几何概型的概率计算公式知识讲解

合集下载

高中数学:第三章概率 小结 (21)

高中数学:第三章概率 小结 (21)
第24页
探究2 解与面积相关的几何概型问题的三个关键点. (1)根据题意确认是否是与面积有关的几何概型问题; (2)找出或构造出随机事件对应的几何图形,利用图形的几 何特征计算相关面积; (3)套用公式,从而求得随机事件的概率.
第25页
思考题2
(1)(高考真题·北京卷)设不等式组
0≤x≤2, 0≤y≤2
①求乘客到站候车时间大于10分钟的概率; ②求候车时间不超过10分钟的概率; ②求乘客到达车站立即上车的概率.
第12页
【思路】 分析概率模型 → 得其为几何概型 → 结果 【解析】 ①如下图所示,设相邻两班车的发出时间为 T1,T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分 钟”为事件A.
【解析】 ∵区间[-1,2]的区间长度为3,随机数x的取值区
间[0,1]的区间长度为1,
∴由几何概型知x∈[0,1]的概率为13.
【答案】
1 3
第9页
(2)在等腰直角三角形ABC中,在斜边AB上任取一点M,求 AM的长大于AC的长的概率.
【思路】 点M随机地落在线段AB上,故试验所有点所在的 区域为线段AB,在AB上截取AC′=AC,则当点M位于线段BC′上 时,AM>AC.故“AM的长度大于AC的长度”的度量为BC′.
思考题1 某人向平面区域|x|+|y|≤ 2 内任意投掷一枚飞 镖,则飞镖恰好落在单位圆x2+y2=1内的概率为________.
第51页
【解析】 区域|x|+|y|≤ 2是边长为2的一个正方形区域(如 图),由图知所求概率为π4.
第44页
自助餐
第45页
与线性规划有关的几何概型问题 (仅供先学必修五的学校使用)

几何概型计算公式

几何概型计算公式

几何概型计算公式一、几何概型的定义。

如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。

1. 一维(长度型)几何概型。

- 设试验的全部结果所构成的区域长度为L(Ω),构成事件A的区域长度为L(A),那么事件A发生的概率P(A)=(L(A))/(L(Ω))。

- 例如:在区间[a,b]上随机取一个数x,若A={xc≤slant x≤slant d},其中a≤slant c≤slant d≤slant b,则L(Ω)=b - a,L(A)=d - c,P(A)=(d - c)/(b - a)。

2. 二维(面积型)几何概型。

- 设试验的全部结果所构成的区域面积为S(Ω),构成事件A的区域面积为S(A),那么事件A发生的概率P(A)=(S(A))/(S(Ω))。

- 例如:在边长为1的正方形内随机取一点M,若A=“点M到正方形某一边的距离小于(1)/(4)”,则S(Ω)=1×1 = 1,S(A)=1×(1)/(2)= (1)/(2)(这里是通过计算符合条件的区域面积得到的),P(A)=(S(A))/(S(Ω))=(1)/(2)。

3. 三维(体积型)几何概型。

- 设试验的全部结果所构成的区域体积为V(Ω),构成事件A的区域体积为V(A),那么事件A发生的概率P(A)=(V(A))/(V(Ω))。

- 例如:在棱长为1的正方体容器内随机取一点N,若A=“点N到正方体某一个面的距离小于(1)/(3)”,则V(Ω)=1×1×1 = 1,V(A)=1×1×(1)/(3)=(1)/(3),P(A)=(V(A))/(V(Ω))=(1)/(3)。

几何概型的概率

几何概型的概率

几何概型的概率
几何概型的概率:
一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D
的测度的测度
. 说明:
(1)D 的测度不为0;
(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.
(3)区域为"开区域";
(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.
要点诠释:
几种常见的几何概型
(1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为:
P=l 的长度/L 的长度
(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:
P=g 的面积/G 的面积
(3)设空间区域上v是空间区域V的一部分,向区域V上任投一点,若落在区域v上的点数与区域v的体积成正比,而与区域v在区域V上的相对位置无关,则点落在区域v上的概率为:
P=v的体积/V的体积。

