2019-2020年九年级下学期数学入学考试试卷(无答案).docx
2019-2020年九年级下学期期初考试数学试题

2019-2020年九年级下学期期初考试数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分) 1.实数的倒数是( ▲ )A .B .C .2D .2.已知⊙O 的半径为3 cm ,点P 到圆心O 的距离为2 cm ,则点P 在( ▲ ) A .在⊙O 外 B .在⊙O 上 C .在⊙O 内 D .无法确定 3.若是关于x 的方程的一个根,则m 的值是( ▲ )A .0B .1C .2D .-2 4.如图,点A 、B 、C 是⊙O 上三点,∠AOC=130°,则∠ABC =( ▲ ) A .50° B .60° C .65° D .70°5.下列事件中,属于随机事件的是( ▲ )A .抛出的篮球会下落B .从只装有黑球、白球的袋中摸出红球C .367人中至少有2人是同月同日出生D .买一张体育彩票,中500万大奖 6.某公司10名职工的5月份工资统计如下,则其中众数和中位数分别是( ▲ )工资(元) xx 2200 2400 2600 人数(人)1342A .2400、2400B .2400、2300C .2200、2200D .2200、2300 7.已知圆锥的底面半径为3 cm ,母线长为5 cm ,则圆锥的侧面积是( ▲ )A .20 cm 2B .20π cm 2C . 15 cm 2D .15π cm 28.如图,抛物线的对称轴是直线,且经过点P (3,0),则的值为( ▲ ) A .-1 B .0 C . 1 D . 2二、填空题(本大题共10小题,每小题3分,共30分) 9. 当x 满足 ▲ 时,分式在实数范围内有意义.10.一元二次方程x 2=3x 的根是 ▲ .(第4题图)(第8题图)y –1 3 31O D B C A11.甲、乙两人进行射击比赛,每人10次射击的平均成绩都是8.5环,方差分别是,,则射击成绩较稳定的是 ▲ . 12.抛物线的顶点坐标为 ▲ .13.关于x 的方程有两个相等的实数根,则 ▲ .14.某小区xx 年底屋顶绿化面积为xx 平方米,计划xx 年底屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是 ▲ .15.若,则代数式 值为 ▲ .16.如图,等腰△ABC 中,AB=AC ,∠BAC=50°,以AB 为直径的圆O 与边AC 交于点D ,则∠DBC 的度数为 ▲ 度.17.如图,边长为4 cm 的正方形ABCD ,以点B 为圆心、BD 为半径画弧与BC 边的延长线交于点E ,则图中阴影部分的面积为 ▲ cm 2.18.如图,将正六边形ABCDEF 放置在直角坐标系内,A (﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过xx 次翻转之后,点C 的坐标是 ▲ .三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤) 19.(8分)(1)计算: (2)解方程:20.(8分)若,先化简,后求出的值. 21.(8分)如图,已知圆O 中,AB=CD ,连结AC 、BD .求证:AC=BD .E D C B A (第17题图) O D CB A (第16题图) (第18题图)(第22题图)墙D CBA 生物园22.(8分)如图,学校打算用长为16 cm 的篱笆围成一个长方形的生物园饲养小兔,生物园一面靠墙(篱笆只需围三面,AB 为宽);(1)写出长方形的面积y (m 2)与宽x (m )之间的函数关系式. (2)当x 为何值时,长方形的面积最大?最大面积为多少?23.(10分)为了解某市去年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A :40分;B :39-37分;C :36-34分;D :33-28分;E :27-0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次抽样调查中,抽取的学生人数为多少人?并将条形统计图补充完整; (2)这次抽样调查中,成绩的中位数应属哪一组?(3)如果把成绩在34分以上(含34分)定为优秀,估计该市去年9000名九年级学生中,体育成绩为优秀的学生人数有多少人?24.(10分)如图,均匀的正四面体的各面依次标有1、2、3、4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字 1 2 3 4 出现的次数16201410(1)计算上述试验中“4朝下”的频率是 ▲ ;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是”的说法正确吗? (3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率. 25.(10分)如图,抛物线为二次函数的图象.(1)抛物线顶点A 的坐标是 ▲ ;(2)抛物线与x 轴的交点的坐标是 ▲ ; (3)通过观察图象,写出>0时x 的取值范围.1 34010组70 60 503020 A B C D E 学业考试体育成绩条形统计图 0学业考试体育成绩(分数段)扇形统计图E 5%D 15%C 20%B A 35%学业考试体育成绩扇形统计图26.(10分)风驰汽车销售公司12月份销售某型号汽车,进价为30万元/辆,售价为32万元/辆,当月销售量为x辆(x≤30,且x为正整数),销售公司有两种进货方案供选择:方案一:当x不超过5时,进价不变;当x超过5时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆(比如,当x=8时,该型号汽车的进价为29.7万元/辆);方案二:进价始终不变,当月每销售1辆汽车,生产厂另外返还给销售公司1万元/辆.(1)按方案一进货:①当x=11时,该型号汽车的进价为▲ 万元/辆;②当x>5时,写出进价y(万元/辆)与x(辆)的函数关系式;(2)当月该型号汽车的销售量为多少辆时,选用方案一和方案二销售公司获利相同?(注:销售利润=销售价-进价+返利).MN MQ NM 27.(12分)问题情境: 在学完2.4节圆周角之后,老师出了这样一道题:如图1,已知点A 为∠MPN 的平分线PQ 上的任一点,以AP 为弦作圆O 与边PM 、PN 分别交于B 、C 两点,连结AB 、BC 、CA ,形成了圆O 的内接△ABC.小明同学发现△ABC 是一个等腰三角形,理由是∠ABC=∠APC,∠ACB=∠APB,又由角平分线得∠APC=∠APB,所以∠ABC=∠ACB,AB=AC 得证.请你说出小明使用的是圆周角的哪个性质: ▲ (只写文字内容).深入探究:爱钻研的小慧却画出了图2,与边PN 的反向延长线交于点C ,其它条件不变,△ABC 仍是等腰三角形,请你写出证明过程.拓展提高:妙想的小聪提出如图3,如果圆O 与边PN 相切于点C (与P 点已重合),其它条件不变,△ABC 仍是等腰三角形吗?若是,请写出证明过程;若不是,请说明理由.28.(12分)已知抛物线与x轴相交,其中一个交点A(4,0),与y轴的交点B(0,2).(1)求b、c的值;(2)如图1,若将线段AB绕A点顺时针旋转90°至AD,求D点的坐标,并判断D点是否在此抛物线上;(3)在(2)中条件不变的情况下,如图2,点P为x轴上一动点,过P点作x轴的垂线分别交BD、BA于M、N,交抛物线于Q,当P点从原点O出发,以每秒1个单位的速度沿x轴向右移动t秒时(0<t<4),此垂线也在向右平移.①当t为何值时,线段MQ的长度最大;②当t为何值时,以B、P、Q为顶点构成的三角形的面积与△BMN的面积相等.xx/xx 学年度第二学期期初学情调研九年级数学答题纸二、填空题(共10小题,每题3分,共30分)三、解答题19.(8分)(1) (2)20.(8分)学校 班级 姓名 考试号_______________……………………………………装…………………………订……………………………线…………………………………(第22题图)墙D CB A 生物园学业考试体育成绩条形统计图M QNMxx/xx学年度第二学期期初学情调研九年级数学答案9、10、11、乙12、13、914、20% 15、6 16、25 17、 18、三、解答题:(共96分)19、解:(1)原式=1-1+3 ……(3分)=3 ……(4分)(2)……(8分)20、解:化简得,所求式=……(6分)因为,所以,所求式=3……(8分)21、解:∵AB=CD ∴弧AB=弧CD ∴弧AB+弧AD=弧CD +弧AD即∴弧BD=弧AC ∴BD=AC ……(8分)22、解:(1)……(4分)(2)当x=4时,面积最大为32 m2……(8分)23、解:(1)200人,条形图补充正确(高度为50)……(4分)(2)B组……(7分)(3)9000×80﹪=7200人……(10分)(2)不正确……(4分)(3)图对……(8分)……(10分)25、解:(1)(2,-4)…(2分)(2)(0,0)、(4,0)…(6分)(3)x>4或x<0 …(10分)26、解:(1)①29.4 ……(2分)②;……(6分)(2)……(8分)解得:x1=0(舍去),x2=15.答:该月售出15辆汽车.……(10分)27、解:问题情境:同弧所对的圆周角相等……(2分)深入探究:∵∠ABC+∠APC=180°,∠APN+∠APC=180°,∴∠ABC=∠APN.∵PA 平分∠MPN,∴∠APB=∠APN,∴∠ABC=∠APB.而∠APB=∠ACB,∴∠ABC=∠ACB,∴AB=AC.……(7分)拓展提高:仍是等腰三角形.……(8分)作直径CH,连结AH,∵CH为直径,∴∠AHC=90°,∴∠H+∠ACH=90°.∵CN与圆O相切,∴CN⊥CH ,∴∠ACN+∠ACH=90°,∴∠ACN=∠H .∵∠ABC=∠H, ∴∠ACN=∠ABC. ∵PA 平分∠MPN,∴∠ACB=∠CAN .∴∠ABC=∠ACB,∴AB=AC. ……(12分)28、解:(1)⎪⎩⎪⎨⎧=++=++04320200c b c ……(1分)……(3分)(2)过点D 作DH⊥x 轴于点H ,易证△BOA≌△AHD,D (6,4)……(6分) 当x=6时,代入中得y=4,所以D 点在抛物线上(7分) (3)①BD:,所以当x=t 时,,,MQ===,当t=3时,MQ 最大.……(9分)②S △BQP =S △BMN ,就是QP=MN ,以抛物线与x 轴的另一交点(,0)为界分类: (Ⅰ)0<t < , = ,,得,另一解,舍去……(11分)(Ⅱ)≤t<4,=,,方程无实数根.(12分)NM。
2019-2020年九年级下学期开学考试数学试卷

