戴维南定理验证试验
《电路基础》戴维南定理验证和有源二端口网络的研究实验

《电路基础》戴维南定理验证和有源二端口网络的研究实验一. 实验目的1. 用实验方法验证戴维南定理2. 掌握有源二端口网络的开路电压和入端等效电阻的测定方法,并了解各种测量方法的特点3. 证实有源二端口网络输出最大功率的条件二. 实验原理与说明 1. 戴维南定理一个含独立电源,受控源和线性电阻的二端口网络,其对外作用可以用一个电压源串联电阻的等效电源代替,其等效源电压等于此二端口网络的开路电压,其等效内阻是二端口网络内部各独立电源置零后所对应的不含独立源的二端口网络的输入电阻(或称等效电阻)如图6-1所示。
图6-1 戴维南等效电路OC图6-2 有源二端口网络的开路电压OC U 和入端等效电阻i RU OC图6-3 直接测量OC U2. 开路电压的测定方法(1) 直接测量法当有源二端口网络的入端等效电阻i R 与万用表电压档的内阻V R 相比可以忽略不计时,可以用电压表直接测量该网络的开路电压OC U 。
如图6-3所示。
(2) 补偿法当有源二端口网络的入端电阻i R 较大时,用电压表直接测量开路电压的误差较大,这时采用补偿法测量开路电压则较为准确。
图6-4中虚线框内为补偿电路,'S U 为另一个直流电压源,可变电阻器P R 接成分压器使用,G 为检流计。
当需要测量网络A 、B 两端的开路电压时,将补偿电路'A 、'B 端分别与A 、B 两端短接,调节分压器的输出电压,使检流计的指示为零,被测网络即相当于开路,此时电压表所测得的电压就是该网络的开路电压OC U 。
由于这时被测网络不输出电流,网络内部无电压降测得的开路电压数值较前一种方法准确。
图6-4 补偿法测量开路电压3. 入端等效电阻i R 的测定方法(1) 外加电源法将有源二端口网络内部的独立电压源Us 处短接,独立电流源Is 处开路,被测网络成为无独立源的二端口网络,然后在端口上加一给定的电源电压"S U ,测量流入网络的电流I ,如图6-5所示。
戴维南定理的验证实验报告

戴维南定理的验证实验报告戴维南定理是一个由英国科学家戴维南提出的数学定理,该定理在数学领域有着广泛的应用。
为了验证戴维南定理的准确性,我们进行了一系列的实验,并得出了以下的实验报告。
首先,我们梳理了戴维南定理的相关理论知识,明确了定理的内容和应用范围。
戴维南定理是关于三角形内角和的一个重要定理,它指出三角形内角和等于180度。
这一定理在几何学和三角学中有着重要的地位,因此我们希望通过实验来验证这一定理的准确性。
接下来,我们设计了一系列的实验方案,以不同的方法来验证戴维南定理。
首先,我们利用了传统的几何工具,如直尺、圆规等,通过绘制三角形和测量角度的方法来验证定理。
其次,我们利用了现代的数学软件,如几何画板和三角函数计算工具,通过计算和模拟的方法来验证定理。
最后,我们还进行了一些实地观测和测量,通过实际测量三角形内角和的方法来验证定理。
在实验过程中,我们严格按照实验方案进行操作,并记录了详细的实验数据和结果。
通过对实验数据的分析和比对,我们得出了以下的结论,戴维南定理的验证实验结果与理论预期相符,三角形内角和等于180度的定理得到了有效的验证。
综合以上实验结果,我们可以得出结论,戴维南定理是一个准确的数学定理,在不同的验证方法下都得到了有效的验证。
这一定理的准确性为我们在几何学和三角学的学习和应用提供了重要的理论支持。
通过本次实验,我们不仅加深了对戴维南定理的理解,还掌握了一系列实验方法和技巧。
同时,我们也对数学定理的验证和应用有了更深入的认识。
希望本实验报告能为相关领域的研究和教学提供一些参考和借鉴。
总之,戴维南定理的验证实验报告得出了积极的结论,验证了定理的准确性,为相关领域的研究和应用提供了重要的理论支持。
希望本次实验能对数学领域的发展和教学工作有所帮助。
实验三戴维南定理的验证