概率(几何)定义

概率(几何)定义

几何概型的解法归纳摘要:我们知道如果一个随机试验有无限多个等可能的基本结果,其中每个等可能的基本结果可以用平面(或直线、空间)中的点来表示,而所有的基本结果对应于一个区域Ω,这时与试验有关的问题即可利用几何概型来解决.事实上从某种意义上来说几何概型是古典概型的补充和推广.本文中将几何概型的问题分为两大类来解决.关键词:几何概型 ,概率,蒲丰投针引言 :几何概率定义:设Ω是某一有界区域,(可以是一维空间的,也可以是二维、三维空间的)向Ω中随机投掷一点M ,如果点M 落在Ω中任一点是等可能的(或说是均匀分布的),则说这个试验是几何概型.对于几个可行试验,事件A=“点M 落在区域Ω⊂A 中”的概率,定义为()的测度的测度Ω=A A P这里的测度指长度 、面积 、体积等 .1 一般问题 1.1 直接解题法这类问题中,样本空间具有明显的几何意义,样本点所在的区域题中已经直接给出.这类问题结构比较简单,易于求解.下面举例说明.例 1 设一个质点落在xoy 平面上由x 轴,y 轴及直线1=+y x 所围成的三角形内,而且落在这个三角形内每一点处的可能性都相等.求此质点落在直线31=x 的左边的概率.解 由题意得出图(1),可知影阴部分即为题中所要求的样本点A ,大三角形即为样本空间Ω.211121=⨯⨯=Ωs185********=⨯⨯-=A s根据概率的几何定义,可得所求概率为:5518192P ssA Ω=== . 例2 随即地向半圆220x ax y -<<(a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的的夹角小于4π的概率.解 以Ω表示半圆202y ax x <<- 由题可知:点()y x ,应落在图(2)所示的影阴部分(记为区域A )由于在极坐标下,图形A 的面积:2c o s40a s d rdr πθθA =⎰⎰=22cos 4012a d r πθθ⎛⎫⎪⎝⎭⎰ =22402cos a d πθθ⎰=()2401cos 2ad πθθ+⎰=4222sin 214πθπa a +=2214a ⎪⎭⎫⎝⎛+π221a s π=Ω应用几何概率公式得到所求的概率:2211142122a s P s a πππA Ω⎛⎫+ ⎪⎝⎭===+ .1.2 间接解题法这一类几何概率问题中,样本空间所对应的几何区域题中没有直接指明,需要对问题作深入的分析,才能把样本空间归结为几何空间的某个区域.这一类结构比较复杂,解答富有技巧性,下面举例说明.例3 把长度为10的木棒任意分为三段,求这三段可以构成一个三角形的率. 解 设其中两段的长度分别为x 与y 则第三段的长度为y x --10,显然有图(1)11/31xyAπ/4a 图(2)oyx⎪⎩⎪⎨⎧<--<<<<<10100100100y x y x也就是 ⎪⎩⎪⎨⎧<+<<<<<100100100y x y x把()y x ,看作平面上的直角坐标中的点,则区域Ω可以用图(3)中的大三角形表示出来.为了使分成的三段能构成三角形,必须满足 角形任意两边之和大于第三边所以有:()()⎪⎩⎪⎨⎧>--+>--+-->+x y x y y y x x yx y x 101010 也就是 ⎪⎩⎪⎨⎧>+<<<<55050y x y x , 于是区域A 可以用图(3)中的影阴部分表示,因此,所求概率为155121410102P S SA Ω⨯⨯===⨯⨯ .例 4 从区间()1,0内任意取两个数,求这两个数的积小于41的概率.解 以y x ,表示从()1,0内任意取的两个数,那么x 和y 的变化范围为:10<<x ,10<<y ,即样本空间是边长为1的正方形Ω,两数的积小于41的充要条件为:41<xy ,10<<x ,10<<y ,即当样本点()y x ,落在由双曲线41=xy 及四条直线:0=x ,1=x ,0=y ,1=y 所围成的区域A (如图(4))内时,两数的积小于41,因为区域Ω的面积大小为1,而区域A 的面积大小为:1141111l n 24424dx x s A =+=+⎰ . 于是,所求的概率为:11ln 21124ln 2124P s sA Ω+===+ . 例5 在线段AB 上任取三点1x ,2x ,3x 求1Ax ,2Ax ,3Ax 能构成三角概率.解 设线段AB 的长为1则101<<x ,102<<x ,103<<x 把()321,,x x x 看作空间一点的坐标系,则区域Ω可以用图(5)中的正方体表示出来.要使1Ax 2Ax 3Ax 能构成三角形,当且仅当⎪⎩⎪⎨⎧>+>+>+132231321xx x x x x x x x ,即六面体ODEBA 为所要求的样本点A ,所以所要求的概率为:111313212A P ννΩ-⨯⨯===.2 典型问题 2.1 会面问题例6 甲、乙两人约定在6时到7时之间在某处会面并约定先到者应等另一人一刻钟,过时即可离去.求两人会面的概率.解 以x 和y 分别表示甲 乙两人到达约会地点的时间 则两人能够会面的充要条件是:15x y -≤ ,在平面上建立直角坐标系,则()y x ,的所有可能结果是边长为60的正方形,而可能会面的时间由图(6)中的影阴部分所表示,因此所求概率为:222604576016P ssA Ω-=== .例7 甲、乙两艘轮船使向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船的停泊时间是1小时,乙船是2小时求它们中的任何一艘都不需要等待码头空出的概率.