2019-2020年九年级下学期开学考试数学试卷一、选择题:(本大题共有8小题,每小题3分,共24分)1. 若一个数的相反数为6,则这个数为 ( ▲ ) A .B .±6C . 6D .-62. 下列运算中,计算结果正确的是 ( ▲ ) A . B . C . D .3. 某市目前汽车拥有量约为3 100 000辆.则这个数用科学记数法表示为( ▲ ) A.31×105辆 B. 0.31×107辆 C. 3.1×106辆 D. 3×106辆 4. 一元一次方程的解是 ( ▲ ) A. B. C . D .5.抛物线 的顶点坐标为 ( ▲ )A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1) 6.已知是等腰直角三角形的一个锐角,则的值是 ( ▲ ) A.B. C. D.7. 如图是抛物线y=ax 2+bx+c 的大致图像,则一元二次方程ax 2+bx+c =0 ( ▲ ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定8. 如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动,设∠APB=y(单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( ▲ )二、填空题:(本大题共10小题,共30分.) 9.一元一次不等式3x-2<0的解集为_____▲______. 10. 分解因式:3x-12= ▲ .11.如图,是二次函数y=3x 2的图像,把该图像向左平移1个单位,第7题图O xy再向下平移2个单位,所得的抛物线的函数关系式为 ▲ . 12.已知点(a ,3)是函数y=的图像上一点,则a=___▲___.13.在某次体育考试中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下:44,45,42,48,46,47,45.则这组数据的极差为 ▲ . 14. xx 年年底,NBA 运动员科比宣布将在本赛季结束后退役,一代名将即将告别喜欢他的无数球迷.如图是科比在一场比赛中正在投篮,已知该场比赛中,科比两分球和三分球一共投进了25个,两项共得57分.如果设他分别投中了x 个两分球和y 个三分球,可得二元一次方程组 ▲ .15.△ABC 中,∠C=90°,AB=8,sinA=,则BC 的长= ▲ . 16.已知一面积为6πcm 2的扇形的弧长为πcm,则该扇形的半径= ▲ . 17.已知B 点的坐标为(-1,3),将B 点绕坐标原点顺时针旋转90°,则点B 的对应点D 的坐标为 ▲ .18.已知二次函数y 1,y 2,y 3,…y n 的最小值分别为a 1,,a 2,a 3,…a n ,若y 1的解析式为:y 1=x 2-2x+1,并且满足:=-, =-,=-…依次类推,则a xx = ▲ .三、解答题:(本大题共有10小题,共96分) 19.(本小题5分)计算: -20.(本小题7分)先化简,再求值:,其中.21. (本小题10分)为响应我市创建国家文明城市的号召,我校举办了一次“包容天下,崛起江淮”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀.这次竞赛中甲、乙两组学生(各10名学生)成绩的条形统计图如下.(1)补充完成下列的成绩统计分析表:第17题图第11题图第14题图(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 ▲ 组学生;(填“甲”或“乙”)(3)从两个小组的整体情况来看, ▲ 组的成绩更加稳定一些.(填“甲”或“乙”) (4)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.22.(本小题10分)在一个不透明的布袋中装有5个完全相同的小球,分别标有数字0,1,2,﹣1,﹣2.(1)如果从布袋中随机抽取一个小球,小球上的数字是正数的概率为 ▲ ;(2)如果从布袋中随机抽取一个小球,记录标有的数字为x ,放回后搅匀,再从袋中随机抽取一个小球,记录标有的数字为y ,记点M 的坐标为(x ,y ),用画树状图或列表的方法列举出点M 所有可能的坐标,并求出点M 恰好落在第二像限的概率.23.(本小题10分)星期天的早晨,小明步行从家出发,到离家1050m 的书店买书.出发1分钟后,他到达离家150m 的地方,又过一分钟后,小明加快了速度.如图,是小明从家出发后,小明离家的路程y (米)与他行驶时间x (分钟)之间的函数图像.根据图像回答问题: (1)直接写出点A 的坐标,并求线段AB 所在的直线的函数关系式.(2)求小明出发多长时间后,离书店还剩250米的路程?24.(本小题8分)如图,某大楼AD 的高为10米,远处有一塔BC ,某人在楼底A 处测得塔顶B 处的仰角为60º,爬到楼顶D 点测得塔顶B 点的仰角为30º,求塔BC 的高度.ABB25. (本小题10分)如图,在Rt△ABC 中,∠C=90°,∠ABC 的平分线交AC 于点D ,点O 是AB 上一点,⊙O 过B 、D 两点,且分别交AB 、BC 于点E 、F .(1)试说明:AC 是⊙O 的切线;(2)已知AB=10,BC=6,求⊙O 的半径r .26.(本小题10分)如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.(1)当通道宽a 为10米时,花圃的面积= ▲ ; (2)通道的面积与花圃的面积之比能否恰好等于3:5?如果可以,试求出此时通道的宽.27.(本小题12分)定义:数学活动课上,兵兵老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A 、B 、C 在格点(小正方形的顶点)上,请用两种不同的方法再画出一个格点D ,使四边形ABCD 为对等四边形 ;(2)如图2,在圆内接四边形ABCD 中,AB 是⊙O 的直径,AC=BD .试说明:四边形ABCD 是对等四边形;(第27题图2)(第27题图1)(3)如图3,点D ,B 分别在x 轴和y 轴上,且D (8,0),cos ∠BDO=,点A 是边BD 上的一点,且AD ∶AB=4:1.试在x 轴上找一点C ,使四边形ABOC 为对等四边形,请直接写出所有满足条件的C 点坐标.28.(本小题14分)如图,在△ABC 中,∠C =90º,AC=4,AB=5,点P 从点A 出发,以每秒4个单位长度的速度沿A -C -B 运动,到点B 时停止.当点P 不与△ABC 的顶点重合时,过点P 作其所在的直角边的垂线,交AB 于点Q ,再以PQ 为斜边作等腰直角三角形△PQR ,使点R 与△ABC 的另一条直角边在PQ 的同侧.设点P 运动的时间为t (秒).(1)BC 的长= ▲ ,AB 边上的高= ▲ . (2)当点P 在AC 上运动时,①请用含有t 的代数式表示线段PQ 的长;②设△PQR 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.(3)在点P 的运动过程中,△PQR 的直角顶点R 是否有可能恰好落在△ABC 的某条高上?如果可以,直接写出相应的t 值,如果不可能,请说明理由.二、填空题:(本大题共有10小题,每小题3分,共30分)9.x<2/3 10.3(x-4) 11. 12.-2 13.6 14. 15.6 16.12CPRQBA(第28题图)17.(3,1) 18.-1008三、解答题:(本大题共有10小题,共96分)19.3 ------5分 20.------7分21.6,8,甲,乙,答案不唯一每小题2分22.0.4 ------3分,列表或数状图4分,3分23.(1)A(2,300)---2分,y AB=300x-300 ---4分(2) ------4分24.BC=15 ---8分25.(1)证明略--5分(2)--5分26.(1)800—3分(2)5 ---7分27.(1)图略—4分(2)证明略4分(3)(2,0)或(,0)4分28.(1)3 ------2分, ------2分;(2)①3t ---2分,②当时,.当时,. ------4分;(3),,,.-----4分。
2019-2020年九年级数学下学期第一次联考试题

2019-2020年九年级数学下学期第一次联考试题提示:请将答案填写在答题卡上,只交答题卡一、选择题:(本大题共10小题,每小题4分,满分40分) 1、计算-6sin30°的相反数等于(A )3 (B )33(C )32(D )232、△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A .1:2B .1:3C .1:4D .1:163、抛物线y =2x 2﹣2x +1与坐标轴的交点个数是( )A .0B .1C .2D .3.4、如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .A.23 B. 33 C. 43 D.63 5、将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y6、.平面直角坐标系xOy 中,已知)0,3(-A 、)0,9(B 、)3,0(-C 三点,),3(m D 是一个动点,当ACD ∆周长最小时,ABD ∆的面积为A .6B .9C .12D .15 7、宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形。
我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形DCGHC .矩形EFGHD .矩形EFCD8、如图,在⊙O 中,=,∠ADC =20°,则∠AOB 的度数是( )A . 40°B .30°C .20°D .10°9、在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)10、定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( ) A .命题(1)与命题(2)都是真命题 B .命题(1)与命题(2)都是假命题 C .命题(1)是假命题,命题(2)是真命题 D .命题(1)是真命题,命题(2)是假命题二、填空题:(本大题共4小题,每小题5分,满分20分)11、如图,⊙O 的半径为6,△ABC 是⊙O 的内接三角形,连接OB 、O C .若∠BAC 与∠BOC 互补,则弦BC 的长为12、已知点(m-1,1y ),(m-3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”)13、能完全覆盖边长为12的等边三角形的最小圆的半径为_______________.14、二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,下列结论:(1)4a +b =0;(2)9a +c >3b ;(3)8a +7b +2c >0;(4)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号)三、(本大题共2小题,每小题8分,满分16分) 15、计算:2cos 30°+(﹣1)2﹣|2﹣|.16、先化简,再求值:)2()1)(3(-+-+a a a a ,其中045tan =a四、(本大题共2小题,每小题8分,满分16分)17、如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比为2.、18、如图,在△ABC中,AB=5,AC=7,∠B=60º,求BC的长.五、(本大题共2小题,每小题10分,满分20分)19、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1.2,AC=3时,求BF的长.20、如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.六、(本题满分12分)21、如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)七、(本题满分12分)22、九年级某班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.