(集成光电子学导论)第七章波分复用器
光波分复用器原理

光波分复用器原理
“哎呀,这光到底是咋回事呢?”我正和小伙伴们在公园里玩耍,突然想到了一个问题。
咱先来说说光波分复用器是啥玩意儿吧。
这就好比一个神奇的大盒子,里面有好多关键部件呢。
有能把不同颜色光分开的小镜子,就像咱们分糖果一样,把各种颜色的光分得清清楚楚。
还有一些小管道,让光在里面乖乖地跑。
这些部件可厉害啦!小镜子能准确地把不同波长的光送到不同的地方,就像快递员叔叔把包裹送到正确的地址一样。
那小管道呢,就像小火车的轨道,光在里面跑得可顺溜啦!
那它的工作原理是啥呢?嘿,你想想看,不同颜色的光就像不同的小伙伴,它们都有自己的特点。
光波分复用器呢,就能认出这些不同的光小伙伴,然后把它们安排到不同的道路上去。
比如说红色光走这条路,蓝色光走那条路。
这可太神奇啦!就好像我们在玩游戏的时候,给每个小伙伴都分配了不同的任务。
那光波分复用器在生活中有啥用呢?有一次,我和爸爸妈妈一起看电视。
我就想啊,这电视信号是咋传过来的呢?原来啊,光波分复用器在这中间可起了大作用呢。
它能把好多不同的信号,像电视信号、电话信号、网络信号啥的,都放在一束光里传过来。
这就像一个超级大卡车,能把好
多不同的货物一起运过来。
要是没有它,那我们的生活可就没这么方便啦!说不定电视会卡顿,电话也打不通呢。
所以说啊,光波分复用器可真是个神奇的东西。
它让我们的生活变得更加丰富多彩,就像一个魔法盒子,给我们带来了好多惊喜。
我觉得它超级厉害,以后我也要好好学习,了解更多关于它的知识。
光波导芯片_波分复用_解释说明

光波导芯片波分复用解释说明1. 引言1.1 概述光通信作为一种高速、大容量的数据传输技术,已成为现代信息社会中不可或缺的基础设施。
然而,在面对日益增长的带宽需求和传输距离要求时,传统的电路板和金属导线等传输介质已经显得力不从心。
因此,光波导芯片作为一种新型的光学器件应运而生。
1.2 文章结构本文将首先介绍光波导芯片的定义、原理、结构和特点。
随后,我们将重点讨论波分复用技术,并详细解释其原理、基础概念以及相关设备和组成要素。
然后,我们将探讨光波导芯片在波分复用中的应用,包括其在光传输中的作用机制解析、在波分复用系统中关键功能的介绍,以及一些实际应用中的效果与案例分享。
最后,我们将总结主要观点和发现,并展望光波导芯片和波分复用技术未来发展方向。
1.3 目的本文旨在通过对光波导芯片和波分复用技术进行详细说明,帮助读者深入了解光通信领域中的重要概念和技术。
同时,通过介绍光波导芯片在波分复用中的应用,使读者对该技术在实际场景中的应用效果有更全面的认识。
最后,我们将展望未来光波导芯片和波分复用技术的发展方向,为相关研究和工程领域提供参考和启示。
2. 光波导芯片:2.1 定义和原理:光波导芯片是一种集成光学器件,其通过特殊的材料结构和工艺制作而成。
它利用高折射率的核心层将光信号引导在其表面附近传输,形成一条或多条光波导路径。
这些路径类似于管道,可以将光信号有效地控制、传播和分配。
光波导芯片原理基于总反射和电磁波的耦合效应。
当光线传入具有高折射率的核心层时,由于介质折射率的差异,部分能量会被全内反射并沿着波导路径传输。
在光波导芯片中,可以通过调整核心层和包围层之间的折射率差异来改变传播模式、控制波导路径和操纵光信号。
2.2 结构和特点:通常情况下,光波导芯片由三个主要组成部分构成:核心层、包围层和衬底。
核心层是最重要的部分,用于引导光信号;包围层则用于限制光信号的传播区域,并保持其在核心层内传输;衬底则为光波导芯片提供支撑和稳定性。
波分复用技术(WDM)

波分复用技术(WDM)介绍--------密集波分复用(DWDM)和稀疏波分复用(CWDM)波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
WDM本质上是光域上的频分复用FDM技术。
每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。
WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。
通信系统的设计不同,每个波长之间的间隔宽度也有不同。
