04 无零因子环的特征
《高等数学》.

近世代数课程教学大纲一、课程说明1、课程性质近世代数课程是数学系本科专业的一门专业必修课,是一门现代数学课,是数学专业较抽象的一门课程。
本课程主要讲现代代数学的研究对象、研究方法。
它的内容包括三个基本的代数结构:群、环、域。
它不仅是一门重要的专业基础课, 也是学习代数数论、代数几何、代数拓扑等基础数学课程及计算代数、编码等应用数学课程所必需的一门基础课。
它的基本概念、理论和方法不仅在数学中占有及其重要的地位,而且在其它学科中也有广泛的应用,如理论物理、结构化学、计算机等学科。
其研究的方法和观点,对其他学科有很大的影响。
通过本课程的学习,使学生较好地掌握近世代数的基本内容、理论和方法,加深学生对数学的基本思想和方法的理解,增强学生的抽象思维、逻辑推理能力,培养学生能利用代数学的理论知识对实际问题构建代数模型,培养学生分析问题、解决问题的能力。
2、教学目的和要求群、环、域是本课程的基本内容,要求学生熟练掌握群、环、域的基本理论和方法。
由于教学时数所限,本课程的理论推证较少,因此必须通过做练习题来加深对概念的理解和掌握,熟悉各个定理的运用,从而达到消化、掌握所学知识的目的。
对于本科学生,要独立完成大部分课后习题,它是学好本课程的重要方法。
并要阅读一定量的课外参考书,扩大视野。
还要注重培养抽象思维和推理的能力。
3、先修课程和后继课程集合论初步与高等代数是学习本课程的准备知识。
本课程学习以后可以继续研读:群论、环论、模论、李群、李代数等。
4、教学时数分配5、使用教材《近世代数基础》,张禾瑞,高等教育出版社,1978年修订本。
6、教学方法与手段本课程以讲授为主,由于该课程较抽象,在教学中要注重多举例子、多讲习题、多加思考;要注重对教材内容中各个知识点的理解,对教学内容、教学方法与教学手段的改革,认真总结教学经验,不断提高自身的教学水平和理论知识;要突出教材内容所体现的数学思想、方法,加强学生应用数学的能力;要注重对学生证明技巧、证明思路的训练;要增加以学生为主体的启发式、讨论式教学方法;要让学生多加练习、多加思考,提出问题。
高等代数环的定义与性质

一、 环的定义与基本性质(一) 环的定义:1、 定义1:交换群称为加群(Aβελ群),其运算叫做加法,记为“+”。
2、 定义2:代数系统),;A (⋅+称为环,若1)(A,+)就是加群;2)代数系统);A (⋅适合结合律;3)乘法);A (⋅对加法+的分配律成立。
3、 例子(1)),;Z (⋅+、),;Q (⋅+、),;R (⋅+、),;C (⋅+都就是环,均称为数环。
(2)Z[ι] ={α+βι | α、β∈Z,ι2=-1 },则),];i [Z (⋅+也就是数环,称之为高斯整环。
(3)设Φ就是任一数环,则Φ[ξ]关于多项式加法与乘法作成一个多项式环。
(4)Z ν={所有模ν剩余类},则),;Z (n ⋅+就是模ν剩余类环,这里[α]+[β] = [α+β],]b []a [⋅ = [αβ].(5)设(A,+)就是加群,规定乘法如下:,A b ,a ∈∀αβ=0,则),;A (⋅+作成一个环,称之为零环。
(二)环的基本性质:(1)0x a a x =⇒=+。
(2)a x x a -=⇒=+0。
(3)c b c a b a =⇒+=+。
(4)nb na )b a (n +=+。
(ν为整数)(5)na ma a )n m (+=+。
(μ、ν为整数)(6))na (m a )mn (=。
(μ、ν为整数)(7),A a ∈∀ 000=⋅=⋅a a 。
(8)ab )b (a b )a (-=-=-。
(9)ab )b )(a (=--。
(10)ac bc c )a b (,ac ab )c b (a -=--=-。
(11)j m i n j i n j j m i i b a b a ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1111 。
