便大家学习大学物理实验理论知识的,以网上很多份文档作为参考由于内容很多,所以使用时,我推荐将有疑问的题目使用word的查找功能(Ctrl+F)来找到自己不会的题目。

——啥叫么么哒测定刚体的转动惯量1对于转动惯量的测量量,需要考虑B类不确定度。

在扭摆实验中,振动周期的B类不确定度应该取()A.B.C.D.D13在测刚体的转动惯量实验中,需要用到多种测量工具,下列测量工具中,哪一个是不会用到的( )A.游标卡尺B.千分尺C.天平D.秒表C测定刚体的转动惯量14在扭摆实验中,为了测得圆盘刚体的转动惯量,除了测得圆盘的振动周期外,还要加入一个圆环测振动周期。

加圆环的作用是()A.减小测量误差B.做测量结果对比C.消除计算过程中的未知数D.验证刚体质量的影响C测定刚体的转动惯量15转动惯量是刚体转动时惯性大小的量度,是表征刚体特性的一个物理量。

转动惯量与物体的质量及其分布有关,还与()有关A.转轴的位置B.物体转动速度C.物体的体积D.物体转动时的阻力A测定刚体的转动惯量16在测转动惯量仪实验中,以下不需要测量的物理量是()A.细绳的直径B.绕绳轮直径C.圆环直径D.圆盘直径A测定刚体的转动惯量17在扭摆实验中,使圆盘做角谐振动,角度不能超过(),但也不能太小。

A.90度B.180度C.360度D.30度B测定刚体的转动惯量测定空气的比热容比2如图,实验操作的正确顺序应该是:A.关闭C2,打开C1,打气,关闭C1,打开C2B.关闭C1,打开C2,打气,关闭C1,关闭C2C.关闭C2,打开C1,打气,关闭C2,打开C1D.打开C2,关闭C1,打气,打开C1,关闭C2 A18数字电压表U1,U2与气压P1,P2的关系式为:A.P1=P0+U1/2; P2=P0+U2/2B.P1=P0-U1/2; P2=P0-U2/2C.P1=P0+U1; P2=P0+U2D.P1=P0-U1; P2=P0-U2A测定空气的比热容比19本实验测定的物理量是:A.CvB.CpC.Cv/ CpD.Cp/ CvD测定空气的比热容比20Cv指的是A.等压比热容B.容比热容C.温比热容D.上都不对B测定空气的比热容比21Cp指的是A.等压比热容B.容比热容C.温比热容D.上都不对A测定空气的比热容比夫兰克-赫兹实验3参照夫兰克-赫兹实验原理图,以下表述正确的是:A.在阴极K和第二栅极(帘栅极)G2之间靠近阴极K存在第一栅极G1(图中未画出),G1和K之间加有正向电压UG1,主要用以清除空间电荷对阴极发射电子的影响,提高阴极发射电子的能力;B.G2、K间有正向加速电压UG2K(简称UG2),经UG2加速而有一定能量的电子主要是在G1、G2空间与氩原子发生碰撞交换能量;C.在G2与屏极A之间加有反向的拒斥电压UG2A,其作用是挑选能量大于eUG2A的电子,从而冲过拒斥电压形成通过电流计的屏极电流;D.以上表述均正确。

大物习题

选择1、对质点系有下列几种说法:(1)质点系总动量的改变与内力无关;(2)质点系的总动能与内力无关;(3)质点系机械能的改变与保守内力无关。

对于这些说法,下述结论中正确的是(B)B、只有(1)、(3)是正确的2、对质点系的动量和机械能有下述三种说法。

(1)不受外力作用的系统,它的动量和机械能必然同时守恒;(2)内力是保守力的系统,当所受的合外力为零时,其机械能必然守恒;(3)只有保守内力而无外力作用的系统,它的动量和机械能必然守恒。