八、(本题满分14分)23、如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C 两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.数学参考答案一、选择题:1、A2、C3、C4、A5、D6、C7、B8、A9、D 10、 C 二、填空题:11、36 12、> 13、34 14、()()()531 三、解答题: 15、解:原式=221232+-+⨯………4分 =3 +2-1 ………8分16、解:原式=222+33+223a a a a a a ---=-………4分 ∵145tan 0==a1323123222-=-=-⨯=-∴a ………………8分17、解:解:(1)如图所示:△A 1B 1C 1即为所求;………………3分(2)如图所示:△A 2B 2C 2即为所求.………………8分18、解: 过A 点作AD ⊥BC 于D , 在Rt △ABD 中,AD =AB ·sin60°=5×23=325. ……(2分) BD =AB ·cos60°=5×2521= ……(5分) 在Rt △ADC 中,DC =22223257⎪⎭⎫⎝⎛-=-AD AC =211. ……(7分)所以,BC =DC +BD =25211+=8. ……(8分)19、(1)证明:∵AD⊥BC,BE⊥AC, ∴∠BDF=∠ADC=∠BEC=90°, ∴∠C+∠DBF=90°,∠C+∠DAC=90°, ∴∠DBF=∠DAC,∴△ACD∽△BFD. …………………5分(2)∵tan∠ABD=1,∠ADB=90°∴=1.2,∵△ACD∽△BFD,∴==1.2,∵AC=3∴BF=2.5.…………………10分20、(1)过点A 作AE ⊥x 轴于点E ,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.……………5分(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.……………10分21、(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;……………5分(2)B点坐标为(5,0),C点坐标为(0,﹣5);……………7分(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.……………12分22、(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b ∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由数据信息可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.……………6分(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.……………10分(3)该商品在销售过程中,共有24天每天的销售利润不低于5600元.……………12分23、解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,……………2分(2)证明方法不唯一,以下供参考∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;……………6分(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),……………10分(4)点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).…14分。
湖南省临澧县2019-2020学年九年级下学期入学考试数学试题

湖南省临澧县2019-2020学年九年级下学期入学考试数学试题学校:___________姓名:___________班级:___________考号:___________1.下列计算正确的是A .235x y xy +=B .()2239m m +=+C .()326xy xy =D .1055a a a ÷= 2.抛物线22y x 2x m 2=-++(m 是常数)的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2 B .b>-2 C .b<2 D .b<-24.不等式组10251x x -≤⎧⎨-<⎩的解集为( ) A .x <﹣2 B .x ≤﹣1 C .x ≤1 D .x <3 5.若关于x 的方程2kx 2x 10+-=有两个不相等的实数根,则k 的取值范围是( ) A .k 1>- B .k 1<- C .k 1≥-且k 0≠ D .k 1>-且k 0≠6.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是( )A .B .C .D . 7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A .45B .35C .25D .158.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (小时)的对应关系如图所示,下列叙述正确的是( )A .甲乙两地相距1200千米B .快车的速度是80千米∕小时C .慢车的速度是60千米∕小时D .快车到达甲地时,慢车距离乙地100千米9.若|p+3|=0,则p=____.10.第二象限内的点()P x,y 满足x 5=,2y 4=,则点P 的坐标是______.11.分解因式:322a 8a 8a -+=_______.12.分式方程21332x x +=-的解是________. 13.(2017江苏省苏州市)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是______环.14.如图,AB 是O 的直径,BC 是弦,连结OC ,过点C 的切线交BA 的延长线于点D ,若2OC CD ==,则BC 的长是______________(结果保留π).15.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形(阴影部分),则此扇形的面积为_____m 2.16.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形⋯⋯;则按此规律,第五个图形有______个正方形.17.计算:2|﹣(12)﹣1. 18.先化简,再求值:222444142x x x x x x -++⎛⎫-÷- ⎪-+⎝⎭,其中2210x x +-=. 19.小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m 和2000m ,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.20.某花卉中心销售一批兰花,每盆进价 100 元,售价 140 元,平均每天售出 20 盆.春节来临之际,为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价 1 元,每天可多售出 2 盆.要使得每天利润达到 1200元,则每盆兰花售价应定为多少元? 21.如图7,88⨯的正方形网格纸上有扇形OAB 和扇形OCD ,点O A B C D ,,,,均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为1r ;若用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面半径为2r ,求12r r 的值.22.如图,在平行四边形ABCD 中,,30,4AB AD D CD <∠=︒=,以AB 为直径的O 交BC 于点E ,求阴影部分的面积.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.请根据图表中提供的信息,解答下列问题:(1)图表中m=________,n=________;(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为________人;(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.25.某店因为经营不善欠下68400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收入=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?26.已知,如图1,抛物线23y ax bx =++与x 轴交于点B 、C ,与y 轴交于点A ,且AO CO =,4BC =.(1)求抛物线解析式;(2)如图2,点P 是抛物线第一象限上一点,连接PB 交y 轴于点Q ,设点P 的横坐标为t ,线段OQ 长为d ,求d 与t 之间的函数关系式;(3)在(2)的条件下,过点Q 作直线l y ⊥轴,在l 上取一点M (点M 在第二象限),连接AM ,使AM PQ =,连接CP 并延长CP 交y 轴于点K ,过点P 作PN l ⊥于点N ,连接KN 、CN 、CM .若45MCN NKQ ∠+∠=︒时,求t 值.参考答案1.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A 、原式不能合并,不符合题意;B 、原式=m 2+6m +9,不符合题意;C 、原式=x 3y 6,不符合题意;D 、原式=a 5,符合题意,故选:D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.A【解析】【详解】∵y=x 2-2x+m 2+2=(x-1)2+(m 2+1),∴顶点坐标为:(1,m 2+1),∵1>0,m 2+1>0,∴顶点在第一象限.故选A .3.D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.4.C【解析】解:10251x x -≤⎧⎨-<⎩①②解不等式①得:x ≤1,解不等式②得:x <3,∴不等式组的解集为x ≤1,故选C .5.D【解析】【分析】 根据的意义得到k 0≠且()44k 10=-⨯->,然后求出两不等式的公共部分即可.【详解】解:x 的方程2kx 2x 10+-=有两个不相等的实数根,k 0∴≠且()44k 10=-⨯->,解得k 1>-,k ∴的取值范围为k 1>-且k 0≠.故选D .【点睛】本题考查了一元二次方程()2ax bx c 0a 0++=≠的根的判别式2b 4ac =-:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.也考查了一元二次方程的定义.6.B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.7.B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.8.C 【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式. 9.﹣3【解析】【分析】【详解】解:根据零的绝对值等于0解答:∵|p+3|=0,∴p+3=0,解得p=﹣3.10.