(12))ab (n )nb (a b )na (==。
(ν为整数)。
(13)若环中元a 、b 满足ba ab =,则()k n k nk k n n b a C b a -=∑=+0 (14)mn n m n m n m a )a (,a a a ==⋅+。
近世代数复习

第一章集合A 的一个分类决定A的元间的一个等价关系;集合A元间的一个等价关系~决定A的一个分类。
第二章群的定义a.设G是一个非空集合,“▫”是其上一个二元运算,若满足1.“▫”满足结合律;2.{G,▫}中有单位元;3.{G,▫}每个元都与逆元则称{G,▫}是一个群,简称G是一个群。
b. 若G是一个有乘法的有限非空集合,且满足消去律。
群的性质1.单位元唯一;2.逆元唯一;3.若G是群,则对G中的任意元a、b,方程ax = b和xa = b都有唯一的解4.若G是群,则对任意G中的两个元素a、b, 有(ab)-1=b-1a-1注:可以推广到无限:111211m1m1m21ma...aaa)...aa(aG,a..,------=⇒∈∀,.a,a215.单位元是群中唯一的等幂元素(满足x2 = x的元叫等幂元)证:令x是等幂元,∴x=ex=(x-1x)x=x-1(xx)=x-1x=e。
6.群满足左右消去律。
推论:若G是有限群,则其运算表中的每一行(列)都是G中元的一个排列,而且不同行(列)的排列不同。
7.若群G的元a的阶是n(有限),则a k n|k。
8.群中的任意元素a和他的逆元a-1具有相同的阶。
9.在有限群G中,每一元素具有一有限阶,且阶数至多为|G|。
交换群:若一个群中的任意两个元a、b,都满足ab = ba,则这个群为交换群。
元素的阶:G的一个元素a,能够使a m = e 的最小正整数m叫做a的阶,记为o(a)。
若是这样的m不存在,则称a是无限阶的。
有限群:若一个群的元的个数是一个有限整数,则称这个群为有限群,否则为无限群。
一个有限群的元的个数叫做这个群的阶。
定理:一个有乘法的有限集合G若是满足封闭性、结合律、消去律,那么,对于G的任意两个元a,b来说,方程ax = b 和ya = b§5变换群定理1:假定G是集合A的若干个变换所作成的集合,并且G包含恒等变换ε。
若是对于上述乘法来说G做成一个群,那么G只包含A的一一变换。
环的定义及性质

注意:若 p不为素数,则Zp肯定不是域.
16/20
域中除法及其性质
在域F中可以引入除法,如果a,b ∈F, a ≠ 0
,
则b有被以a除下记性为质b:/a,且b/a=a-1b.
17/20
练习1
1. 在整数环中定义∗和◇两个运算, a,b∈Z 有 a∗b = a+b1, a◇b = a+bab.
以外都是域.
(2) 令2Z={2z | z∈Z},则(2Z,+,·)构成交换环和无 零
因子环. 但不是含幺环和整环.
(3) 设nZ, n2, 则n阶实矩阵的集合Mn(R)关于矩 阵
加法和乘法构成环,它是含幺环,但不是交换环
和
14/20
无零因子环
定理1 环R是无零因子环当且仅当在R中乘法满足
= (a2+ba+ab+b2)(a+b) = a3+ba2+aba+b2a+a2b+bab+ab2+b3 (ab)2 = (ab)(ab) = a2baab+b2
9/20
问题
初等代数中: ab=0 a=0或b=0 n≠0,na=0 a=0
环中: ab=0 a=0或b=0 ? n≠0,na=0 a=0 ?
或可换环.
(2) 若环中乘法 ·存在单位元,则称R是含幺环.
4/20
例1
环的实例
(1) 整数集、有理数集、实数集和复数集关于普通 的
加法和乘法构成环,分别称为整数环Z,有理数环
Q,实数环R和复数环C.
(2) n(n≥2)阶实矩阵的集合Mn(R)关于矩阵的加法和 乘法构成环,称为 n 阶实矩阵环.