图(3)101055y xy-x=15x-y=15图(6)606015150yx1/41/4图(4)yA11x图(5)OHFEDC BA111X3X2X1解 设甲、乙两艘船到达码头的时刻分别是x 及y ,则x 及y 均可能取区间[]0,24内的任意一值,即024x ≤≤ ,024y ≤≤而要求它们中的任何一艘都不需要等待码头空出,也就是要求两船不可能会面,那么1y x -≥,或必须甲比乙早到1h 以上,或乙比甲早到2h 以上,即要2x y -≥ 在平面上建立直角坐标系如图(7),则(),x y 的所以可能结果是边长为24的正方形,而两艘船不可能会面的时间由图(7)中影阴部分表示,则所求概率为:()()22211241242220.89724P -+-==. 2.2 蒲丰投针问题蒲丰投针问题是一个著名的几何概型问题,它是法国科学家蒲丰在1777年提出的,在蒲丰投针问题中,投掷物针可以看作是一条线段,而针的落点是一组平行线构成的平面.蒲丰应用几何概型的一般方法,利用等可能性,巧妙地解了这个问题.例8 平面上画有等距离的平行线,每两条平行线之间的距离为l ,向平面任意投掷一枚长为()a a l <的针,试求针与平行线相交的概率.的距离,ϕ表解 设x 表示针落下后针的中点M 到最近的一条平行线πϕ≤≤0而示针与平行线所成的角(如图(8)a ),则:02l x ≤≤ ,针与一直线相交的充要条件是:sin 2ax ϕ≤. 我们把x 和ϕ表示为平面上一点的直角坐标,则所有基本事件可以用边长为π及2l的矩形内的点表示出来,而“针与直线相交”这一事件所包含的基本事件可以用上图(8)b 中影阴部分内的点表示出来,因而所求概率为:0sin 222ad a P l l ssπϕϕππA Ω===⨯⎰. 例9 把针替换成三角形的蒲丰问题.平面上画有等距离的平行线,每二条平行线之间的距离为l ,向平面任意投掷一个三角形,该三角形的边长分别为c b a ,,(均小于)l ,求三角形与平行线相交的概率.分析 三角形与平行线相交,只可能有三种情况:第一种情况是三角形的一个顶点与平行线相合(如图9(1));第二种情况是三角形的一条边与平行线相合(如图9(2));第三种情况是三角形的两条边与平行线相交(如图9(3)).由于三角形的三个顶点及三条边所占有的区域的面积为零,在几何概率中,其概率也为零.所以上面叙述中第一种情况和第二种情况可以省略,仅考虑第三种情况即可,因此,三角形与平行线相交的概率可转化为三角形中有两条边与平行线相交时的概率.而假设当三角形的a 边与平行线相交时,必须导致b 边或c 边与平行线相交,这两个事件是两两互斥的,且这两个事件的和事件恰好是边长为a 的边与平行线相交这个事件,a 与平行线相交的概率符合蒲丰投针问题.解 分别用 321,,A A A 表示三角形的一个顶点与平行线相合,一条边与平行线相合,两条边与平行线相交,显然0)()(21==A P A P ,所求概率为)(3A P .分别用 bc ac ab c b a A A A A A A ,,,,,表示边c b a ,,,二边 bc ac ab ,,与平行线相交,则 )()()()(3bc ac ab A P A P A P A P ++= 显然 )()()(ac ab a A P A P A P += )()()(bc ab b A P A P A P +=)()()(bc ac c A P A P A P +=所以 [])()()(21)(3c b a A P A P A P A P ++= ⎥⎦⎤⎢⎣⎡++=l c l b l a πππ22221 lcb a π++=.2.3 贝特朗奇论问题x-y=2y-x=1212424yx图(7)图9(3)图9(2)图9(1)ϕπx=(a/2)sin ϕL/2图(8)bxLaϕx图(8)a几何概率在现代概率概念的发展中曾经起过重大作用,十九世纪时,不少人相信,只要找到适当的等可能性描述,就可以给概率问题以唯一的解答,后来人们对这种观点提出异议,并且具出许多反例. 例10 在单位圆上任作一弦,求弦长大于3的概率.分析 在这个几何概率问题中,对于术语“随机地”的含义解释不同,这个问题存在多种不同的答案.下面为其中的种.解法一 如图10(1),不妨设弦的一端点A 已取定,问题化为在圆上任取另一端点B ,故样本空间 为整个圆周, 因为单位圆的内接正三角形AMN 的边长恰为3,故弦长AB 大于3,当且仅当端点B 落在弧MN上,由于弧MN 的长为圆周长的31,故所求概率P =31.解法二 如图10(2),不妨直考虑与直径MN 垂直的弦,当且仅当弦心距小于21,即所作弦的中心在EF 上时弦长大于3,因此所求概率P =21.于3的充要解法三 如图10(3),弦由其中点位置确定,而弦长大条件是,弦的中点落在半径为21的同心圆内,故所求概率为:P =41 .认真分析上述解题过程可知究其原因,主要是在取弦时采用了不同的P =31 ;理解为等可能性假设,理解为在圆周上任取两点连成一弦,则所求在固定直线上任取一点作弦与此直径垂直的弦则P =21 ;理解为在圆内任取一点作弦的中点而作弦,则P = 41.这三种答案是针对不同的随机试验,对于各自的随机试验而言,它们都是正确的.结论从某种意义上说,几何概型是古典概型的补充和推广.几何概型在概率问题中占有重要的地位.几何概型在本文中被分为两大类来,一是一般性的问题,另一类是典型的问题.通过归纳我们发现几何概型的解题的一般步骤为:首先选择一定的观察角度(必要时可以辅之图形);再把基本事件转化为与之对应的区域,并把随机事件A 转化为与之对应的区域;最后利用概率公式计算.FEOM N BA图10(2)图10(3)OBAO图10(1)NBA。

