数形结合在平面向量中的应用

合集下载

高中数学教案《平面向量及其应用》

高中数学教案《平面向量及其应用》

教学设计:《平面向量及其应用》一、教学目标1.知识与技能:使学生理解平面向量的基本概念,包括向量的定义、表示方法(有向线段、坐标表示)、向量的模、方向角等;掌握向量的加法、减法、数乘及数量积的运算法则和几何意义;能运用向量知识解决简单的几何与物理问题。

2.过程与方法:通过观察、实验、推理等数学活动,培养学生的空间想象能力和逻辑推理能力;引导学生运用数形结合的思想,理解向量运算的几何背景,提高解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和勇于探索的精神;通过团队合作解决问题,增强学生的沟通能力和团队协作能力。

二、教学重点和难点●重点:平面向量的基本概念、向量的基本运算(加法、减法、数乘、数量积)及其几何意义。

●难点:理解向量数量积的概念、性质及其在解决实际问题中的应用;向量运算的坐标表示法及其应用。

三、教学过程1.导入新课o情境创设:通过展示风力发电机叶片的运动、航海中的航向与速度变化等实例,引出向量的概念,说明向量在现实生活中的应用价值。

o问题引入:提问学生如何描述这些运动中的方向和大小,引导学生思考向量的必要性。

o概念引入:正式给出平面向量的定义,强调其作为“有方向的量”的特性。

2.新知讲授o基本概念讲解:详细解释向量的表示方法(有向线段、坐标表示)、模长、方向角等概念,并通过图示加深理解。

o向量运算教学:●加法与减法:通过“平行四边形法则”和“三角形法则”演示向量的加法与减法,强调其几何意义。

●数乘:讲解数乘的定义,通过伸缩变换的直观演示,理解数乘对向量方向和大小的影响。

●数量积:引入数量积的概念,通过投影长度的计算,讲解其计算公式和性质,强调其在度量角度、判断方向等方面的应用。

3.例题解析o选取典型例题,覆盖向量运算的所有类型,逐步引导学生分析、解题,重点讲解解题思路和方法。

o强调解题过程中向量运算的几何背景,促进学生数形结合思维的发展。

4.学生活动o小组讨论:分组讨论向量在日常生活或专业领域的应用实例,每组选代表分享,增强课堂互动性。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。