高等代数环的定义与性质

一、 环的定义与基本性质 (一) 环的定义:1、 定义1:交换群称为加群(群),其运算叫做加法,记为“+”。
2、 定义2:代数系统),;A (⋅+称为环,若 )(,)是加群;)代数系统);A (⋅适合结合律;)乘法);A (⋅对加法的分配律成立。
3、 例子(1)),;Z (⋅+、),;Q (⋅+、),;R (⋅+、),;C (⋅+都是环,均称为数环。
()、∈,-,则),];i [Z (⋅+也是数环,称之为高斯整环。
()设是任一数环,则关于多项式加法与乘法作成一个多项式环。
()所有模剩余类,则),;Z (n ⋅+是模剩余类环,这里+,]b []a [⋅ ()设(,+)是加群,规定乘法如下:,A b ,a ∈∀,则),;A (⋅+作成一个环,称之为零环。
(二)环的基本性质:()0x a a x =⇒=+。
()a x x a -=⇒=+0。
()c b c a b a =⇒+=+。
()nb na )b a (n +=+。
(为整数) ()na ma a )n m (+=+。
(、为整数) ())na (m a )mn (=。
(、为整数)(),A a ∈∀000=⋅=⋅a a 。
()ab )b (a b )a (-=-=-。
()ab )b )(a (=--。
()ac bc c )a b (,ac ab )c b (a -=--=-。
()j m i nj i n j j m i i b a b a ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1111 。
())ab (n )nb (a b )na (==。
为整数。
()若环中元a 、b 满足ba ab =,则()k n k nk k n nb a C b a -=∑=+0()mn n m n m n m a )a (,a a a ==⋅+。
(、为整数)(三)交换律与单位元:、定义:环R叫做交换环,若,R∀有b,a∈ab=ba定义:环R的元e称为单位元,若,R∀有a∈=ae=eaa约定:环R若有单位元,则记其单位元为,并称R为有的环。
无零因子环的特征

无零因子环的特征
一个环被称为无零因子环,如果它不含有非零的因子,即对于环中的任意元素a和b,如果ab=0,则a=0或b=0。
一个无零因子环的特征可以有以下性质:
1. 加法群:无零因子环一定是一个加法群,因为它满足加法封闭性、结合律、存在加法单位元和加法逆元。
2. 乘法幺元:无零因子环一定存在乘法幺元,即一个元素可以与环中的任意元素乘得自身。
3. 分配律:无零因子环满足左分配律和右分配律,即对于环中的任意元素a、b和c,有a(b+c)=ab+ac和(a+b)c=ac+bc。
4. 可交换性:无零因子环不一定是可交换环,即乘法不一定是可交换的。
总结起来,一个无零因子环的特征是它满足加法群、乘法幺元和分配律,但不一定满足可交换性。
无零因子环的刻画及各种环的例子

第31卷 第2期 吉首大学学报(自然科学版)Vol.31 No.2 2010年3月J ournal of J is ho u Uni ver s i t y (Nat ural Sci ence Editio n)Mar.2010 文章编号:100722985(2010)022*******无零因子环的刻画及各种环的例子3陈祥恩(西北师范大学数学与信息科学学院,甘肃兰州 730070)摘 要:总结了刻画一个环是无零因子环的若干等价条件.给出了各种环的例子,以期更好地理解各种环之间的关系.关键词:环;无零因子环;刻画中图分类号:O175 文献标识码:A环是近世代数中的一个很基本的概念,对环的教学也显得尤为重要.根据笔者的教学实践,首先总结了刻画一个环是无零因子环的若干等价条件,然后给出了各种环的例子,以期更好地理解各种环之间的关系.所用术语如无特别说明请参看文献[1].1 无零因子环的刻画设R 是一个环,a 是R 中的一个非零元.如果存在R 中非零元b 使得ab =0,那么称a 为R 的一个左零因子.同理可定义右零因子.如果一个环没有左零因子,那么称它为无零因子环.先给出刻画一个环是无零因子环的若干充要条件.定理1 设R 是一个环.