对于这些说法,下列结论中正确的是(C)C、只有(3)是正确的3、一力学系统由两个质点组成,它们之间只有引力作用。

若两质点所受外力的矢量和为零,则此系统中(C)C、动量守恒,但机械能和对一固定点的角动量是否守恒还不能断定4、关于角动量有以下四种说法,其中正确的是(B)B、一质点做直线运动,相对于直线上的任一点,质点的角动量一定为零5、一个人站在旋转平台的中央,两臂侧平举,整个系统以2πrad/s的角速度旋转,转动惯量为6.0kg·m平方;如果将两臂收回,该系统的转动惯量变为2.0kg·m平方。

此时系统的转动动能与原来的转动动能之比为(C)C、36、对一绕固定水平O轴匀速转动的转盘,沿如图所示的同一水平直线从相反方向射入两粒质量相同、速率相等的子弹,并留在盘中。

则子弹射入后的转盘的角速度应(B)B、减小第9页7、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始下落。

在棒摆动到竖直位置的过程中,应有(A)A、角速度从小到大,角加速度从大到小8、关于力矩有以下几种说法,其中正确的是(B)B、作用力和反作用力对同一轴的力矩之和必为零9、在相对论的时空观中,以下的判断哪一个是正确的(C)C、在一个惯性系中,两个同时又同地的事件,在另一惯性系中一定同时又同地10、根据狭义相对论观点,下列说法正确的是(C)C、如果光速是无限大,同时的相对性就不会存在了11、根据狭义相对论,有下列几种说法:(1)所有惯性系统对物理基本规律都是等价的;(2)在真空中,光的速度与光的频率、光源的运动状态无关;(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择B:正确!
分析:判断干涉条纹的移动和变化,可跟 踪某一级干涉条纹,例如第k 级暗纹,其对
应的空气膜厚度为 ek 。当平凸透镜向上缓
慢平移时,平凸透镜下表面附近对应空气膜
厚度为 ek 的点向中心移动,因此干涉条纹
向中心收缩,中心处由暗变亮,再变 暗,…… 如此反复。
例 已知:用紫光照射,借助于低倍测量 显微镜测得由中心往外数第 k 级明环 C
解: (1) a sin k (k 1,2,3)
a第一级暗纹k0=.15,12=3010.0m
sin 1
(2)已知a=0.5mm f=1m
(a)中央亮纹角宽度 sin
a
a
20
2
a
2
0.5m 0.5103 m
2103 rad
(b)中央亮纹线宽度
x f 20 2103 m 2mm
由明纹公式:
{ 2ek n2
2
k
ek1 ek 2n2 …(2)
2ek 1n2
2
(k
1)
l
2n2 sin
l
实心劈尖任意相邻明条纹对应的
厚度差:ek1 ek /(2n2 )
h ek ek1
任意相邻明条纹(或暗
条纹)之间的距离 l 为: l
ek1 ek
sin
2n2 sin
在入射单色光一定时,劈尖的楔角
的半径 rk 3.0 103 m , k 级往上数
第16 个明环半径 rk16 5.0103 m ,
R
平凸透镜的曲率半径R=2.50m 求:紫光的波长?
M
r
N
解:根据明环半径公式:
d
o
rk
(2k 1)R
2
r2 k 16
rk2
16R
rk16
[2 (k 16) 1]R
2
(5.0102 )2 (3.0102 )2 4.0107 m
愈小,则l愈大,干涉条纹愈疏; 愈大,则l愈小,干涉条纹愈密。
当用白光照射时,将看到由劈 尖边缘逐渐分开的彩色直条纹。
2n2e 2
k (2k 1)
2
k 1,2,3 k 0,1,2
明条纹 暗条纹
薄膜厚度增加时,条纹下移,
厚度减小时条纹上移。
薄膜的 增加时,条纹下移, 减小时
条纹上移。
问题1 在折射率相同的平凸透镜与平面玻璃板间充以
问:若反射光相消干涉的条件中
取 k=1,膜的厚度为多少?此增
n1 1
透膜在可见光范围内有没有增反?
n2 1.38 d
解:因为 n1 n2 n3 ,所以反射光
经历两次半波损失。反射光相干相 消的条件是:
n3 1.5
2n2d (2k 1) / 2
代入k