(-5,2)【解析】【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】解:∵|x|=5,y 2 =4,∴x=±5,y=±2,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=-5,y=2,∴点P的坐标为(-5,2).故答案为:(-5,2).【点睛】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(-,+). 11.()22a a 2-【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.【详解】先提取公因式2a 后继续应用完全平方公式分解即可:()()23222a 8a 8a 2a a 4a 42a a 2-+=-+=-.12.x =1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:4x +2=9﹣3x ,解得:x =1,经检验x =1是分式方程的解.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.8【解析】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为8.14.32π 【解析】【分析】根据切线的性质和OC CD =证得OCD ∆是等腰直角三角形,证得135COB ∠=︒,然后根据弧长公式求得即可.【详解】解:CD 是O 的切线,OC CD ∴⊥,2OC CD ==,OCD ∴∆是等腰直角三角形,45COD ∴∠=︒,135COB ∴∠=︒,∴BC 的长135231802ππ⨯==. 故答案为:32π. 【点睛】 本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,切线的性质的应用是解题的关键.15.2π 【解析】【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,根据扇形面积公式求出即可.【详解】解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC =90°, ∴AC 为直径,即AC =2m ,AB =BC (扇形的半径相等),∵AB 2+BC 2=22,∴AB =BC m , ∴阴影部分的面积是9023602ππ⨯=(m 2), 故答案为2π.【点睛】本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解此题的关键. 16.55【解析】【分析】由已知图形得出第n 个图形中小正方形的个数为222212(n 1)n ++⋯+-+,据此可得.【详解】解:由题意知,第五个图形中正方形有222221234555(++++=个),故答案为:55.【点睛】本题主要考查图形的变化规律,解题的关键是掌握第n 个图形中小正方形的个数为222212(n 1)n ++⋯+-+.17.﹣【解析】分析:根据实数运算顺序进行运算即可.详解:原式22,==-=-点睛:考查实数的混合运算,涉及二次根式的乘法,绝对值,负整数指数幂,熟练掌握每个知识点是解题的关键.18.242x x+,4 【解析】【分析】 先利用分式的运算法则化简分式可得原式242x x=+,再由2210x x +-=得221x x +=,代入计算即可.【详解】解:原式22422x x x x x x -++=--+ 242x x x x ++=-+ 242x x=+, ∵2210x x +-=,∴221x x +=∴原式441==. 【点睛】本题主要考查分式的化简求值,熟练掌握分式的运算顺序和法则及是解题的关键. 19.小明的速度是75米/分,小刚的速度是100米/分.【解析】【分析】设小明的速度为3x 米/分,则小刚的速度为4x 米/分,根据时间=路程÷速度结合小明比小刚提前4min 到达剧院,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】设小明的速度为3x 米/分,则小刚的速度为4x 米/分,根据题意得:20001200443x x-=, 解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.每盆兰花售价为120元.【解析】试题分析:利用兰花平均每天售出的数量×每盆盈利=每天销售这种兰花利润列出方程解答即可.试题解析:设每盆兰花售价定为x 元,可以达到1200元的利润,则据题意得, (x-100)[20+2(140-x)]=1200,解得x=120或x=130,因为为扩大销量,增加利润,所以x=130舍去答:要使刚刚利润达到1200元,每盆兰花售价为120元。
2019-2020年九年级下学期初中学业考试数学试题

2019-2020年九年级下学期初中学业考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔毕业学校、姓名、考试号、座号填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能写在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案.4.答案不能使用涂改液、胶带纸、修正带修改.不按以上要求作答的答案无效.不允许使用计算器.第Ⅰ卷(选择题 共48分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分. 1.计算的结果是A .B .C .D . 2.下列无理数中,在-1与2之间的是A .B .C .D .3.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =A .1∶2B .2∶3C .1∶3D .4∶9(第3题)B5.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2)6A . B. C . D .7.下面是某小区居民家庭的月用水量情况统计表:从中任意抽出一个家庭进行用水情况调查,则抽到的家庭月用水量为6吨的概率为 A . B . C . D .8.小强骑自行车去郊游,9时出发,15时返回.如图表示他距家的距离y (千米)与相应的时刻x (时)之间的函数关系的图象.根据这个图象,小强14时距家的距离是A.13B.14C.15D.169. 如图,AB 是⊙O 的直径,C 、D 是圆上两点,∠BOC =70°,则∠D 等于A .25°B .35°C .55°D .70°10.如图,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离CE=8m ,测得旗杆的顶部A 的仰角∠ECA=30°,旗杆底部B 的俯角∠ECB=45°,那么,旗杆AB 的高度是A .B .C .D .11. △ABC 的周长为30 cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4 cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm12. 已知二次函数 的图象如图,则下列结论:(第9题)①a ,b 同号;②当x =1和x =3时,函数值相等; ③4a +b =0;④当y =-2时,x 的值只能为0, 其中正确的个数是 A .1个 B .2个 C .3个 D .4个第Ⅱ卷(非选择题 共72分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分. 13. 分解因式:14. xx 年我市3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ℃,中位数是 ℃.15.用计算器将0.000015开方,将得到的结果再开方,再将得到的结果开方,这样依此进行开方运算,当开方运算进行到10次时,计算器显示的结果为 . 16. 二次函数的最小值17. 如图,菱形ABCD 的边长为2,∠ADC =120°,弧CD 是以点B 为圆心BC 长为半径的弧.则图中阴影部分的面积为 (结果保留).三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分5分).解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. .19.(本题满分5分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F . 求证:△ABE ≌△CDFABCADE F (第19题)20.(本题满分8分)九年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了20分钟,其余的学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑自行车学生速度的2倍,求骑车学生每小时走多少千米?21.(本题满分8分)某区对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A.使用清洁能源B.汽车限行C.绿化造林D.拆除燃煤小锅炉调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有人.(2)请你将统计图1补充完整.(3)已知该区人口为xx00人,请根据调查结果估计该市认同汽车限行的人数.22.(本题满分8分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G 依次连结,得到四边形DEFG.(1)求证:四边形DEFG 是平行四边形;(2)如果∠OBC =45°,∠OCB =30°,OC =4,求EF 的长.23.(本题满分9分)二次函数的图象经过点A (﹣1,4),B (1,0),经过点B ,且与二次函数交于点D . (1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.24.(本题满分9分)△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,将△AHC 绕点H 逆时针旋转90°后,点C 的对应点为点D ,直线BD 与直线AC 交于点E ,连接EH .(1)如图1,当∠BAC 为锐角时,①求证:BE ⊥AC ; ②求∠BEH 的度数; (2)当∠BAC 为钝角时,请依题意用实线补全图2,并用等式表示出线段EC ,ED ,EH 之间的数量关系.图2AB HC图1ABHCEDG FOB CDE A60数学模拟试题参考答案及评分标准一、选择题ACCBA DCCBD AC 二、填空题13. 14. 2,2 15. 1 16.-6 17. 三、解答题18. 解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6…………………………5分19. 在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF .………………………………………5分20. 解:骑车学生每小时走x 千米,乘车学生每小时走2x 千米………………1分由题意得:……………………………………………………5分 解方程得:60-30=2x∴x =15,……………………………………………………………………7分 经检验:x =15是所列方程的解,且符合实际意义,答:骑车学生每小时走15千米……………………………………………8分 21.