按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。
CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
1 DWDM技术简介WDM和DWDM是在不同发展时期对WDM系统的称呼。
在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。
随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。
为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。
所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。
密集波分复用技术其实是波分复用的一种具体表现形式。
波分复用技术的工作原理

波分复用技术的工作原理波分复用技术(Wavelength Division Multiplexing,WDM)是一种基于光的通信技术,利用不同波长的光信号在同一光纤上进行传输。
由于不同波长的光信号在光纤中的传播不会相互干扰,可以通过复用技术将多个光通信信号传输在同一根光纤上,从而大大增加了通信容量。
WDM技术可以分为两种类型:密集波分复用技术(DWDM)和正常波分复用技术(CWDM),它们区别在于波长通道间隔的大小和可用的波长数量。
DWDM通道间隔比CWDM小,可以在同一段光纤上增加更多的波长,从而大幅提高传输容量。
下面将从波分复用技术的原理、优势、缺陷和应用领域等方面介绍这一技术。
一、波分复用技术的原理波分复用技术的原理可以类比于广播电台。
广播电台可以同时播出多个不同频率的电台节目,收听者可以通过调整收音机来选择不同的频率来收听不同的电台节目。
同理,WDM技术可以在同一根光纤上传输多个不同波长的光信号,接收者通过选择不同波长的接收器来分离不同的光信号。
具体来说,WDM系统主要由光发射器、光纤、光放大器和光探测器组成。
光发射器将多个不同波长的光信号合并在一起后,通过光纤进行传输。
光信号在光纤中传播时不会相互干扰,因为不同波长的光信号会在光纤中以不同的角度传送。
光放大器可以放大光信号的功率,使光信号能够达到较远的传输距离。
光探测器用于将不同波长的光信号分离,并将其转换成电信号。
WDM系统的传输容量由两个因素决定:波长间隔和可用波长数量。
DWDM系统通常使用0.8 纳米到 0.1 纳米的波长间隔,可用的波长数量从几十个到数百个不等,从而可以实现传输容量的大幅提升。
二、波分复用技术的优势1. 高通信容量WDM技术可以将多个光信号传输在同一根光纤上,从而大大提高了通信容量。
一个DWDM系统可以支持数百个不同的波长,因此可以实现高达几百兆比特每秒到数千兆比特每秒的数据传输速率。
2. 长传输距离WDM系统利用光放大器放大光信号的功率,在光纤中传输的距离可以高达几千公里,远比传统的电信技术更为出色。
波分复用器详细解释

FWDM是众多CWDM原理中的其中一种,并通常称为三端口波分复用器。
2002年, ITU-T建议 G.694.2定义了18个从1270nm到1610nm 的 CWDM标称中心波长,波长间隔为20nm。后来,考虑到无源器件滤波特性 (如复用器)几乎不随温度变化,一般认为无源器件标称中心波长应该对准激 光器35℃时的输出信号波长,因为35℃在整个工作温度范围的中间(激光 器的工作温度范围是-5℃~+70℃)。(也就是说,无源器件标称中心波长应该是*o加 上激光器输出从23℃到35℃的波长漂移值,即*o+0.08nm/℃×(35℃-23℃) = *o+1nm。)为了 解决激光器波长标称温度与实际工作温度不同造成的波长差异问题。ITU则 建议G.694.2波长上移1nm(为1271nm/1291nm/…/1611nm),从而使激 光器波长在实际环境刚好工作在(1270nm/1290nm/…/1610nm)。
CWDM波段:1270~1610nm
1270~1610 1270~1610nm 1270 1290 1310 1330 1350 1370 1390 1410 1430 1450 1470 1490 1510 1530 1550 1570 1590 1610