n2
求得:d
3
4n2
3 550109 4 1.38
个单缝上。(1)已知单缝衍射的第一暗纹的衍射角
1=300,求该单缝的宽度a=?(2)如果所用的单缝
的宽度a=0.5mm,缝后紧挨着的薄透镜焦距f=1m, 求:(a)中央明条纹的角宽度;(b)中央亮纹的线 宽度;(c) 第一级与第二级暗纹的距离; (3)在(2)的条件下,如果在屏幕上离中央亮纹中 心为x=3.5mm处的P点为一亮纹,试求(a)该P处亮 纹的级数;(b)从P处看,对该光波而言,狭缝处 的波阵面可分割成几个半波带?
某种透明液体。从反射光方向观察,干涉条纹将是:
A、中心为暗点,条纹变密
B、中心为亮点,条纹变密
选择A:正确!
C、中心为暗点,条纹变稀
D、中心为亮点,条纹变稀
E、中心的亮暗与液体及玻璃的折射率有关,条纹变密
F、中心的亮暗与液体及玻璃的折射率有关,条纹变稀
问题2 如图,用单色平行光垂直照射在观察牛顿环 的装置上,当平凸透镜垂直向上缓慢平移而远离平板 玻璃时,干涉条纹将: A、静止不动 B、向中心收缩 C、向外冒出 D、中心恒为暗点,条纹变密
n2 1.38 d
n3 1.5
问题讨论
问题1 用单色平行光垂直照射如图的介 质劈形膜,劈棱处为明纹还是暗纹?
A、明纹 B、暗纹 C、不能判断,视
的值而定
(当

时)



时)

为明条纹
为暗条纹
设每一干涉条纹对应的薄膜厚度分别为:
e1.e2.e3 ek
如条纹间距离为 l l sin ek1 ek …(1)
16 2.50
例.在迈克耳逊干涉仪的两臂中分别引入 10 厘米长
的玻璃管 A、B ,其中一个抽成真空,另一个在充
以一个大气压空气的过程中观察到107.2 条条纹移 动,所用波长为546nm。求空气的折射率?
M1
A
S
B
M2
M1
解:设空气的折射率为 n
2nl 2l 2l(n 1) S
A M2
例:已知:S2 缝上覆盖
的介质厚度为 h ,折射
S1
率为 n ,设入射光的
S2
波长为.
h
r1
r2
问:原来的零级条纹移至何处?若移至原来的第
k 级明条纹处,其厚度 h 为多少?
解:从S1和S2发出的相干光所对应的光程差
(r2 h nh) r1
当光程差为零时,对应 零条纹的位置应满足:
r2 r1 (n 1)h 0
(c) 第一级暗纹与第二级暗纹之间的距离
x21
2
f( a
) 1 (2 103 1103)m
a
1mm
(3)已知x=3.5mm是亮纹
(a) a sin (2k 1) 亮纹
sin
tg
2
x
f
k ax 1 3
f 2
(b)当k=3时,光程差
a sin (2k 1) 7 •
2
2
狭缝处波阵面可分成7个半波带。
所以零级明条纹下移
原来 k 级明条纹位置满足:
r2 r1 k
S1
S2
设有介质时零级明条纹移
h
到原来第 k 级处,它必须
同时满足:
r2 r1 (n 1)h
h k
n 1
r1
r2
例 已知用波长 550nm,照相机镜头n3=1.5,其
上涂一层 n2=1.38的氟化镁增透膜,光线垂直入射。
2.982107 m
问:若反射光相消干涉的条件中
取 k=1,膜的厚度为多少?此增
透膜在可见光范围内有没有增反?
此膜对反射光相干相长的条件:
2n2d k
k 1
k2
k 3
1 855nm
2 412.5nm
3 275nm
可见光波长范围 400~700nm
波长412.5nm的可见光有增反。
n1 1
B
相邻条纹或说条纹移动一条时,对应
光程差的变化为一个波长,当观察到
107.2 条移过时,光程差的改变量满足:
2l(n 1) 107.2
迈克耳逊干涉仪的两 臂中便于插放待测样
n 107.2 1 1.0002927 品,由一束波长为 =5000Å的平行光垂直照射在一
相关文档
最新文档