几何概型的概率计算公式

几何概型的概率计算公式

几何概型的概率计算公式
几何概型是指在随机试验中,样本空间中的事件是由几何图形表示的情况。

比如投掷一枚硬币,其几何概型为一个二元组成的集合{正面,反面},用几何图形表示就是一个圆,圆内分别标有正面和反面。

对于几何概型,我们可以使用概率计算公式来计算事件发生的概率。

下面介绍两种常见的几何概型及其概率计算公式。

一、均匀分布的几何概型
均匀分布的几何概型是指样本空间中所有可能的事件发生概率相等的情况。

比如扔一个骰子,其几何概型为{1,2,3,4,5,6},每个数字出现的概率都是1/6。

对于均匀分布的几何概型中的某个事件A,其概率计算公式为:
P(A) = 面积(A) / 面积(样本空间)
其中,面积(A)是事件A所对应的几何图形的面积,面积(样本空间)是样本空间所对应的几何图形的面积,两者都必须是可测量的。

二、正态分布的几何概型
正态分布的几何概型是指事件在一个连续的区间内发生的概率,符合正态分布的概率密度函数。

比如身高和体重等连续型随机变量的分布,常常使用正态分布的几何概型进行概率计算。

对于正态分布的几何概型,设事件A在区间[a,b]内发生的概率为P(A),则其概率计算公式为:
P(A) = ∫a~b f(x) dx
其中,f(x)是正态分布的概率密度函数,a和b分别是区间的上下界,∫a~b代表对x从a到b的积分。