在初中数学的教学中,数形结合思想被广泛地应用。

本文将从初中数学的各个章节对其应用进行探讨。

1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。

数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。

例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。

2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。

例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。

3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。

4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。

结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。

教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。

微重点 平面向量的最值与范围问题

微重点 平面向量的最值与范围问题

微重点 平面向量的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.考点一 求参数的最值(范围)例1 (1)(2022·沈阳质检)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________. 答案 [1,4]解析 根据题意,不妨设正六边形ABCDEF 的边长为23,以O 为原点建立平面直角坐标系,如图所示,则F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3), 由CG →=λCB →+μCD →可得,m -23=-3λ-3μ,即λ+μ=-33m +2, 数形结合可知m ∈[-23,3], 则-33m +2∈[1,4],即λ+μ的取值范围为[1,4]. (2)设非零向量a ,b 的夹角为θ,若|a |=2|b |,且不等式|2a +b |≥|a +λb |对任意θ恒成立,则实数λ的取值范围为( ) A .[-1,3] B .[-1,5] C .[-7,3] D .[5,7]答案 A解析 ∵非零向量a ,b 的夹角为θ,若|a |=2|b |, a ·b =|a ||b |cos θ=2|b |2cos θ,不等式|2a +b |≥|a +λb |对任意θ恒成立, ∴(2a +b )2≥(a +λb )2,∴4a 2+4a ·b +b 2≥a 2+2λa ·b +λ2b 2, 整理可得(13-λ2)+(8-4λ)cos θ≥0恒成立, ∵cos θ∈[-1,1],∴⎩⎪⎨⎪⎧13-λ2+8-4λ≥0,13-λ2-8+4λ≥0, ∴⎩⎪⎨⎪⎧-7≤λ≤3,-1≤λ≤5,∴-1≤λ≤3. 规律方法 利用共线向量定理及推论 (1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.跟踪演练1 (2022·滨州模拟)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤13,12 C .[0,1] D .[1,2]答案 C解析 由题意,设AN →=tAM →(0≤t ≤1),如图.当t =0时,AN →=0, 所以λAB →+μAC →=0,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN →=λAB →+μAC →(λ,μ∈R ), 所以tAM →=λAB →+μAC →, 即AM →=λt AB →+μt AC →,因为M ,B ,C 三点共线,所以λt +μt =1,即λ+μ=t ∈(0,1].综上,λ+μ的取值范围是[0,1].考点二 求向量模、夹角的最值(范围)例2 (1)已知e 为单位向量,向量a 满足:(a -e )·(a -5e )=0,则|a +e |的最大值为( ) A .4 B .5 C .6 D .7 答案 C解析 可设e =(1,0),a =(x ,y ), 则(a -e )·(a -5e )=(x -1,y )·(x -5,y ) =x 2-6x +5+y 2=0, 即(x -3)2+y 2=4, 则1≤x ≤5,-2≤y ≤2, |a +e |=(x +1)2+y 2=8x -4, 当x =5时,8x -4取得最大值为6, 即|a +e |的最大值为6.(2)在平行四边形ABCD 中,AB →|AB →|+2AD →|AD →|=λAC→|AC →|,λ∈[2,2],则cos ∠BAD 的取值范围是________. 答案 ⎣⎡⎦⎤-34,-14 解析 因为AB →|AB →|+2AD →|AD →|=λAC→|AC →|,且AB →+AD →=AC →,所以|AB →|∶|AD →|∶|AC →|=1∶2∶λ, 不妨设|AB →|=1,则|AD →|=2,|AC →|=λ, 在等式AB →|AB →|+2AD →|AD →|=λAC→|AC →|两边同时平方可得5+4cos ∠BAD =λ2,则cos ∠BAD =λ2-54,因为λ∈[2,2],所以cos ∠BAD =λ2-54∈⎣⎡⎦⎤-34,-14.易错提醒 找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π]; 若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线,同理若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.跟踪演练2 (2022·马鞍山模拟)已知向量a ,b 满足|a -3b |=|a +3b |,|a +b |=4,若向量c =λa +μb (λ+μ=1,λ,μ∈R ),且a ·c =b ·c ,则|c |的最大值为( ) A .1 B .2 C .3 D .4 答案 B解析 由|a -3b |=|a +3b |得a ·b =0, 所以a ⊥b .如图,设OA →=a ,OB →=b ,|OA →|=m ,|OB →|=n , 由a ⊥b 可知OA ⊥OB , 所以|AB →|=|b -a |=|a +b |=4,即m 2+n 2=16,所以2mn ≤16,则mn ≤8,当且仅当m =n 时取得等号.设OC →=c , 由c =λa +μb (λ+μ=1), 可知A ,B ,C 三点共线,由a ·c =b ·c 可知(a -b )·c =0,所以OC ⊥AB , 由等面积法可得, 12|OA →|·|OB →|=12|AB →|·|OC →|, 得|OC →|=|OA →|·|OB →||AB →|=mn 4≤2,所以|c |的最大值为2.