(1)200……………………………………………2分 (2)………………………………………………………………………………………5分 (3)8020020000080000÷⨯=…………………………………………8分 22. 证明:(1)∵ D 、G 分别是AB 、AC 的中点 ∴∵ E 、F 分别是OB 、OC 的中点 ∴ ∴∴四边形DEFG 是平行四边形…………………………………4分(2)过点O 作OM ⊥BC 于M , Rt △OCM 中,∠OCM =30°,OC =4∴ ∴Rt △OBM 中,∠BMO =∠OMB =45°, ∴ ∴∴……………………………………………………………8分 23. 解:(1)∵二次函数的图象经过点A (﹣1,4),B (1,0) ∴∴m =-2,n =3∴二次函数的表达式为 ………………4分 (2)经过点B∴ 如画()211(,),2322M m m m m m -+--+设,则N∴21123()22MN m m m =--+--+设 ∴∴∴MN 的最大值为………………………………………………………9分24. (1)①证明:∵AH ⊥BC 于点H ,∠ABC =45°,∴△ABH 为等腰直角三角形, ∴AH =BH ,∠BAH =45°,∴△AHC 绕点H 逆时针旋转90°得△BHD , 由旋转性质得,△BHD ≌△AHC ,∴∠1=∠2. ∵∠1+∠C =90°, ∴∠2+∠C =90°,∴∠BEC =90°,即BE ⊥AC . ………………………4分 ②如图,过点H 作HF ⊥HE 交BE 于F 点,∴∠FHE =90°, 即∠4+∠5=90°.又∵∠3+∠5=∠AHB =90°, ∴∠3=∠4.在△AHE 和△BHF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,3421BH AH ∴△AHE ≌△BHF , ∴EH =FH .∵∠FHE =90°,∴△FHE 是等腰直角三角形,∴∠BEH =45°. ………………………8分(2)补全图2如图;EC -ED =EH . ……………9分图2AB HCED。
2019-2020年九年级数学下学期开学考试试题

2019-2020年九年级数学下学期开学考试试题一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.抛物线y=﹣x 2+1的顶点坐标是( )A .(0,1) B.(,1) C.(﹣,﹣1) D .(2,﹣1)2.在半径为12的⊙O 中,60°圆心角所对的弧长是( ) A .6πB .4πC .2πD .π3.如图,AB 是⊙O 的直径,点C 在⊙O 上,若16C ∠=︒,则BOC ∠的度数是 ( )A.74︒B. 48︒C. 32︒D. 16︒4.若,则的值为( )A.B.C.D.5.下列命题正确的是( )A .三点确定一个圆B .平分弦的直径垂直于弦C .等圆中相等的圆心角所对的弧相等D .圆周角的度数等于圆心角度数的一半 6.如图所示.在等分的圆形纸片上作随机扎针实脸,针头扎在阴影区城内的概率为( ) A. B.C. D.7.在Rt △ABC 中,∠C=90°,AB=5,BC=4,那么cosA 为( ) A. B. C. D.8.如图,AB 为⊙O 的直径,P 点在AB 延长线上,PM 切⊙O 于M 点,若OA=a ,PM=a ,那么△PMB的周长为( )A .2aB .2a C .a D .(2+)a9.如图,点G 是△ABC 的重心,下列结论:①;②;③△EDG ∽△CBG ;④.其中正确的个数有( )A .1个B .2个C .3个D .4个∙ ∙10.如图,在△ABC 中,∠A=40°,BC=3,分别以点B 、C 为圆心,BC 长为半径在BC 右侧画弧,两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,则弧DE 和弧DF 的长度和为( ) A. B. C. D .2π二、填空题(每题4分,共24分)11.将抛物线y=x 2向左平移1个单位后的抛物线表达式为 .12.如图,⊙O 的直径AB=8cm ,C 为⊙O 上一点,∠ABC=60°,则BC= cm .13.抛物线y =x 2-4x +m2与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是______.14.如图,已知矩形ABC D ∽矩形BCFE ,AD=AE=1,则AB 的长为 .15.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为 . 16.如图,半圆O 的直径AC=2,点B 为半圆的中点,点D 在弦AB 上,连结CD ,作BF ⊥CD 于点E ,交AC 于点F ,连结DF ,当△BCE 和△DEF 相似时,BD 的长为 .三,全面答一答(本题有7个小题,共66分)17.(本题6分)如图,在△ABC 中,已知DE ∥BC ,AD=4,DB=8,DE=3.(1)求的值;(2)(2)求BC 的长.18.(本题8分)如图,在边长为1的正方形组成的网格中,点A 、B 、C 都在格点上,将△ABC 绕点A 按逆时针方向旋转90°,得到△AB ′C ′. (1)画出旋转后的△AB ′C ′; (2)求边AB 在旋转过程中扫过的面积.19. (本题8分)已知二次函数)0(2≠++=a c bx ax y 中的常数c b a ,,同时满足下列条件: ① 方程02=++c bx ax 的根为2,421=-=x x ; ② 方程42-=++c bx ax 的一个根为0=x . (1)求二次函数的解析式;(2)将二次函数的图象平移使图象与x 轴只有一个公共点,请说明平移的方式.20.(本题10分)已知直线l 与⊙O ,AB 是⊙O 的直径,AD ⊥l 于点D .(1)如图①,当直线l 与⊙O 相切于点C 时,求证:AC 平分∠DAB ;(2)如图②,当直线l 与⊙O 相交于点E ,F 时,求证:∠DAE=∠BAF .21.(本题10分)如图,正方形ABCD 的边长为a ,点P ,Q ,R ,S 分别在AB ,BC ,CD ,DA 上,且BQ=2AP ,CR=3AP ,DS=4AP.设AP=x ,四边形PQRS 的面积为s. (1)求s 关于x 的函数关系式及自变量x 的取值范围; (2)求s 随x 的增大而增大时自变量x 的取值范围.22. (本题12分)如图,在平面直角坐标系内,已知点A (2,2),B (-6,-4),C (2,-4). (1)求△ABC 的外接圆的圆心点M 的坐标; (2)求△ABC 的外接圆在x 轴上所截的弦长;(3)设点P (a ,0)为x 轴上的动点,且满足∠BPC ≤∠A ,求a 的取值范围.23.(本题12分)已知:关于x 的一元二次方程03)3(22=++-+a x a ax 有两个实数根,且a 为非负整数. (1)求a 的值;(2)若抛物线3)3(22++-+=a x a ax y 向下平移()0>m m 个单位后过点 ()n ,1和点()12,2+n ,求m 的值;(3)若抛物线k a x a ax y +++-+=3)3(22上存在两个不同的点Q P 、关于原点对称,求k 的取值范围.杭州市西溪中学2016学年第二学期寒假作业检测九年级数学答题卷温馨提示: 答题必须书写在各规定区域之内,超出答题区域的答案将被视为无效。
2019-2020年中考数学试题及答案(word版)

绝密 ★启用前2019-2020 年中考数学试题及答案( word 版)注意事项:1.本试卷考试时间为 120 分钟,试卷满分 150 分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分. 3.答题前,务必将自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在试卷及答题卡上.、选择题(本大题共有8小题,每小题 3 分,共 24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.20100 的值是4.以下图形中,既是轴对称图形,又是中心对称图形的是增大而减小的函数有8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律, m 的值是A .38B .52C .66D .74、填空题(本大题共有 10小题,每小题 3分,共 30 分.不需写出解答过程,请将答案直 接写在答题卡相应位置上)A .2010B . 0C .1D .- 1 12.- 2 的相反数是1 A .2 B .- 1 C .-2 D .2 3.下列四个几何体中,主视图、左视图、俯视图完全相同的是 A .圆锥B .圆柱C .球D .三棱柱 5. 6. A .5 B .6 C . 等腰梯形 D .平行四边形 B . (a b) 2 a 2 b 2 D . 10 4 6 a 10÷a 4= a 两条对角线 AC = 6, BD =8,则此菱形 C . 8 D .10 7. 给出下列四个函数:① y x ;② y x ;③ 2 ;④ y x 2 . x 0 时, y 随A .1 个B .2 个C .3 个D .4 个0 4 20 842 6 24 22 4 8 46 44 6 6 m 1 如图所示,在菱形 ABCD 中, 的边长为 A .等边三角形 B .矩形 下列说法或运算正确的是 A .1.0× 102 有3 个有效数字 2 3 5 D 第 6 题)9. 4 的算术平方根是▲ .10.使x 2 有意义的 x 的取值范围是▲实数 a 、 b 在数轴上对应点的位置如图所示, 则 a ▲ b (填“ ”、“ ”或“ ”) .(第 II 题) 2因式分解: 2a 2 4a ▲ .不透明的袋子中装有 4个红球、 3 个黄球和 5个蓝球,每个球除颜色不同外其它都相同, 从中任意摸出一个球,则摸出 ▲ 球的可能性最大.12 名学生参加江苏省初中英语听力口语自动化考试成绩如下: 28, 21,26,30,28,27,30,30,18, 28,30,25.这组数据的众数为 ▲ .写出图象经过点 (1,- 1)的一个函数关系式 ▲ . 已知圆锥的底面半径为 3,侧面积为 15 ,则这个圆锥的高为 ▲ . 小明尝试着将矩形纸片 ABCD (如图①, AD>CD )沿过 A 点的直线折叠,使得 B 点落 在 AD 边上的点 F 处,折痕为 AE (如图②);再沿过 D 点的直线折叠,使得 C 点落在点落在 AE 边上的点 M 处,折痕为 DG (如图③).如果第二次解答题(本大题共有 10小题,共 96 分.请在答题卡指定区域内作答, 解答时应写出文字说明、证明过程或演算步骤)(本题满分 8 分)计算:2) (a 2 1)÷(1 a II) a(本题满分 8 分)如图, A 、B 两个转盘分别被平均分成三个、四个扇形,分别转动 A 盘、B 盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一 次,直到指针指向一个数字所在的区域为止. 请用列表或画树状图的方3II 3 (13) 1 cos3011. 12. 13. 14. 15.16.17.18. 三、19. 20. DA 边上的点 N 处, E折叠后, M 点正好在∠ NDG 的平分线上, 那么矩形如图, A 、B 是双曲线 y= x k (k>0) 上的点, 分别是 a 、2a ,线段 AB 的延长线交 x 轴于点 k= ▲ .①ABCD长与宽的比值A C , B若停止后指针所指区域内的数字之和小于6 的概率.法,求两个转盘A B本题满分 8分)上海世博园开放后, 前往参观的人非常多. 