通过以上公式,我们可以对几何概型中的事件概率进行准确计算。

几何概型概率

几何概型概率

几何概型概率(实用版)目录1.几何概型概率的定义与性质2.几何概型概率的计算方法3.几何概型概率的应用举例正文一、几何概型概率的定义与性质几何概型概率是概率论中的一种概率类型,它是研究随机现象在几何空间中的分布规律。

几何概型概率具有以下性质:1.有限性:试验结果的数量是有限的。

2.等可能性:每个试验结果发生的可能性相等。

二、几何概型概率的计算方法几何概型概率的计算方法通常使用概率公式:P(A) = 满足条件 A 的试验结果数 / 所有可能的试验结果数。

例如,从 n 个不同元素中任选 2 个进行组合,可以得到的组合数为C(n, 2),那么组合的概率为 P(C(n, 2)) = C(n, 2) / C(n, n) = (n*(n-1)) / (2*1) = n*(n-1) / 2。

三、几何概型概率的应用举例几何概型概率在实际应用中有很多例子,下面举两个常见的例子:1.投针问题:在平面上随机投掷一根针,求针与 x 轴正半轴的夹角小于等于θ的概率。

解答:假设针的长度为 1,投针点距离 x 轴正半轴的距离为 d,则根据三角函数的性质,有 d = 2 * sin(θ/2)。

因为针的长度为 1,所以投针点在以原点为圆心、半径为 1 的圆内。

因此,针与 x 轴正半轴的夹角小于等于θ的概率为θ/2。

2.随机分割问题:将一个边长为 1 的正方形随机分割成两个三角形,求分割后两个三角形的面积比值小于等于 k 的概率。

解答:假设分割线段的长度为 x,其中一个三角形的面积为 S1 = (1-x)^2/2,另一个三角形的面积为 S2 = x^2/2。

因此,S1/S2 = (1-x)^2 / x^2 = (1-2x+x^2) / x^2 = 1 - 2x/x^2 + x^2/x^2 = 1 - 2/x + 1/x^2。

要求S1/S2 <= k,即 1 - 2/x + 1/x^2 <= k,解得 x >= 2/sqrt(k) 或x <= -2/sqrt(k)。

几何概型及其概率计算课件

几何概型及其概率计算课件
概率的等可能性的实例。
04
几何概型与其他概率模型的比 较
与古典概型的比 较
01
02
03
古典概型
每个基本事件发生的可能 性相同,且所有基本事件 是等可能的。
几何概型
基本事件的发生与某个几 何量(如长度、面积、体 积等)有关,其概率与该 几何量的大小成正比。
比较
古典概型适用于离散随机 试验,而几何概型适用于 连续随机试验。
几何概型及其概率计算课件
contents
目录
• 几何概型的定义与特点 • 几何概型的概率计算方法 • 几何概型的应用实例 • 几何概型与其他概率模型的比较 • 几何概型在实际生活中的应用 • 几何概型的扩展与展望
01
几何概型的定义与特点
定义
01
几何概型是一种特殊的概率模型, 其中随机事件A的发生与否依赖于 一个或多个变量的取值范围。
拟合等。
几何概型的展望
几何概型的深入研究 随着概率论和数学的发展,几何概型的研究也在不断深入, 如对几何概型中的概率测度、概率空间的构造等方面的研 究。
几何概型的应用拓展 随着科技的发展,几何概型的应用范围也在不断拓展,如 计算机科学、信息论、通信网络等领域中的应用。
几何概型的交叉学科研究 几何概型可以与其他学科进行交叉研究,如物理学、生物 学、经济学等,形成新的研究领域和方向。
THANKS
感谢观看
AI行为模拟
在角色扮演类游戏中,通过几何概型 可以设计出更符合实际概率的角色属 性,提高游戏的平衡性和趣味性。
利用几何概型,游戏开发者可以模拟 AI角色的行为概率,使游戏中的AI行 为更加自然和真实。
随机事件
在游戏中,几何概型可以用于描述各 种随机事件的发生概率,如掉落物品、 触发技能等。

