例题解析_作一条线段等于已知线段
2020年中考数学必考考点 专题32 尺规作图(含解析)

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。
【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。
作一条线段等于已知线段-华东师大版八年级数学上册教案

作一条线段等于已知线段
在华东师大版八年级数学上册中,我们学习了如何作一条线段等于已知线段。
这个问题看起来似乎很简单,但实际上需要我们使用一些几何学的知识和技巧。
问题描述
假设我们已知一条线段AB的长度为a,要作出一条和AB长度相等的线段CD。
如何可以使用尺规来解决这个问题?
解决方法
我们知道,使用尺规可以在平面上进行画图。
在这个问题中,我们需要画出一条远离已知线段AB的直线,这条直线上的点和AB上的点可以一一对应,这样我
们就可以画出一条和AB长度相等的线段CD。
我们可以使用下面的步骤来解决这个问题:
1.在平面上选取一点O,这个点和AB的中点相重合。
2.使用尺规在O点上竖直作一条直线,这条直线和AB相交于点P和Q。
3.使用尺规以点P和Q作为圆心,以AB的长度为半径作两个圆。
这两个圆
交于点S和T。
4.连接ST和TS。
5.以O为圆心,以ST的长度为半径作一个圆,与ST相交于点C和D。
6.连接CD。
根据构造,我们可以证明CD的长度等于AB的长度。
证明过程可以参见数学
教材。
思考题
在这个问题中,我们使用两个圆的交点来构造一条和已知线段等长的线段。
这个方法可以使用在其他问题中吗?如果可以,请举例说明。
结论
通过上面的分析,我们了解了如何使用尺规来构造一条和已知线段等长的线段。
这个问题看起来简单,但实际上需要我们掌握几何学的知识和技巧。
这个方法也可以用来解决其他类似的问题。
中考数学专题复习 专题30 尺规作图问题(教师版含解析)

中考专题30 尺规作图问题1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考专题要求(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【经典例题1】(2020年•台州)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【标准答案】D【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出标准答案.【答案剖析】由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD【知识点练习】(2019•丽水模拟题)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形【标准答案】B【答案剖析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形。
2020年中考数学人教版专题复习:尺规作图

2020年中考数学人教版专题复习:尺规作图基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例精析典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.1 2【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.拓展1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.复杂作图利用五种基本作图作较复杂图形.典例精析典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.拓展3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)同步测试1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A .BH 垂直平分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AHD .AB =AD4.如图,点C 在∠AOB 的OB 边上,用尺规作出了∠AOB =∠NCB ,作图痕迹中,弧FG 是A .以点C为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧5.如图,△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于EF 长为半径画弧,两弧相交于点G ; ③作射线AG 交BC 边于点D . 则∠ADC 的度数为A .65°B .60°C .55°D .45°6.如图,△ABC 为等边三角形,要在△ABC 外部取一点D ,使得△ABC 和△DBC 全等,下面是两名同学做法: 甲:①作∠A 的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求;12乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.。
【中考数学考点梳理】考点18_尺规作图与定义、命题、定理