O波段
E波段
S波段
C波段
L波段
根据光纤的物理特性以及在不同波长处使用光纤放大器的性能,ITU将 1260~1670nm的波长区域划分为6个频谱波段,如下所示 O波段(原始波段,Original Band):1260~1360nm E波段(扩展波段,Extended Band):1360~1460nm S波段(短波段,Short Band):1460~1530nm C波段(常规波段,Conventional Band):1530~1565nm L波段(长波段,Long Band):1565~1625nm U波段(超长波段,Ultralong Band):1625~1670nm 可见光范围 是 380~760nm。 1~380nm的 是紫外线
第7章 波分复用

工作波长范围——指WDM器件能够按照规定 的性能要求工作的波长范围。(λmin到λmax) 信道宽度——指各光源之间为避免串扰应具有 的波长间隔。 偏振相关损耗——指由于偏振态的变化而引起 的插入损耗的最大变化值。
波分复用信道间隔划分
1、波分复用(WDM)、密集波分复用(DWDM) 光频分复用(OFDM)
(3) 标准中心频率 所谓标准中心频率指的是光波分复用系 统中每个通路对应的中心波长的频率。 (4) 中心频率偏差 中心频率偏差定义为标称中心频率与实 际 中 心 频 率 之 差 。 对 于 100GHz 的 16*2.5Gbit/sWDM系统,偏差±20GHz
2、光转发器(OTU)技术
7.6 光接口规范
1. 光接口分类 我国专家对于我国的加有光放大器的长途WDM 系统规定了3种光接口: 8 ×22dB, 5× 30dB, 3 ×33dB。其中前面的8、5、3 分别代表传输 的区段数目, 22、33dB代表每个区段允许的损 耗。一个8 ×22dB系统,在发射端使用一个功 率放大器,中间加入多个在线放大器,接收机 前加前置放大器,每一区段的距离约为80km, 因此, 总的传输距离为640km(8×80km); 一 个3 ×33dB系统可以传输360km(3×120km);一 个5× 30dB系统则可以传输500km(5×100km)。
ITU-T建议一直只提WDM和Multichannel system( 多 信 道 系 统 ) , 避 免 WDM 和 DWDM的区分和界定,建议文件规范的 信道间隔也只窄到25GHz。 目前真正实用化的光波分复用系统是 16×2.5Gbit/s,16×10Gbit/s和 32×2.5Gbit/s,32×10Gbit/s, 40×10Gbit/s。我国目前也已达到了这一 实用化水平。
波分复用原理课件

信号调制是将信息转换为适合传 输的光信号的过程。
常用的信号调制格式包括开关键 控(OOK)、脉冲幅度调制( PAM)和相位偏移键控(PSK)
等。
解调则是将调制后的光信号还原 为原始信息的过程。
信号同步与监控
01
02
03
04
信号同步是指确保不同波长信 号在同一时间开始和结束传输
的过程。
通过使用同步信号和时间标记 ,可以实现信号的精确同步。
波分复用原理课件
目录
• 波分复用技术概述 • 波分复用系统的组成 • 波分复用的关键技术 • 波分复用的优势与挑战 • 波分复用技术的应用案例 • 波分复用技术的实验与演示
01 波分复用技术概 述
波分复用的定义
波分复用是一种利用单根光纤进行多路传输的技术,它将不同波长的光信号合并在 同一根光纤中传输,从而实现多个信号的同时传输。
结果四
通过实验,深入理解了波分复 用技术的原理和应用。
THANKS
感谢观看
扩展性强
随着新波长的加入,波分复用 网络的容量可以不断扩展,满 足未来不断增长的数据传输需 求。
可靠性高
由于每个波长独立传输数据, 因此某个波长的故障不会影响 到其他波长的传输,提高了网
络的可靠性。
挑战
色散问题
噪声干扰
不同波长的光信号在光纤中的传播速度略 有不同,导致信号畸变,称为色散。需要 采取措施来减小色散对传输性能的影响。
新型光纤材料
新型光纤材料的研发将有助于解决色散和噪声问题,提高波分复用 的性能和稳定性。