下述几条彼此等价:1)R 中左消去律成立,即Πa ,b ,c ∈R,一旦ab =ac ,a ≠0,就有b =c;2)R 是无零因子环;3)R 中没有“既是左零因子又是右零因子”的元;4)R 中没有右零因子;5)R 中右消去律成立,即Πa ,b ,c ∈R,一旦ba =ca ,a ≠0,就有b =c;6)R 中任意2个非零元的乘积还是非零元;7)Πa ,b ∈R,一旦ab =0,就有a =0或者b =0.2 各种环的例子图1 各种环的关系先用文氏图给出环、交换环、有单位元的环、无零因子环、整环、除环以及域之间的关系.如图1所示,方框的内部表示所有环的集合.包含数字2,5,6,7,8的圆的内部表示所有交换环的集合.包含数字4,6,7,8,9,10的圆的内部表示所有含单位元的环的集合.包含数字3,5,7,8,9,10的圆的内部表示所有无零因子环的集合.虚线的内部表示所有除环的集合.3收稿日期:2009211206基金项目:国家自然科学基金资助项目(10771091);西北师范大学数学与应用数学专业代数课程(校级及省级)教学团队经费资助()作者简介陈祥恩(652),男,甘肃天水人,西北师范大学数学与信息科学学院教授,主要从事代数与图证研究2009-07:19.为了更好地理解环、交换环、有单位元的环、无零因子环、整环、除环以及域之间的关系,下面给出各种环的例子.用E表示所有能够被2整除的整数所组成的集合,用Z表示整数集.例1 令R1={a bc d|a,b,c,d∈E}.R1关于矩阵的加法、乘法作成环.R1不是交换环,不是有单位元的环,也不是无零因子环.例2 设(Z,+)是整数加群.对Πa,b∈Z,令a.b=0,则(Z,+,.,)是交换环,但不是有单位元的环,也不是无零因子环.例3 令R2={a+b i c+d i-c+d i a-b i|a,b,c,d∈E}.R2关于矩阵的加法、乘法作成环.R2不是交换环,不是有单位元的环,但它是无零因子环.例4 设M n(F)表示数域F上全体n(>1)阶方阵所构成的集合.M n(F)关于矩阵的加法、乘法作成环.M n(F)是有单位元的环,但它不是交换环,不是无零因子环.例5 E关于整数的加法、乘法构成一个环.它是交换环、无零因子环,但它不是有单位元的环.例6 设n(>1)是合数,则模n的剩余类环Z n是交换环、有单位元的环,但它不是无零因子环.例7 设整数环Z是整环,但它不是域.例8 设p(>1)是素数,则模p的剩余类环Z p是域.例9 四元数除环是除环,但不是域[1].例10 令R3={a+b i c+d i-c+d i a-b i|a,b,c,d∈Z}.R3关于矩阵的加法、乘法作成环.R3是有单位元的环、无零因子环,但它不是交换环,不是除环.参考文献:[1] 张禾瑞.近世代数基础[M].第1版.北京:高等教育出版社,1978.Char acter iza tion f or Rings Without Zer o Divisor andExa mples of V ar ious RingsC H EN X ia ng2en(College of Mathematics a nd Infor mation Science,Nort hwest Normal Univer sity,La nzhou730070,China)Abstract:The equivalence condi tions for charact erizing ri ngs wit hout zero divi sor are summarized a nd t he exa mple s of va rious rings are gi ven i n t hi s paper.K ey w or ds:ri ng;ri ng wit hout zero di vi sor;charact erizat io n(责任编辑 向阳洁) 2吉首大学学报(自然科学版)第31卷。
近世代数-环和域

近世代数环和域环和域无零因子环的特征数同态和理想子环极大理想和费尔马定理定义13.1.1设R是一个非空集合,R上有两个代数运算,一个称为加法,用“+”表示,另一个称为乘法,用“◦”表示。
如果下面三个条件成立:1(R,+)是一个Abel群。
2(R,◦)是一个半群。
3乘法对加法满足左右分配律:对∀a,b,c∈R有a◦(b+c)=a◦b+a◦c(b+c)◦a=b◦a+c◦a则称代数系(R,◦,+)是一个环。