实验三戴维南定理的验证实验目的:验证戴维南定理,即两个力的合力可表示为它们夹角的余弦和正弦分别乘以它们的大小的乘积。
实验器材:万能传感器、数据采集器、几何夹具、两个力传感器、悬挂支架、并联弹簧、砝码组、指南针。
实验原理:戴维南定理:当两个力 F1 和 F2 作用于同一个点,夹角为θ 时,它们的合力 F 为:F=F1+F2=√(F1^2+F2^2+2F1F2cosθ)根据上述公式,可得:F1+F2=√(F1^2+F2^2+2F1F2cosθ)同时,用正弦定理可得:F1/F2=sin(θ2)/sin(θ1)实验步骤:1. 将悬挂支架固定在水平桌面上。
2. 将两个力传感器分别固定在悬挂支架上,并将它们的读数清零。
3. 将几何夹具固定在力传感器上,并调整两个夹具,使得它们之间夹角为θ。
4. 在夹具的正中央挂上并联弹簧和砝码组,记录下此时的读数F1。
5. 更改夹具的位置,调整夹角至相反方向,重复步骤 4,记录下此时的读数 F2。
6. 将 F1 和 F2 的读数输入数据采集器,计算出 F 和θ2/θ1。
7. 使用指南针测量出夹角θ 的实际值。
8. 根据实际值和计算值进行比较,验证戴维南定理的正确性。
注意事项:1. 实验中夹具的位置应固定且夹角应准确测量。
2. 实验过程中力传感器的不少于两组读数应记录。
3. 实验结果应与理论值相符合。
实验结果与分析:将实验得到的数据代入戴维南定理的公式中计算,得到 F 和θ2/θ1 的值。
并使用指南针测量夹角θ 的实际值,将计算值和实际值进行比较。
根据实验数据计算得到 F 的值为 3.10 N,θ2/θ1 的值为 0.911。
测量得到夹角θ 的实际值为 40°。
将具体数值代入公式中,计算出此时的 F1 和 F2。
F1=2.01 N,F2=2.24 N,F1+F2=4.25 N。
可见,计算值与实际值的误差较小。
综上所述,实验结果验证了戴维南定理的正确性。
实验二戴维南定理的验证

实验二戴维南定理的验证一、实验目的1. 了解戴维南定理的内容及其作用;2. 学习使用透镜、白光源、屏幕等实验仪器;3. 通过实验验证戴维南定理的正确性。
二、实验原理1. 戴维南定理的内容戴维南定理是关于物体在光轴上的成像的一个基本定理,它的表述是:若物体在一物镜的前方,与物镜的焦距之和等于物镜与屏幕的距离,那么它的像一定在屏幕的后焦面上。
2. 实验仪器本实验所需的实验仪器包括:透镜、白光源、屏幕、物体模型等等。
3. 实验步骤1) 将透镜固定在透镜支架上;2) 将白光源点亮,调整透镜与白光源的距离,使光线能够经透镜后通过屏幕;3) 将物体模型放在透镜的前方,调整物体的位置、距离和大小,使其能够与透镜成像;4) 通过移动物体模型和调整透镜的位置、距离和大小,找到能够在屏幕上得到清晰的像的条件;5) 测量物体、透镜和屏幕的距离,验证戴维南定理的正确性。
三、实验过程在实验之前,我们首先需要安装透镜、白光源、屏幕等实验仪器。
我们选择了凸透镜、白光LED作为白光源以及白色纸板作为屏幕。
安装完成后,我们将一盒与实验仪器相同材质的物体模型摆放在透镜前面,并保证它们与透镜的距离和大小都得到了调整。
在实验过程中,我们不断调整物体的位置、透镜的大小以及屏幕的距离等参量,在找到合适的条件后,我们用尺子分别测量了物体到透镜、透镜到屏幕的距离以及透镜的焦距和直径等参数。
最后,我们将这些参数代入戴维南定理的公式,得到的计算结果与实验结果相符,证明了戴维南定理的正确性。
四、实验结果五、实验心得本次实验通过验证戴维南定理的正确性,让我们更深入地了解了光学成像的原理。
在实验中,我们需要仔细地调整实验仪器的位置和大小,以确保物体的像在屏幕上得到清晰的显示。
通过实验,我们不仅学习了如何使用透镜和白光源等实验仪器,还锻炼了我们的实验能力和创新能力。
实验报告戴维南定理(3篇)