几何概型的概率公式

几何概型的概率公式

几何概型的概率公式
几何概率公式是统计学中一种重要的概率模型,它用来描述一个事件中重复发生的概率。

几何概率公式可以用来计算一个事件的重复发生次数,以及在多次尝试后发生的频率。

几何概率公式可以用来分析一个事件的概率分布,也可以用于预测一个事件的发生概率。

几何概率公式是一种概率模型,它可以用来计算一个事件发生的概率,假设该事件在每次尝试中只有两种结果:成功或失败。

几何概率公式可以用来确定一个事件具备多少次成功的概率,它可以用来计算一次尝试中成功的概率,也可以用来计算一次尝试中失败的概率。

几何概率公式的具体表达式如下:P(S) = 1 - (1 - p)^n,其中S表示成功的概率,p表示每次尝试中成功的概率,n表示尝试的次数。

几何概率公式的意义在于,如果每次尝试中成功的概率都相同,那么在多次尝试后,总成功概率就可以用几何概率公式来计算。

几何概率公式可以应用于许多不同的领域,例如抽奖、娱乐场游戏、网络投票、社会调查等。

几何概率公式还可以用来计算一个企业在某段时间内产品故障发生的概率,以及一个投资者获得收益的概率等。

几何概率公式是一种重要的概率模型,它可以用来预测一个事件的
重复发生的概率,也可以用来分析一个事件的发生概率分布,为解决各种实际问题提供重要的参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[情境二] (1)如图,靶盘被等分为六份,向靶盘中随机投掷 一枚飞镖,则飞镖落在红色区域的概率是多少?
(2)我们随意调整一下上图所示的靶盘中的 红色区域,再向靶盘中随机投掷一枚飞镖。则 飞镖落在红色区域的概率该如何求解?
复习回顾 创设情景 新课铺垫 引入新课
[情境二]
归纳探索 形成概念
例题分析 推广应用
[情境三]
归纳探索 形成概念
例题分析 推广应用
问题3:尝试运用古典概型的公式来计算事件发生的 概率?
复新复新复新复新复新习课习课习课习课习课回铺回铺回铺回铺回铺顾垫顾垫顾垫顾垫顾垫
创创创设设设情情情景景景 引引引入入入新新新课课课
情境一
归归归纳纳纳探探探索索索 形形形成成成概概概念念念
例例题题分分析析 推推广广应应用用
创设情境
回顾小结 提高认识
法 纳——应用”的学习过程中,自主参与知
的 识的发生、发展、形成的过程,使学生掌 选 握知识,发展思维能力。


复习回顾
新课铺垫


归纳探索

形成概念


回顾小结

提高认识

创设情景 引入新课
例题分析 推广应用
作业布置 能力升华
复习回顾 新课铺垫
创设情景 引入新课
填写下表
归纳探索 形成概念
例题分析 推广应用

抽象思维能力还有待于进一步提高,因此在从古 典概型向几何概型的过渡时,如何将问题的实际

背景转化为“几何度量”,学生会有一些困难和

疑惑,这就需要恰当的引导、合理的解释和明确
析 的辨析。
一 3.教学的重点和难点

学 重点:几何概型的概念探究与理解.
内 难点:将实际问题转化为数学问

题,建立几何概率模型,
设计活动,让学生在讨论中明知,在争论中解惑,
学 在思考中提升。 充分发挥学生的主体地位,营造
法 生动活泼的课堂气氛。通过学生亲身体验,培养
的 探求知识的能力,并能对生活实际问题进行数学 选 化,得出结论。

三 2.学法的指导


根据学法指导自主性和差异性原则,
学 让学生在“观察——发现——类比——归
回顾小结 提高认识
布置作业 能力升华
设计意图:通过试验发现指针可能停在转 盘的任何位置,从而得出基本事件有无限 个且等可能,并发现中奖概率与扇形圆弧 长度有关,探究出结论。让学生初步感受 几何概型的特点,并激发学生探究热情。
探究结论:
P
A
构成事件A的区域长度 全部结果所构成的区域长度
复习回顾 创设情景 新课铺垫 引入新课
数学人教B版 (必修3)
第三章概率
§3.3.1几何概型
北师大燕化附中 张新禄
一.教学内容的分析
二.教学目标的确定