考点18 尺规作图与定义、命题、定理一、尺规作图1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.3.根据基本作图作三角形1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题. 2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.三、定义与命题1.一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.2.判断一件事情的语句叫做命题.3.命题的组成:命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.4.命题的表达形式:命题可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.二、真命题、假命题1.正确的命题叫做真命题.2.要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明).3.要说明一个命题是假命题,只需举一个反例即可.三、逆命题1.把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题.2.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.3.正确写出一个命题的逆命题的关键是能够正确区分这个命题的题设和结论.4.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.四、公理与定理1.如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫做公理.2.如果一个命题可以从公理或其他命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理.3.公理和定理都是真命题,都可作为证明其他命题是否为真命题的依据.4.由定理直接推出的结论,并且和定理一样可作为进一步推理依据的真命题叫做推论.五、互逆命题1.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.2.任何一个命题都有逆命题,而一个定理并不一定有逆定理.3.角平分线性质定理及其逆定理、线段的垂直平分线性质定理及其逆定理、勾股定理及其逆定理等都是互逆定理.六、反证法1.定义:假设命题的结论不成立,即命题结论的反面成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明方法叫做反证法.2.反证法的步骤:①假设命题结论的反面正确;②从假设出发,经过逻辑推理,推出与公理、定理、定义或已知条件相矛盾的结论;③说明假设不成立,从而得出原命题正确.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.1.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【答案】详见解析【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.【详解】解:如图,点P即为所求.作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B为圆心,以CD长为半径画弧,交BC于F,(3)以点F为圆心,以DE长为半径画弧,交前弧于点M,(3)连接BM,并延长BM与AC交于点P,则点P即为所求.【点睛】本题考查了作图——基本作图.解决本题的关键是掌握基本作图方法.2.如图,Rt ABC 中,90ABC ∠=︒,根据尺规作图的痕迹判断以下结论错误的是( )A .DB DE =B .AB AE =C .EDC BAC ∠=∠D .DAC C ∠=∠【答案】D 【分析】由尺规作图可知AD 是∠CAB 角平分线,DE ⊥AC ,由此逐一分析即可求解.【详解】解:由尺规作图可知,AD 是∠CAB 角平分线,DE ⊥AC ,在△AED 和△ABD 中:∵=90⎧∠=∠⎪∠=∠⎨⎪=⎩AED ABD EAD BAD AD AD ,∴△AED ≌△ABD(AAS),∴DB=DE ,AB=AE ,选项A 、B 都正确,又在Rt △EDC 中,∠EDC=90°-∠C ,在Rt △ABC 中,∠BAC=90°-∠C ,∴∠EDC=∠BAC ,选项C 正确, 选项D ,题目中缺少条件证明,故选项D 错误.故选:D.【点睛】本题考查了尺规作图角平分线的作法,熟练掌握常见图形的尺规作图是解决这类题的关键.3.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CADB .CD 平分∠ACBC .AB ⊥CD D .AB=CD【答案】D 【分析】根据作图判断出四边形ACBD 是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案【详解】解:由作图知AC=AD=BC=BD ,∴四边形ACBD 是菱形,∴AB 平分∠CAD 、CD 平分∠ACB 、AB ⊥CD ,不能判断AB=CD ,选:D .【点睛】本题主要考查线段垂直平分线的尺规作图、菱形的判定方法等,解题的关键是掌握菱形的判定与性质.1.已知AOB ∠,作AOB ∠的平分线OM ,在射线OM 上截取线段OC ,分别以O 、C 为圆心,大于12OC的长为半径画弧,两弧相交于E ,F .画直线EF ,分别交OA 于D ,交OB 于G .那么,ODG 一定是( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形 【答案】C【分析】根据题意知EF 垂直平分OC ,由此证明△OMD ≌△ONG ,即可得到OD=OG 得到答案.【详解】如图,连接CD 、CG ,∵分别以O 、C 为圆心,大于12OC 的长为半径画弧,两弧相交于E ,F ∴EF 垂直平分OC ,设EF 交OC 于点N ,∴∠ONE=∠ONF=90°,∵OM 平分AOB ∠,∴∠NOD=∠NOG ,又∵ON=ON ,∴△OMD ≌△ONG ,∴OD=OG ,∴△ODG 是等腰三角形,故选:C.【点睛】此题考查基本作图能力:角平分线的做法及线段垂直平分线的做法,还考查了全等三角形的判定定理及性质定理,由此解答问题,根据题意得到EF 垂直平分OC 是解题的关键.2.如图,已知AB =AC ,BC =6,尺规作图痕迹可求出BD =( )A .2B .3C .4D .5【答案】B 【分析】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD 为∠BAC 的角平分线,而AB=AC ,由等腰三角形的三线合一知D 为BC 重点,BD=3,故选B【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质. 3.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长 C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长 【答案】B 【分析】根据作角平分线的方法进行判断,即可得出结论.【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长;第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.考向二 复杂作图利用五种基本作图作较复杂图形.1.如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上.【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠,∴ABP CDP ∆∆∽,∴AB AP CD CP . ∵,M N 分别为AB ,CD 的中点,∴2AB AM =,2CD CN =,∴=AM AP CN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.2.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.【答案】A【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.1.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.2.如图,在Rt ABC中.()1利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;()2利用尺规作图,作出()1中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】()1作图见解析;(2)作图见解析.∠平分线上,再根据角平分线的尺【分析】()1由点P到AB的距离(PD的长)等于PC的长知点P在BAC规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P为圆心,以大于点P到AB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD即为所求).【详解】()1如图,点P即为所求;()2如图,线段PD即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.考向三圆中的作图问题1.如图,已知,.(1)在图中,用尺规作出的内切圆,并标出与边,,的切点,,(保留痕迹,不必写作法);(2)连接,,求的度数.【答案】(1)作图见解析;(2)70°.【解析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.解析:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.考点:1.作图—复杂作图;2.三角形的内切圆与内心.2.如图,在等腰△ABC中,AB=AC=BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于1 2EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.B.10C.4D.5【答案】D【分析】如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.【详解】解:如图,设OA交BC于T.∵AB=AC=AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AE2=,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.【点睛】本题考查作图——复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.1.(1)如图,已知线段AB和点O,利用直尺和圆规作ABC,使点O是ABC的内心(不写作法,保留作图痕迹);(2)在所画的ABC 中,若90,6,8C AC BC ∠=︒==,则ABC 的内切圆半径是______.【答案】(1)作法:如图所示,见解析;(2)2.【分析】(1)内心是角平分线的交点,根据AO 和BO 分别是∠CAB 和∠CBA 的平分线,作图即可; (2)连接OC ,设内切圆的半径为r ,利用三角形的面积公式,即可求出答案.