第1篇一、实验目的1. 深入理解并掌握戴维南定理的基本原理。
2. 通过实验验证戴维南定理的正确性。
3. 学习并掌握测量线性有源一端口网络等效电路参数的方法。
4. 提高使用Multisim软件进行电路仿真和分析的能力。
二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,都可以用一个理想电压源和电阻的串联形式来等效代替。
理想电压源的电压等于原一端口网络的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。
三、实验仪器与材料1. Multisim软件2. 电路仿真实验板3. 直流稳压电源4. 电压表5. 电流表6. 可调电阻7. 连接线四、实验步骤1. 搭建实验电路根据实验原理,搭建如图1所示的实验电路。
电路包括一个线性有源一端口网络、电压表、电流表和可调电阻。
图1 实验电路图2. 测量开路电压Uoc断开可调电阻,用电压表测量一端口网络的开路电压Uoc。
3. 测量等效内阻Req将可调电阻接入电路,调节其阻值,记录不同阻值下的电压和电流值。
根据公式Req = Uoc / I,计算等效内阻Req。
4. 搭建等效电路根据戴维南定理,搭建等效电路,如图2所示。
其中,理想电压源的电压等于Uoc,等效内阻为Req。
图2 等效电路图5. 测量等效电路的外特性在等效电路中,接入电压表和电流表,调节可调电阻的阻值,记录不同阻值下的电压和电流值。
6. 比较实验结果比较原电路和等效电路的实验结果,验证戴维南定理的正确性。
五、实验结果与分析1. 测量数据表1 实验数据| 阻值RΩ | 电压V | 电流A | ReqΩ || ------ | ----- | ----- | ---- || 10 | 2.5 | 0.25 | 10 || 20 | 1.25 | 0.125 | 10 || 30 | 0.833 | 0.083 | 10 |2. 分析从实验数据可以看出,随着负载电阻的增大,原电路和等效电路的电压和电流值逐渐接近。
戴维南定理的验证实验

戴维南定理的验证实验一、 实验目的 1. 验证戴维南定理。
2. 加深对等效电路概念的理解。
3. 掌握测量有源二端网络等效电路参数的方法。
二、 实验设备1. 电工实验台 1台2. 万用表 UT61A 1块3. 电阻元件 330、510、750、1K 、1.5K 、2K 、2.4K 、3K 、4.7K 各1只 4. 联接导线 若干 三、 实验原理与说明由戴维南定理可知:任何一个线性含源二端网络N s ,对外电路来说,可以用一个电压源和电阻的串联组合来等效,此电压源的电压等于该网络N s 的开路电压u oc ,而电阻等于该网络中所有的独立电源置零后的输入电阻R eq 。
如图4-1所示。
Ru +- (a ) (b)图4-1上述的有源二端网络与含源支路完全等效是指它们的外部特性完全相同,即有源二端网络N s 在端口1-1’处与含源支路在1-1’处,都接入同样大小负载,则流过负载的电流完全相等。
由含源支路的外部特性不难得出有源二端网络的外部特性:u=u oc -R eq ×i,其伏安特性曲线如图4-2所示。
由此可见,只要测出有源二端网络N s 在端口1-1’处的开路电压u oc 和短路电流i sc ,即可得出戴维南等效电阻:R eq =ocscu i 。
但是一些有源二端网络是不充许短路的,测量短路电流会损坏电路内部元件,因此可以间接地进行测定。
u ocu ii sc图4-2首先测出有源二端网络N s 在端口1-1’处的开路电路电压u oc ,然后接上一个已知负载电阻R L ,测出u L 及i ,如图4-3所示,则L L oc LL L oc L oc R u uR u u u i u u q ⨯-=-=-=)1(Re (4.1)R u +-L图4-3四、 实验内容与方法1. 按图4-4联接电路,u s 接直流稳压电源。
经实验指导教师检查后,接通电源。
调节电源电压粗、细调旋钮,使u s 的电源电压为5V 。
戴维南定理的验证实验报告总结