Definition(定义13.1.2)如果环(R,◦,+)的乘法满足交换律,即对∀a,b∈R有a◦b=b◦a,则称(R,◦,+)是一个交换环或可换环。
Example(例13.1.1)整数集合Z对通常的加法和乘法构成一个环(Z,+,·),这个环是一个交换环。
Example(例13.1.2)有理数集Q、实数集R和复数集C对通常的加法和乘法分别构成交换环(Q,+,·)、(R,+,·)和(C,+,·)。
Example(例13.1.3)设M n为所有n×n实矩阵的集合,则M n对矩阵的加法和乘法构成一个非交换环(M n,+,·),这个环称为n阶矩阵环。
Definition(定义12.1.3)环(R,◦,+)称有限换环,如果R是非空有限集合,即|R|<+∞。
Example(例13.1.4)文字x的整系数多项式之集设Z[x]对多项式的加法和乘法构成一个交换环。
Example(例13.1.5)设S={0},则S对数的通常加法和乘法构成一个环,称为零环,它仅有一个元素。
Example(例12.1.6)有限环的一类重要例子是模n剩余类环(Z n,+,·),其中Z n是全体整数集合Z对模n的同余类之集Z n={[0],[1],···,[n−1]}在环(R,+,◦)中,加法的单位元用0表示,并称为R的零元(素)。
对∀a∈R,a对加法的逆元素记为−a,并称为a的负元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 多项式环
基本概念:多项式、未定元.
重点、难点: 未定元的概念、未定元的存在性.
本节中的环均指有单位元的交换环.设R 是环R '的子环,且二者有相同的单位元.
定义3.4.1 设'R α∈,记集合0101[]{|,,,,}n
n n R a a a a a a R n ααα=+++∈∈L L ?,
在[]R α中规定运算如下:
01010011010101()()()()());()(),.
n n n n n n n n m n n m n k i j
i j k
a a a
b b b a b a b a b a a a b b b
c c c c a b αααααααααααα+=+++++++=+++++++++⋅+++=+++=
∑L L L L L L 其中则[]R α构成一个环,称之为R 上的关于α的多项式环,称[]R α中的元素为R 上的关于α的多项式.
注1 []R α是R '中包含R 和α的最小子环.
注2 与高等代数中类似,对每个()[]f R αα∈,可以定义()f α的次数、系数、首项
系数等.
值得注意的是,可能存在不全为零的元素01,,,m a a a R ∈L ,使得
010m m a a a αα+++=L .例如,在i ∈£,但2110i +=.又如,若R α∈,则
1(1)0αα+-=.于是有下面的概念.
定义 3.4.2 设'x R ∈.若不存在不全为零的元素01,,,m a a a R ∈L ,使得
010,m m a a x a x m +++=∀∈L ?,则称x 是环R 上的一个未定元.称R 上关于x 的多项
式是为R 上的一元多项式.
自然会问:环R 上的未定元是否存在?
一般而言,对于给定的环R ', R '中未必含有环R 上的未定元.例如,环[]i ¢中就不含有¢上的未定元.但是有
定理3.4.1 假设R 是一个有单位元的交换环,则一定存在环R 上的未定元x ,因此 R 上的一元多项式环[]R x 是存在的.
上述结果可以推广到多个的情形,即有
定理3.4.2 假设R 是一个有单位元的交换环,n 为任意正整数,则一定存在环R 上的n 个无关的未定元1,,n x x L ,因此 R 上的多元多项式环1[,,]n R x x L 是存在的.
(其中无关的意思是指:
1
1111100,n n n n n
i i i i n i i i i i i a
x x a a R =⇔=∀∈∑L L L L L .
) 定理3.4.3 假设1[,,]n R x x L 和1[,,]n R ααL 都是有单位元的交换环R 上的多元多项式环,若1,,n x x L 是R 上的n 个无关的未定元,则一定存在环的同态满射
1111[,,][,,];(,,)(,,)n n n n R x x R f x x f αααα→L L L a L .
作业:
Page 109 第1题,第2题。