【详解】解:(1)作法:如图所示:①作射线AO 、BO ; ②以点A 为圆心,任意长为半径画弧分别交线段AB ,射线AO 于点D ,E ; ③以点E 为圆心,DE 长为半径画弧,交上一步所画的弧于点F ,同理作出点M ; ④作射线AF ,BM 相交于点C ,ABC 即所求.(2)如图,连接OC ,∵90,6,8C AC BC ∠=︒==,由勾股定理,得:10AB =,∴168242ABC S=⨯⨯=; ∵ABC AOB AOC BOC SS S S ∆∆∆=++,∴11124222AB r AC r BC r •+•+•=,∴1(1068)242r ⨯++•=, ∴2r ,∴ABC 的内切圆半径是2;故答案为:2;【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径.2.如图,点O 是正方形,ABCD 的中心.(1)用直尺和圆规在正方形内部作一点E (异于点O ),使得;EB EC =(保留作图痕迹,不写作法) (2)连接,EB EC EO 、、求证:BEO CEO ∠=∠.【答案】(1)见解析;(2)见解析【分析】(1)作BC 的垂直平分线即可求解;(2)根据题意证明EBO ECO ≅即可求解.【详解】()1如图所示,点E 即为所求.()2连接OB OC 、 由()1得:EB EC =O 是正方形ABCD 中心,,OB OC ∴=∴在EBO △和ECO 中,EB EC EO EO OB OC =⎧⎪=⎨⎪=⎩(),EBO ECO SSS ∴≅BEO CEO ∴∠=∠. 【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知正方形的性质、垂直平分线的作图及全等三角形的判定与性质.考向四逻辑推理1.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.2.如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比乙需要加强与他人的沟通合作能力;④乙的综合评分比甲要高.其中合理的是( ) A .①③B .②④C .①②③D .①②③④ 【答案】D【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确; 因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故①正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故①正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故①正确;故选:D ;【点睛】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;1.疫情期间,甲、乙、丙、丁4名同学约定周一至周五每天做一组俯卧撑.为了增加趣味性,他们通过游戏方式确定每个人每天的训练计划.首先,按如图方式摆放五张卡片,正面标有不同的数字代表每天做俯卧撑的个数,反面标有1x ,2x ,3x ,4x ,5x 便于记录. 具体游戏规则如下:甲同学:同时翻开1x ,2x ,将两个数字进行比较,然后由小到大记录在表格中,3x ,4x ,5x 按原顺序记录在表格中;乙同学:同时翻开1x ,2x ,3x ,将三个数字进行比较,然后由小到大记录在表格中,4x ,5x 按原顺序记录在表格中;以此类推,到丁同学时,五张卡片全部翻开,并由小到大记录在表格中.下表记录的是这四名同学五天的训练计划:根据记录结果解决问题:(1)补全上表中丙同学的训练计划;(2)已知每名同学每天至少做30个,五天最多做180个.①如果236x =,340x =,那么1x 所有可能取值为__________________________;②这四名同学星期_________做俯卧撑的总个数最多,总个数最多为_________个.【答案】(1)见解析;(2)①41,42,43;②三,162.【分析】(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,然后由小到大记录在表格中,x 5按原顺序记录在表格中即可.(2)①由题意44523123303640x x x x x x x x ===,<<<<,,,推出x 5可以取31,32,33,34,35,x 1>40,应用列举法即可解决问题.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设453031x x ==,,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.应用列举法即可解决问题.【详解】解:(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,由乙同学可知231x x x <<,又结合丁同学可知42x x <,所以4231x x x x <<<,然后由小到大记录在表格中,x 5按原顺序记录在表格中补全表中丙同学的训练计划:42315x x x x x ,,,,.故答案为:42315x x x x x ,,,,.(2)①由题意x 4=30,∵45231233640x x x x x x x ==<<<<,,,∴x 5可以取31,32,33,34,35,x 1>40,当x 5=31时,x 1的最大值为43,当x 5=32时,x 1的最大值为42,当x 5=33时,x 1的最大值为41,当x 5=34或35时,x 1的值不符合题意,∴x 1的可能取41,42,43.故答案为:41,42,43.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设x 4=30,x 5=31,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.当x 2=33时,x 3+x 1的最大值为180-30-31-33=86, 若x 1=44,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=34时,x 3+x 1的最大值为180-30-31-34=85,若x 1=43,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=35时,x 3+x 1的最大值为180-30-31-33=84, 若x 1=43,则x 3=41,此时星期三的做俯卧撑的总个数为160,综上所述,星期三的做俯卧撑的总个数的最大值为162.故答案为:162.【点睛】本题考查推理与论证,统计等知识,解题的关键是理解题意,学会推理论证的方法.考向五 真命题、假命题1.判断语句是否为命题要抓住两条:①命题必须是一个完整的带有判断性的句子,通常是陈述句(包括肯定句和否定句),而疑问句和命令性语句都不是命题;②命题必须对某件事作出肯定或否定的判断. 2.辨别命题的真假时,对命题的正确性理解一定要准确,进行辨别时要熟练掌握相关的定理、公理、定义.要说明一个命题是假命题,通常可以通过举反例的方法解决.命题的反例是具备命题的条件,但不具备命题的结论的实例.1.下列判断正确的是( )A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B .一组数据6,5,8,7,9的中位数是8C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则甲组学生的身高较整齐D .命题“既是矩形又是菱形的四边形是正方形”是真命题【答案】D【分析】根据抽样调查、中位数定理、命题的判断进行分析即可;【详解】解:A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A 选项错误; B .一组数据6,5,8,7,9的中位数是7,所以B 选项错误;C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则乙组学生的身高较整齐,所以C 选项错误;D .命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D 选项正确.故选:D .【点睛】本题主要考查了数据分析的知识点应用,准确判断是解题的关键.2.从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-;(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1【答案】C【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =, ∵面积是2240cm π,则2360n r π=240π,则2nr =360×240,则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题,则随机抽取一个是真命题的概率是34,故选C. 【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.1.下列命题中真命题是( )A 2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形 【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.2.下列命题是真命题的是( )A .一个角的补角一定大于这个角B .平行于同一条直线的两条直线平行C .等边三角形是中心对称图形D .旋转改变图形的形状和大小【答案】B 【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A 、一个角的补角不一定大于这个角,故A 错误;B 、平行于同一条直线的两条直线平行,故B 正确;C 、等边三角形是轴对称图形,不是中心对称图形,故C 错误;D 、旋转不改变图形的形状和大小,故D 错误;故选:B .【点睛】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.考向六 互逆命题与互逆定理1.如果两个命题的题设和结论正好相反,那么这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,则称这两个定理互为逆定理,其中一个定理叫做另一个定理的逆定理.3.“题设与结论正好相反”可理解为第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设.1.下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等【答案】D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B 、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故选项不符合题意;C 、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D 、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理. 2.下列命题:(1)对于(0)k y k x=≠,当0k >时,y 随x 的增大而减小;(2)菱形的对角线互相垂直;(3)。
2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)