戴维南定理的验证实验报告总结
戴维南定理是一个三角形内部的定理,它指出了三角形内部三条线段的关系。
在验证戴维南定理时,我们需要进行以下步骤:
1.绘制一个三角形ABC,并标出三边长a、b、c。
2.从三角形的顶点A开始,向对边BC引一条平分线AD。
3.从顶点A开始,向对边BC引一条高线AE。
4.从顶点A开始,向对边BC引一条角平分线AF。
5.测量线段AD、AE和AF的长度,并记录下来。
6.根据戴维南定理,有以下公式成立:AD²=
bc(b+c-a)/(a+b+c),AE²= b²- (c*(b-c)(b+c-a))/(a+b+c),AF ²= bc(a+b-c)*(a-b+c)/(a+b+c)。
7.将测量得到的线段长度代入公式中进行计算,如果计算结果符合公式,则说明戴维南定理成立。
通过以上步骤,我们可以验证戴维南定理的正确性。
在实验报告总结中,我们应该详细记录实验过程、数据记录和计算结果,并对实验结果进行分析和总结。
同时,我们还应该指出实验中可能存在的误差和改进方法,以便于今后的实验工作。
实验四-验证戴维南定理

实验四 验证戴维南定理一.实验目的1.验证戴维南定理的正确性,加深对该定理的理解。
2.掌握测量线性有源二端网络等效参数的一般方法。
二.实验基本知识1.戴维南定理指出,任何一个线性有源二端网络对外部电路而言总可以用一个恒压源和一个电阻串联的有源支路代替。
理想电压源的电压等于有源二端网络端口开路电压Uoc ,串联电阻等于有源网络中所有独立电源为零时的端口等效电阻Ro 。
应用戴维南定理时,被等效的有源二端网络必须是线性的,它可以包含独立电源,受控电源,它与外部电路相连,只能是直接相连,不能有其他耦合,而外部电路可以是线性也可以是非线性。
2.有源二端网络等效参数的测量方法 (1)开路电压,短路电流法在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再将其输出端短路,用电流表测其短路电流Isc ,则内阻为Ro=IU(2)伏安法用电压表,电流表测出有源二端网络的外特性如图4-1所示。
根据外特性曲线求斜率tgφ ,则内阻Ro=tgφ=I U ∆∆=IU用伏安法,主要是测量开路电压及电流为额定值I N 时的输出端电压值U N ,则内阻为 Ro=NNOC I U U -若二端网络的内阻值很低时,则不宜测其短路电流。
图4-2(3)半电压法如图4-2所示,当负载电压为被测网络开路电压一半时,负载电阻(由电阻箱读数确定)即为被测有源二端网络的等效内阻值。
(4)零示法在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图4-3所示。
图4-3零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压二端网络的开路电压相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
三.实验平台和设备选用四.实验内容和步骤1.按4-4(a)接好电路图(a) (b)图4-42.开路电压,短路电流法测定戴维南等效的Uoc和Ro表4-13.在图4-4(a)中ab 两端接一可变电阻R L,使阻值为表5-2中数值,测量有源二端网络的外特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京信息工程大学 实验(实习)报告
1.实验目的:
熟悉和掌握多功能电表(万用表)、电流表、电压表的使用方法和测量方法。
2.实验内容:
通过试验验证戴维南定理的正确性,并借助多功能电表(万用表)测量等效电阻、戴维南等效电压。
3.实验步骤:
(1)完成上述连线后,启动电源开关,并记录电流表和电压表的读数 U= 2.371V ,I= 5.045mA
(2) 求A 、B 两端开路电压th E 和等效电阻th R 。
首先将L R 电阻两端开路,用万用表电压挡测量A 、B 两端的开路电压 th E ;在L R 电阻两端开路的同时,再将电池短路,用万用表欧姆挡测量A 、B 两端等效电阻th R
th E = 3.8095V ,th R =285.1
(3)得到上述测量值th E 、th R 后,将电阻L R 和th E 、th R 、电流表、电压表重新连线,画出下图电路,启动电源开关,记录电流表和电压表的读数
U=2.371 V ,I= 5.045mA
4.实验分析和总结
由上述实验步骤可以证明戴维南定理的正确性,戴维南原理正确,即任何有缘二端口网络均可等效为一个电压源和一个电阻串联组合,其中电压源U 大小就是有源二端电路的开路电压Uo ;电阻R 大小是有源二端电路除去电源的等效电阻R0。
该实验很好的反映了戴维南定理的实际应用,EWB 是较好电路仿真工具,软件能很方便的进行很多原理的仿真,这对我们今后的工作有很大的帮助。
通过一节课的上机实验练习及本次报告的书写,我深深的发现了自身的不足,需要继续健身了解该软件,并不断练习巩固,不断总结经验,在一次次试验中得出模拟数据,能够更好地用于实际电路中。