5 月中旬的一天某一时段, 随机调查了部分入园游客, 统计了他们进园前等候检票的时间, 并绘制成如下图表. 表 中“ 10~20”表示等候检票的时间大于或等于 10min 而小于 20min ,其它类同.1)这里采用的调查方式是 ▲ ;2)求表中 a 、b 、c 的值,并请补全频数分布直方图;3)在调查人数里,等候时间少于 40min 的有 ▲ 人;22.(本题满分 8分)如图,在梯形 ABCD 中, AD ∥BC ,AB=CD=AD ,BD ⊥CD . ( 1)求 sin ∠DBC 的值;( 2)若 BC 长度为 4cm ,求梯形 ABCD 的面积.23.(本题满分 10 分)某校九年级两个班各为玉树地震灾区捐款 1800 元.已知 2班比 1 班人均捐款多 4元,2 班的人数比 1班的人数少 10%.请你根据上述信息,就这两个班 级的“人数”或“人均捐款”提出一个用分式方.程...解决的问题,并写出解题过程.24.(本题满分 10 分)图中的小方格都是边长为 1的正方形,△ ABC 的顶点和 O点都在正 方形的顶点上.( 1)以点 O 为位似中心,在方格图中将△ ABC 放大为原来的 2 倍,得到△A ′B ′C ′;(2)△ A ′B ′C ′绕点 B ′顺时针旋转 90 ,画出旋转后得到的△ A ″B ′C″,21. ▲ ~ ▲ min . 时间分段 /min 频数 /人数 频率10~20 8 0.20020~3014 a 30~4010 0.250 40~50b 0.125 50~603 0.075 合计c 1.000 4)此次调查中,中位数所在的时间段是并求边 A′B′在旋转过程中扫过的图形面积.25.(本题满分 10 分)如图所示,小杨在广场上的 A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端 D 处的仰角为 30o,然后他正对大楼方向前进 5m 到达 B 处,又测得该屏幕上端 C 处的仰角为 45o.若该楼高为 26.65m ,小杨的眼睛离地面 1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m).26.(本题满分 10 分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的 15%.根据相关信息解决下列问题:( 1)降价前,甲乙两种药品每盒的出厂价格之和为6.6 元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的 5 倍少 2.2 元,乙种药品每盒的零售价格是出厂价格的 6 倍,两种药品每盒的零售价格之和为 33.8 元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒 8元和 5 元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价 15%、对乙种药品每盒加价 10%后零售给患者.实际进药时,这两种药品均以每 10 盒为 1 箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共 100 箱,其中乙种药品不少于40 箱,销售这批药品的总利润不低于 900 元.请问购进时有哪几种搭配方案?27.(本题满分 12 分)如图 1 所示,在直角梯形 ABCD 中,AD∥BC,AB⊥BC,∠ DCB=75o,以 CD 为一边的等边△ DCE 的另一顶点 E 在腰 AB 上.1)求∠ AED 的度数;2)求证: AB=BC ;3)如图 2 所示,若 F 为线段 CD 上一点,∠FBC=30o.求F D C F的值.28.(本题满分 12分)已知:函数 y=ax2+x+1 的图象与 x轴只有一个公共点.(1)求这个函数关系式;(2)如图所示,设二次..函数 y=ax2+x+1 图象的顶点为 B,与 y轴的交点为 A,P为图象上的一点,若以线段 PB 为直径的圆与直线 AB相切于点 B,求 P 点的坐标;( 3)在(2)中,若圆与 x轴另一交点关于直线 PB的对称点为 M ,试探索点 M 是否在抛物线 y=ax2+x+1 上,若在抛物线上,求出 M 点的坐标;若不在,请说明理由.绝密★启用前盐城市二○一○年高中阶段教育招生统一考试数学试题参考答案及评分说明、选择题(每小题 3分,共24分)题号 1 2 3 4 5 6 7 8答案 C A C B D A C D、填空题(每小题 3 分,共 30分)解答题2)解:原式 =( a+1)( a-1) ÷a-1 aa-14 分) q9.2 11.<15.10. x≥ 212 y=-x 或 y=-x或 y=x2-2x,答案不唯一 16. 412. 2a(a-2) 13.蓝17. 2 18.14. 30 19.31)解:原式 =3+3-=6- 3⋯⋯⋯3 分)4 分)2 分)2=a +a20.解:解法一:画树状图和 3 4 5 64 5 6 7 5 6 7 8树状图正确6 分) P 和小于 6= 6128 分) 列表正确61 P 和小于 6= 12 =2 A 和 B6 分)8 分)21.解:( 1)抽样调查或抽查(填“抽样”也可以) 1 分)2) a=0.350; b= 5: c=40 ;频数分布直方图略 ⋯⋯⋯⋯⋯⋯⋯⋯⋯( 5分)3)32 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 6 分)4)20~30⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 8 分)22.解: (1)∵AD=AB ∴∠ ADB =∠ ABD∵AD ∥CB ∴∠ DBC = ∠ ADB =∠ ABD ⋯⋯⋯⋯⋯( 1分)∵在梯形 ABCD 中, AB=CD ,∴∠ ABD+∠DBC=∠C=2∠DBC∵ BD ⊥CD ∴3∠DBC=90o ∴∠ DBC =30o3 分) B1 ∴ sin ∠ 4 分) 2)过 D 作 DF ⊥BC 于 F ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 5 分)在 Rt △CDB 中, BD=BC ×cos ∠DBC =2 3 (cm ) ⋯⋯⋯⋯⋯⋯⋯( 6 分)在 Rt △BDF 中,DF=BD ×sin ∠DBC= 3 (cm ) ⋯⋯⋯⋯⋯⋯⋯( 7 分) ∴S 梯=21 (2+4) ·3 =3 3 (cm 2) 8 分)其它解法仿此得分)23.解法一:求两个班人均捐款各多少元? ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 设 1 班人均捐款 x 元,则 2 班人均捐款( x+4 )元,根据题意得 1800 1800 ·90%= ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分) 5 分) 解得 x=36 经检验 x=36 是原方程的根8 分) ∴ x+4=40 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 9 分) 答: 1班人均捐 36元, 2班人均捐 40元⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 10 分) 解法二:求两个班人数各多少人?⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)设 1 班有 x 人,则根据题意得1800 1800x +4=90x% ⋯⋯⋯⋯( 5 分) 解得 x=50 ,经检验x=50 是原方程的根⋯( 8 分) ∴90x % =45⋯⋯⋯⋯⋯( 9 分) 答: 1 班有 50 人,2 班有 45人 ⋯⋯⋯⋯( 10分) (不检验、不作答各扣 1分)24.解:( 1)见图中△ A ′B ′C ′ ⋯⋯⋯⋯⋯⋯( 4 分 (直接画出图形,不画辅助线不扣分)解法二:用列表第 22 题图) B C2)见图中△ A ″B ′C ″⋯⋯⋯⋯⋯ 直接画出图形,不画辅助线不扣分)90 2 2 1S=360 π 2(2+42)=4 π· 20=(5平π方单位 ) 25.解:设 AB 、CD 的延长线相交于点 E∵∠ CBE=45o CE ⊥ AE ∴ CE=BE ⋯⋯⋯∵ CE =26.65-1.65=25 ∴BE=25∴AE=AB+BE=30 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯在 Rt △ADE 中,∵∠ DAE =30o∴ DE=AE ×tan30 o =30 ×33=10 3 ⋯⋯⋯⋯⋯⋯⋯( 3 ∴CD=CE-DE=25-10 3 ≈ 25-10× 1.732=7.68 ≈7.7(m )⋯⋯⋯⋯⋯( 9 分) 答:广告屏幕上端与下端之间的距离约为 7.7m ⋯⋯⋯⋯⋯⋯⋯⋯( 10 分) 注:不作答不扣分)26.解:( 1)设甲种药品的出厂价格为每盒 x 元,乙种药品的出厂价格为每盒 y 元.则根据题意列方程组得: x y 6.6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (2 分) 5x 2.26y 33.8解之得: x 3.6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)y35×3.6-2.2=18-2.2=15.8 (元) 6× 3=18(元) 答:降价前甲、乙两种药品每盒的零售价格分别是 15.8 元和 18元⋯⋯⋯⋯( 5 分) 2)设购进甲药品 x 箱(x 为非负整数),购进乙药品( 100-x )箱,则根据题意列不等式组得:8 15% 10x 5 10% 10(100 x) 900100 x 40 7则 x 可取: 58, 59, 60,此时 100-x 的值分别是: 42, 41, 40有 3 种方案供选择:第一种方案,甲药品购买 58 箱,乙药品购买 42 箱; 第二种方案,甲药品购买 59 箱,乙药品购买 41 箱; 第三种方案,甲药品购买 60箱,乙药品购买 40箱; ⋯⋯( 10分)(注:( 1)中不作答不扣分,( 2)中在方案不写或写错扣 1 分)27.解: (1)∵∠ BCD=75o ,AD ∥BC ∴∠ ADC =105o ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1分) 由等边△ DCE 可知:∠ CDE =60o ,故∠ ADE =45o由 AB ⊥BC ,AD ∥BC 可得:∠DAB=90o , ∴∠AED=45o ⋯⋯⋯⋯⋯⋯⋯ (3分)(2)方法一:由 (1)知:∠ AED=45o ,∴ AD =AE ,故点 A 在线段 DE的垂直平分线上.由△ DCE 是等边三角形得: CD=CE ,故点 C 也在线段 DE 的垂直平分线8 分)7分)解之得: 571x 60 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 8 分)10 分)7分)上.∴AC 就是线段 DE 的垂直平分线,即 AC ⊥DE⋯⋯⋯⋯⋯⋯⋯( 5分)连接 AC,∵∠ AED =45o,∴∠ BAC=45o,又 AB⊥BC ∴7 分)BA=BC.