三.教法学法的选择

四.教学过程的设计


五.教学板书的设计
六.教学反思的说明
一 1.从教材的地位和作用来看

本课选自人教B版数学必修3第三章第三节

《几何概型》 ,是在学习古典概型情况下教学的。

本节课是在古典概型基础上进一步的发展,是等

可能事件的概念从有限向无限的延伸,使概率的 公理化定义更加完备。尽管本节内容在课程标准

中的要求仅为了解和会简单的应用,但蕴含的数

形结合和数学建模的思想凸显了其重要性。

一 2.从学生学习角度来看


从学生的思维特点看,很容易将本节内容

与古典概型进行类比,这是积极因素.但学生的

并求解。



1.知识与技能

学 体会理解几何概型的概念,了解其基
目 本特点,初步理解几何概型与古典概
标 型的联系与区别,体会几何概型计算
的 确
公式及几何意义.


2.过程与方法


通过多个问题的分析让学生理解
目 几何概型的特征,归纳总结出几何概
标 型的概率计算公式,渗透有限到无限, 的 转化与化归及数形结合的思想。 确
[情境二]
归纳探索 形成概念
例题分析 推广应用
回顾小结 提高认识
布置作业 能力升华
设计意图:等分转盘的设计太过牵强,并没有突出
几何概型的本质特点。因为等分则把该模型可看成古 典概型,理由是虽然每个等分区域是由等分角度或等 面积划分形成的,但是由于问题关注的是该实验指针 落在哪个区域就可以得奖,因此每个等分小区域看成 一个等可能的基本事件并不违反题意,从而这个问题 既可以看成古典概型,又可看成几何概型。而最终事 件发生的概率计算即可以看成基本事件的个数比,也 可以看成几何区域的度量比。所以应该设计为不等角 度划分。
复习回顾 创设情景 新课铺垫 引入新课
[情境二]
归纳探索 形成概念
例题分析 推广应用
回顾小结 提高认识
布置作业 能力升华
设计意图:设置不同情境,让学生发 现几何概型的计算与面积有关;更深 切地感受到几何概型与古典概型的区 别。
探究结论:
P
A
构成事件A的区域面积 全部结果所构成的区域面积
Байду номын сангаас
复习回顾 创设情景 新课铺垫 引入新课
[情境一]
1撕纸条试验
归纳探索 形成概念
例题分析 推广应用
回顾小结 提高认识
布置作业 能力升华
取一根长度为30cm的纸条,拉直后在任意位置撕成两段。
那么撕得两段的长度都不小于10cm的概率有多大?
问题1:此试验的基本事件是什么? 所有可能出现的基本事件的有多少个? 问题2:每个基本事件出现的可能性是否相等?
回顾小结 提高认识
布置作业 能力升华
古典概型
设所计有意的图基:本提事出件问题,引导有学生限回个忆, 概每括个;基并本对事学件生的回发答生进行评等价可,提能高 学每生个主基动本参事与件的的积概极率性,并为1后/m面古 典概概率型的与计几算何概型比较作铺垫n./m
复习回顾 创设情景 新课铺垫 引入新课


教 3.情感、态度与价值观

教会学生用数学方法去研究不确
目 定现象的规律,体会概率在生活中的
标 重要作用,感知生活中的数学,激发 的 提出问题和解决问题的勇气,培养其 确 积极探索的精神。帮助学生获取认识 定
世界的初步知识和科学方法。
三 1.教法的选择


本课采用问题探究法,以问题为载体,通过
布置作业 能力升华
取一根长度为30cm的纸条,拉直后在任意 位置撕成两段。那么撕得两段的长度都不小 于10cm的概率有多大?
10cm
1
结果:P=
3
30cm
10cm
复习回顾 新课铺垫
创设情景 引入新课
归纳探索 形成概念
例题分析 推广应用
回顾小结 提高认识
布置作业 能力升华
设计意图:
说明试验出现的结果有无限个,与古 典概型结果有限不同.借此创设情境,引入 新课,激发学生学习的兴趣.
相关文档
最新文档