智能化管理
随着物联网和大数据技术的发展,未来将实现波分复用网络的智能 化管理,提高网络的运维效率和可靠性。
05 波分复用技术的 应用案例
波分复用原理PPT课件

温度波长 控制电路
DFB 激光器
驱动电流
马赫策恩德或 电吸收调制器
光接收机
入射光
短程传输接收:PIN 长程传输接收:APD
电信号
接收机必须承受的影响: 信号畸变 噪声 串扰
合波和分波无源部分
DWDM系统对合波和分波无源器件的
基本要求
DWDM 系统 中 使 用的 波 分 复用 器 件 的性 能 应 满足 ITU-T G.671及相关建议的要求。 合波器
常用的合波器类型有耦合器型、介质薄膜滤波器型和集成光波导型。 合波器的参数主要有插入损耗、光反射系数、工作波长范围、极化 相关损耗和各通路插损的最大差异。
分波器
分波器的类型主要有光栅型、干涉滤波器型、熔锥型和集成光波导 型分波器等类型。
分波器的参数主要有通路间隔、插入损耗、光反射系数、相邻通路 隔 离 度 、 非 相 邻 通 路 隔 离 度 、 极 化 相 关 损 耗 、 温 度 系 数 、 0.5dB 和 20dB带宽。
DWDM系统的分类
以系统接口分类:集成式或开放式系统 以信道数分类:4、8、16、32等 以信道速率分类:2.5Gbit/s 、10Gbit/s及混合速率 以信道承载业务类型分类:PDH、SDH、ATM、
IP或混合业务等
以地理域分类:海底系统、陆地干线、本地网、
城域网
开放式和集成式系统结构
比著名的CPU性能进展more定律 (18个月左右翻番)快2~3倍
扩容的选择
空分复用
SDM(Space Division Multiplexer)
时分复用
TDM(Time Division Multiplexer)
波分复用
WDM(Wavelength Division Multiplexer)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 什么是波分复用(WDM)技术? 为什么要使用WDM技术?
2. WDM系统中使用的无源器件
-波长选择器 -波分复用器 -波长路由器
WDM的工作原理
在1300~1600 nm光谱范围内,以一定的间隔隔开的多个波长 可以在同一根光纤中独立传播
100 GHz
WDM 40 Gb/s PSK
相位掩模板
紫外掩模写入法
nz n1nmcos2z
+1级
-1级
包层 芯层
光纤光栅的应用
光纤光栅(Fiber Grating)是一种非常有吸引力的全 光纤器件, 其用途非常广泛,可用作光滤波器、光分 插复用器、色散补偿器、传感器等。对于全光纤器件, 其主要优点有:插入损耗低,易于与光纤耦合,对偏 振不敏感,温度系数低,封装简单,成本也较低。
O’
波面( s )
布拉格条件
布拉格衍射
l ll n d s i n i s i n d m 2 n s s i n i衍射光最强
此时,衍射光是不对称,只有正一级或负一级,衍射效率高
l2 … ln
光纤光栅
l1 l1 l1 l1 l1 l1 l1
l1 l2 … ln
λ1
光纤光栅对共振波长全反射的条件是反射光 栅周期足够的多,也就是是说光栅部分足够 的长,如果光栅不够长则反射率低于100%
啁啾光纤光栅用于色散补偿 lB 2n
光纤光栅在传感中的运用
lB 2n
阵列波导光栅
• 阵列波导光栅是光通信骨干网 最核心的器件之一。要了解它 是什么,怎么产生的,我们可 以将它作为一个工程案例分析
• 注意整个思考过程,请跟着我 一起思考!
波分复用
• 波分复用器件是光通信应用里非常重要的 一类器件。基于波分复用的光通信,一个 波长相当于一个IP,不同波长携带不同的信 息,波分复用器件就是将多个波长的光耦 合到一根光纤内进行传输,并可以在传输 终端将多个波长信号分开,到目标客户端 分别输出。
• 请利用已有的光学知识,思考可以实现波 分复用的器件都有哪些?
波分复用器
• 我们分析这个问题,还原到最本质的应用 目标,就是实现一个光学系统,能够把不 同波长的光分开,或和在一起。回忆光学 的知识,能将光按波长分开的光学原理都 有哪些呢?
棱镜、光学薄膜、光栅。。。。许多元件都 能实现这个目的,但最理想的又是什么呢?