方法二:过 D 点作 DF ⊥BC,交 BC 于点⋯⋯⋯⋯⋯⋯( 4分)可证得:△ DFC ≌△ CBE 则DF=BC ⋯⋯⋯⋯⋯⋯⋯⋯(6分)从而: AB=CB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 7 分)( 3)∵∠ FBC=30o,∴∠ ABF=60o 连接 AF ,BF、AD 的延长线相交于点G,∵∠ FBC=30o ,∠ DCB =75o ,∴∠ BFC=75o ,故BC=BF由(2)知: BA=BC ,故 BA=BF ,∵∠ ABF=60o ,∴ AB=BF =FA ,又∵ AD ∥BC ,AB ⊥BC ,∴∠ FAG=∠ G=30o ∴FG=FA= FB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 10 分) ∵∠G=∠FBC=30o ,∠DFG=∠CFB ,FB=FG ∴△ BCF≌△ GDF ⋯⋯⋯⋯⋯⋯⋯⋯⋯( 11 分) ∴ DF=CF ,即点F 是线段 CD 的中点.(注 :如其它方法仿此得分 )28.解:(1)当a = 0时,y = x+1, 1 当 a ≠0时,△=1- 4a=0,a = , 4(2)设 P 为二次函数图象上的一点,过点 P作PC ⊥x 轴于点 C .2 ∵ y=ax 2+x+1 是二次函数, 由(1)知该函数关系式为:1 2 C y=4 x 2+x+1,则顶点为 B ( -2, 0),图象与 y 轴的交点 C 坐标为 A ( 0,1)⋯⋯⋯( 4 分)∵以 PB 为直径的圆与直线 AB 相切于点 B ∴PB ⊥AB 则∠ PBC=∠ BAO∴ Rt △PCB ∽ Rt △ BOA∴ PC BC,故 PC=2BC ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 5 分) OB AO设 P 点的坐标为 (x , y ) ,∵∠ ABO 是锐角,∠ PBA 是直角,∴∠ PBO 是钝角,∴ x<-2 ∴ BC=-2- x , PC=-4-2 x ,即 y=-4-2 x , P 点的坐标为 (x ,-4-2x ) ∵点 P 在二次函数 y=1 x 2+x+1的图象上,∴ -4-2x=1 x 2+x+1⋯⋯⋯⋯⋯⋯⋯( 6 分)44解之得: x 1=-2 , x 2=-10∵x<-2 ∴x=-10,∴ P 点的坐标为: (-10, 16)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 7 分)2(3)点 M 不在抛物线y=ax2+x+1 上⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8 分) 由( 2)知: C 为圆与 x 轴的另一交点,连接 CM ,CM 与直线 PB 的DF FC=1 12 分) 图象与x 轴只有一个公共点 ∴函数的解析式为: y=x+1B (1分) 此时,图象与x 轴只有一个公共点. 1 D或 `y=14 x 2+x+1⋯⋯(3 分)交点为 Q,过点 M作 x 轴的垂线,垂足为 D,取 CD 的中点 E,连接 QE,则 CM⊥PB,且 CQ=MQ 1∴QE∥ MD,QE=2 MD,QE⊥CE∵CM⊥PB,QE⊥CE PC⊥x 轴∴∠ QCE=∠EQB=∠CPB1∴ tan∠ QCE= tan∠EQB= tan∠ CPB =28 16CE=2QE=2× 2BE=4BE,又 CB=8,故 BE=5, QE= 5∴Q 点的坐标为(-18,16)55可求得 M 点的坐标为(154,352)11 分)144 32 ≠25 5 ∴ C点关于直线 PB 的对称点2M 不在抛物线 y=ax +x+1 上⋯⋯⋯⋯⋯⋯⋯⋯12分)(其它解法,仿此得分)。
2019-2020学年第二学期九年级数学期末考试试卷及答案

第1页,共8页 数学试卷 第2页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题2019-2020学年第二学期九年级联考数学试卷及答案题号一 二 三 四 总分人 复核人 总分 得分本试卷满分为150分,考时间为120分钟.1. 下列各数:1.414,2,-13,0,其中是无理数的为 ( ) A .1.414 B . 2 C .-13D .02. 2017年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89 000人,将89 000用科学记数法表示为 ( )A .89×103B .8.9×104C .8.9×103D .0.89×1053. 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 ( )A B C D4.不等式组⎩⎨⎧x ≥-1,x<2的解集在数轴上表示正确的是 ( )A BC D 5. 下列几何体中,主视图是三角形的是 ( )A B C D 6市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款(元) 5 10 15 20 25 30 人数 3 7 11 11 13 5 则该班同学筹款金额的众数和中位数分别是 ( ) A .11,20 B .25,11 C .20,25 D .25,20 7BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于 ( ) A .55° B .45° C .35° D .25°( 第7题 ) ( 第8题 ) (第10题)8. 如图,A ,D 是⊙O 上的两个点,BC 是直径.若∠D=32°,则∠OAC 为 ( )A .64°B .58°C .72°D .55° 9. 某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是 ( )A .(a -10%)(a +15%)万元B .a(1-90%)(1+85%)万元C .a(1-10%)(1+15%)万元D .a(1-10%+15%)万元 10. 今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(min ).所走的路程为s(m ),s 与t 之间的函数关系如图所示,下列说法错误的是 ( ) A .小明中途休息用了20 minB .小明休息前爬山的平均速度为每分钟70 mC .小明在上述过程所走的路程为6 600 mD .小明休息前爬山的平均速度大于休息后爬山的平均速度得 分 评卷人 得分 评卷人二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中横线上的.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.第3页,共8页数学试卷 第4页,共8页密 封 线 内 不 得 答 题11. 因式分解:x 3-4x = ___________ .12.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = .13.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是____ .14. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.(第12题 ) (第17题) 15.分式方程2x x -1-11-x=1的解是 16.函数y =1-xx +2中,自变量x 的取值范围为 . 17. 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′ .18观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,……,则81+82+83+84+……+82 015的和的个位数字是得 分 评卷人19.(6分)计算:-14+12sin 60°+-(π-5)020. (6分)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.21.(8分)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1; (2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.22. (10分) 今年“五·一”节期间,某商场举行抽奖促销活动.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明,证明过程或演算步骤.第5页,共8页 数学试卷 第6页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率23(10分)如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B ,C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)得 分 评卷人24. (本题满分8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题: (1)此次抽样调查的样本容量是__________________.(2)补全频数分布直方图,求扇形图中“15吨—20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?用户用水量频数分布直方图 用户用水量扇形统计图 户数(单位:户)吨 10-15吨 30-35 40 30 20 100 10 15 20 25 30 35 用水量(单位:吨)25.(10分)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为线段AB 上一动点. (1)求证:BD =AE ;(2)当D 是线段AB 中点时,求证:四边形AECD 是正方形.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.第7页,共8页数学试卷 第8页,共8页密 封 线 内 不 得 答 题26.(10分)如图,在平面直角坐标系中,一次函数2+=nx y 的图象与反比例函数xmy = 在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且sin ∠AOC =45. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.27. 如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC .过点C 作CE⊥DB,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)若⊙O 的半径为52,弦BD 的长为3,求CF 的长.28. 如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC∥x 轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年九年级下学期数学入学考试试卷(无答案)
数学试卷
( 说明 : 本试卷考试时间为90分钟 , 满分为 100分 )
一.选择题(每小题 3 分,共 36 分,每题只有一个正确答案,请把正确答案填写在答题卷...上的表格里)
1
1.的值是
2
A.11
D. 2 B.C.2
22
2.近几年某省教育事业加快发展,据2016年末统计的数据显示,仅普通初中在校生就约有 334 万人, 334 万人用科学记数法表示为
A. 3.34 ×106人
B. 3.34× 105人
C. 3.34× 104人
D. 3.34×107人
3.下面的图形中,既是轴对称图形又是中心对称图形的是
A.B.C.D.