第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE 是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF 是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。
2020年中考数学必考考点专题32 尺规作图(解析版)

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。
【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。
初一上数学课件(沪科版)-用尺规作线段与角

11.已知∠AOB=22.5°,分别以射线 OA、OB 为始边,在∠AOB 的外部作 ∠AOC=∠AOB,∠BOD=2∠AOB,则∠COD 的度数是 90°.
11.已知∠AOB=22.5°,分别以射线 OA、OB 为始边,在∠AOB 的外部作 ∠AOC=∠AOB,∠BOD=2∠AOB,则∠COD 的度数是 90° . 12.在作 2∠α-∠β 时,作图的步骤为:①作∠AOB= ∠α ;②以点 O 为 顶点,以 OA 为一边,在∠AOB 的外部作∠AOC= ∠α ;③以点 O 为顶点, 以 OC 为一边,在∠COB 的内部作∠COD=∠β .则 ∠BOD =2∠α-∠β. 13.如图,已知线段 a、b、c,用尺规作一条线段,使它等于 3a-b+2c.
9.下列说法正确的是( D ) ①用尺规作图能作一条线段等于两条线段的差;
②用尺规作图能作一个角等于已知两个角的和;
③利用尺规作图能作一个角等于已知角的 3 倍;
④利用尺规作图能作一个角等于已知两个角的差.
A.1 个
B.2 个
C.3 个
D.4 个
10.如图所示,已知线段 a、b、c(a>b+c),求作线段 AB,使 AB=a-b -c.下面利用尺规作图正确的是( D )
知识点一:尺规作图 通常用没有 刻度 的直尺和圆规来画图,这种画图的方法叫做尺规作图. 1.下列各题中,只用没有刻度的直尺就能作出的是( B ) A.作线段 AB=a B.过点 O、P 作射线 OP C.在直线上取线段 AB=a D.在射线 OA 上截取线段 OB=a
2.如图,点 C 在∠AOB 的 OB 边上,用尺规作出了∠NCE,使∠NCE=∠ AOB,作图痕迹中,弧 FG 是( D )
【规范解答】(1)作∠AOC=α;(2)以 OC 为一边,在∠AOC 的边 OA 同侧, 再作∠BOC=β.∠AOB 就是所求作的角.