光纤激光器的光纤光栅谐振腔
足够长,接近 100%反射率
较短,部分反 射,部分透射
类比如图光纤激光器的结构,请猜测 光纤放大器的构成形式
光纤激光器 光纤放大器
啁啾光纤光栅用于光通信色散补偿
• 不同波长在光纤里具有不同折射率,因此 具有不同传播速度
思考:在光纤里长波和短 波那个传的快?
短波长折射率更大,由此思 考在光纤中长波和短波那个 传的更快?
透射式/反射式光栅
θd
透射式光栅
θi
θd
反射式光栅
θi
思考:如何由光栅方程推导光纤光栅的共 振条件
l2 … ln
l1 l1 l1 l1 l1 l1 l1
Байду номын сангаас
l1 l2 … ln
λ1
l 光 栅 方 程 : n d s in i s ind m
是否曾经讲过类似 的Bragg共振?
n sin 9 0 sin 9 0 l1
据 速率可以不同,调制格式可以不同,可以是模拟或数字信
3号. 可以用于构造波长路由光网络 光网络交换节点除了可以执行时间和空间两个维度的交换之 外还可以利用波长进行交换,多维的交换让光网络具有更高 的灵活性
WDM, CWDM and DWDM
• WDM 技术是将多个波长复用到一根光纤里传 输
• 粗波分复用 (CWDM) 只复用的波长间隔较宽 (20 nm) – 低成本WDM
光纤光栅——波长滤波器
FBG的发现与发展
光纤布拉格光栅(简称FBG)是在 单模光纤的纤芯内通过某种方式 对其折射率产生周期性的调制而 形成的一种全光纤器件 (如右图 所示)。
1978年,加拿大Hill 等人使用如左图 所示的实验装置将488nm的氩离子激光 注入到掺锗光纤中,首次观察到入射 光与反射光在光纤纤芯内形成的干涉 条纹场而导致的纤芯折射率沿光纤轴 向的周期性调制,从而发现了光纤的 光敏特性,并制成了世界上第一个光 纤布拉格光栅。
光滤波器 (a)
l1
llll1234
波分复用器 (b)
l1,l2,l3,l4
l11,l21,l31,l14 l21,l22,l32,l42
波长路由器 (c)
l12,l21,l31,l24 l11,l22,l32,l14
(a) 单纯的滤波应用; (b) 波分复用器中应用; (c) 波长路由器中应用
思考:可以用于波长滤波器的结构
• 密集波分复用 (DWDM) 有较小的波长间隔 (0.8 nm) ,一般超过 16个波长复用 – 高容量 复用技术
关注的问题
1. 什么波分复用(WDM)技术? 为什么要使用WDM技术?
2. WDM系统中使用的无源器件
-波长选择器 -波分复用器 -波长路由器
波长选择系统的工作类型
l1,l2,l3,l4 l2,l3,l4
l1 2n
布拉格(Bragg)共振条件
满足共振条件时,如果光栅足够厚,对共振波长将接近100%的能量被反射
布拉格声光衍射 当声波频率较高,声光作用长度较长,光线与超声
波波面有一定角度斜入射,会产生布拉格声光衍射
入射波 ()
O
AB
i
B
布拉格衍射波 ( + s )
如不满足共振条件 则
声波(Sonic wave)
例: 这两个低损耗波长 窗口可以容纳 290 个40-Gb/s 信号
波分复用系统
波分复用器
100 GHz间隔的WDM信道频谱
WDM系统的优点
1. 系统容量可以很容易升级 如果每个波长可以承载40 Gb/s的信息,那么一根光纤若同时 传输100个波长就能实现4 Tb/s的传输
2. 可以保持数据的透明性 所有信道都能独立地携带信息,它们之间可以不同步,数
光纤光栅的类型 光栅周期 影响什么?
• 均匀周期光栅 • 非均匀周期光栅(啁啾光栅)
lB 2n
光纤光栅的制作
• 光纤芯层里由于含有少量锗(Ge)元素, 因此对紫外光非常敏感
• 当以折射率周期性分布的紫外光照射光纤 时,光纤芯层折射率将也呈现这种周期性 分布
紫外掩模写入法: 1. 用两束紫外光照射光纤并发生干涉 2. 掺锗的高光敏纤芯在光强部分折射率增加 3. 光栅永久写入光纤