4.如图 , 它需再添一个面, 折叠后才能围成一个正方体, 下图中的黑色小正方形分别由四位同学补画 , 其中正确的是
(第4题图)A B C D
5.如图, AB∥ CD, EG⊥ AB,垂足为 G.若∠ 1=50°,则∠ E=
A. 60° B . 50°C. 45°D. 40°
第5题图
6.如图,身高为 1.6m 的某学生想测量一棵大树的高度,她沿着树影BA
由 B 到 A 走去,当走到 C 点时,她的影子顶端正好与树的影子顶端重合,
测得 BC=3.2m , CA=0.8m, 则树的高度为
A、 10m
B、8m
C、6.4m
D、4.8m
第6题图
7.下列运算中,结果正确的是
A. a4a4a4
B.( 2a2 )36a6
C. a8a2a4
D.a3 a2a5
8.下列命题,真命题是
A. 两条直线被第三条直线所截,同位角相等
B. 对角线相等的四边形是矩形
C. 两组对角分别相等的四边形是平行四边形
D. 在同一个圆中,相等的弦所对的弧相
等 9. 若 A(1, y1)、 B( 2,y 2)、 C( -3,y3)为双曲线y k1
x上三点,且 y1> y 2>0> y 3,
则 k 的范围为
A、 k>0
B、k>1
C、k<1
D、 k≥ 1
10.已知△ ABC和△ A′B′C′是位似图形.△ A′B′C′的面积为6cm2,△ A′B′C′的周长是△ ABC的周长一半.则△ABC的面积等于
A. 24cm2B.12cm2C.6cm2D.3cm2
11.如图,点P 在双曲线y=上,以P为圆心的⊙ P与两坐标轴都相切,E 为 y 轴负半轴上的一点, PF⊥ PE 交 x 轴于点 F,则 OF﹣OE的值是
A.6
B.5
C.4
D.25
12.定义符号min{a,b}的含义为:当a≥b时 min{a , b}=b ;当 a< b 时 min{a , b}=a .如: min{1 ,﹣ 3}= ﹣3, min{ ﹣ 4,﹣ 2}= ﹣ 4.则 min{ ﹣ x2+1,﹣ x} 的最大值是
A. B. C.1 D.0
二、填空题(本题共 4 小题,每小题 3 分,共 12 分,请把正确答案填写在答题卷上的表格
...
里)
13.因式分解:3x 2-3=▲;
2x 40
14.不等式组的解集是_____▲ ____.
3 x0
15.某中学篮球队12 名队员的年龄情况如下:
年龄(单位:岁)
14 15 16 17 18 人数
1
4
3
2
2
则这个队队员年龄的中位数是
___ ▲ __岁
16. 如图,已知⊙ O 的直径 AB=6, E 、 F 为 AB 的三等分点, M 、 N 为
上两点,且∠ MEB=∠
NFB=60°,则 EM+FN= ▲
.
三. 解答题(本题共分,第 21 题 8 分,第
7 小题,其中第
22题8分,第 17 题
23 题 5 分,第
9 分,共 18题6
52 分)
分,第 19 题 8 分,第
20题8
17.计算: ( 1)
2
( 3
1)0
2 cos60
1
2
18.某种子培育基地用
A ,
B ,
C ,
D 四种型号的小麦种子共 2000 粒进行发芽实验,从中选出
发芽率高的种子进行推广.通过实验得知,
C 型号种子的发芽率为
95%,根据实验数据绘制
了图 18-1 和图 18-2 两幅尚不完整的统计图.
(1) D 型号种子的粒数是
粒;
( 2) A 型号种子的发芽率为 ___________;
( 3)请你将图 18-2 的统计图补充完整;
( 4)若将所有已发芽的种子放到一起, 从中随机取出一粒, 求取到 B 型号发芽种子的概率.
各型号种子数的百分比
发芽数 / 粒
A 800 630
35%
600
470
370
D
400
B
C
20%
200
20%
19.某海域有 A 、 B 、C 三艘船正在捕鱼作业,
A 、
B 两船发出紧急求
C 船突然出现故障,向
图 18-1
A B C D 型号
图 18-2
救信号,此时
B 船位于 A 船的北偏西
72°方向,距 A 船 24 海里的海域, C 船位于 A 船的北
偏东 33°方向,同时又位于 B 船的北偏东 78°方向.
(1)求∠ ABC的度数;
(2) A 船以 30海里 / 小时的速度去救援,问多长时间能到出事地点.(结果精确到0.1 小时).
(参考数据:≈1.41 ,≈ 1.73 )
20.如图,点 E 是菱形 ABCD对角线 CA的延长线上任意一点,以线段 AE为边作一个菱形 AEFG,连接 EB, GD.且∠ DAB=∠ EAG
(1)求证: EB=GD;
(2)若∠ DAB=60°, AB=2,AG= 3,求 GD的长.
21.工艺商场按标价销售某种工艺品时,每件可获利90 元;按标价的八五折销售该工艺品
8 件与将标价降低70 元销售该工艺品12 件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按( 1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品
80 件.若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元
出售,每天获得的利润最大?最大利润是多少?
22.如图,扇形 OAB的半径 OA=3,圆心角∠ AOB=90°,点 C 是弧 AB 上异于 A、 B 的动点,
过点 C 作 CD⊥OA于点 D,作 CE⊥OB于点 E,连结 DE,点 F 在线段 DE上,且 EF=2DF,过点
C的直线 CG交 OA的延长线于点 G,且∠ CGO=∠ CDE.
(1)求证: CG与弧 AB所在圆相切.
(2)当点 C在弧 AB上运动时,△ CFD的三条边是否存在长度不变的线段?若存在,求出该
线段的长度;若不存在,说明理由.
(3)若∠ CGD=60°,求图中阴影部分的面积.
23.如图,已知抛物线y=m( x+1)( x﹣2)( m为常数,且m> 0)与 x 轴从左至右依次交
于 A、B 两点,与 y 轴交于点C,且 OA=OC,经过点 B 的直线与抛物线的另一交点D 在第二象
限.
(1)求抛物线的函数表达式.
(2)若∠ DBA=30°,设 F 为线段 BD上一点(不含端点),连接 AF,一动点 M从点 A 出发,沿线段 AF以每秒 1 个单位的速度运动到F,再沿线段FD以每秒 2 个单位的速度运动到 D 后停止,当点 F 的坐标是多少时,点M在整个运动过程中用时最少?
备用分析图。