考点三 求数量积的最值(范围)例3 (1)(2022·福州质检)已知平面向量a ,b ,c 均为单位向量,且|a -b |=1,则(a -b )·(b -c )的最大值为( ) A.14 B.12 C .1 D.32答案 B解析 ∵|a -b |2=a 2-2a ·b +b 2 =2-2a ·b =1, ∴a ·b =12,∴(a -b )·(b -c )=a ·b -a ·c -b 2+b ·c =12-1-(a -b )·c =-12-|a -b |·|c |cos 〈a -b ,c 〉=-12-cos 〈a -b ,c 〉,∵cos 〈a -b ,c 〉∈[-1,1], ∴(a -b )·(b -c )∈⎣⎡⎦⎤-32,12, 即(a -b )·(b -c )的最大值为12.(2)(2022·广州模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点P 在BC 边上(包括端点),则AD →·AP →的取值范围是________. 答案 [-2,2]解析 如图所示,以C 为原点,BC →为x 轴正方向,过点C 垂直向上的方向为y 轴,建立平面直角坐标系.因为菱形ABCD 的边长为2,∠ABC =60°, 则B (-2,0),C (0,0),D (1,3),A (-1,3). 因为点P 在BC 边上(包括端点), 所以设P (t ,0),其中t ∈[-2,0]. 所以AD →=(2,0),AP →=(t +1,-3), 所以AD →·AP →=2t +2∈[-2,2].规律方法 向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.跟踪演练3 已知AB 是半圆O 的直径,AB =2,等腰△OCD 的顶点C ,D 在半圆弧AB ︵上运动,且∠COD =120°,点P 是半圆弧AB ︵上的动点,则PC →·PD →的取值范围为( ) A.⎣⎡⎦⎤-34,34 B.⎣⎡⎦⎤-34,1 C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,12 答案 C解析 以点O 为原点,AB 为x 轴,垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,不妨取C (1,0),则D ⎝⎛⎭⎫-12,32,设P (cos α,sin α)(α∈[0,π]), PC →·PD →=(1-cos α,-sin α)·⎝⎛⎭⎫-12-cos α,32-sin α =12-32sin α-12cos α=12-sin ⎝⎛⎭⎫α+π6. 因为α∈[0,π],所以α+π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1, 所以12-sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1,即PC →·PD →的取值范围为⎣⎡⎦⎤-12,1. 专题强化练1.(2022·山东省实验中学诊断)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( )A .4B .6C .8D .9 答案 C解析 由题意得,AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),∵A ,B ,C 三点共线,∴AB →=λAC →且λ∈R ,则⎩⎪⎨⎪⎧a -1=-λ(b +1),2λ=1,可得2a +b =1, ∴1a +2b =⎝⎛⎭⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab=8, 当且仅当b =2a =12时,等号成立.∴1a +2b的最小值为8. 2.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值为( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使OA →+OB →=OD →, 则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB → =1-(OA →+OB →)·OC →=1-OD →·OC → =1-2cos 〈OD →,OC →〉,当cos 〈OD →,OC →〉=-1时,(OC →-OA →)·(OC →-OB →)取得最大值为1+ 2.3.(2022·杭州模拟)平面向量a ,b 满足|a |=1,⎪⎪⎪⎪b -32a =1,记〈a ,b 〉=θ,则sin θ的最大值为( )A.23B.53C.12D.32 答案 A解析 因为|a |=1,⎪⎪⎪⎪b -32a =1, 所以⎪⎪⎪⎪b -32a 2=|b |2-3a ·b +94|a |2=1, |b |2-3|a |·|b |cos θ+94-1=0,即|b |2-3|b |cos θ+54=0,所以cos θ=|b |2+543|b |=|b |3+512|b |≥2536=53, 当且仅当|b |=52时,等号成立, 因为〈a ,b 〉=θ,θ∈[0,π], 所以sin θ=1-cos 2θ≤1-59=23, 即sin θ的最大值为23.4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =2,P 是线段AB 上的动点,则|PC →+4PD →|的最小值为( )A .35B .6C .25D .4答案 B解析 如图,以点B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴,建立平面直角坐标系,设AB =a ,BP =x (0≤x ≤a ),因为AD =1,BC =2,所以P (0,x ),C (2,0),D (1,a ), 所以PC →=(2,-x ),PD →=(1,a -x ), 4PD →=(4,4a -4x ),所以PC →+4PD →=(6,4a -5x ),所以|PC →+4PD →|=36+(4a -5x )2≥6,所以当4a -5x =0,即x =45a 时,|PC →+4PD →|的最小值为6.5.(多选)已知向量a ,b ,单位向量e ,若a ·e =1,b ·e =2,a ·b =3,则|a +b |的可能取值为( ) A .3 B.10 C.13 D .6答案 CD解析 设e =(1,0),a =(x 1,y 1),b =(x 2,y 2), 由a ·e =1得x 1=1, 由b ·e =2得x 2=2,由a ·b =x 1x 2+y 1y 2=3,可得y 1y 2=1, 则|a +b |=(a +b )2=(x 1+x 2)2+(y 1+y 2)2=11+y 21+y 22≥11+2y 1y 2=13,当且仅当y 1=y 2=1时取等号.6.(多选)(2022·武汉模拟)正方形ABCD 的边长为2,E 是BC 的中点,如图,点P 是以AB 为直径的半圆上任意一点,AP →=λAD →+μAE →(λ,μ∈R ),则( )A .λ的最大值为12B .μ的最大值为1 C.AP →·AD →的最大值为2 D.AP →·AE →的最大值为5+2 答案 BCD解析 如图,以AB 的中点O 为原点建立平面直角坐标系,则A (-1,0),D (-1,2),E (1,1), 连接OP ,设∠BOP =α(α∈[0,π]), 则P (cos α,sin α), AP →=(cos α+1,sin α), AD →=(0,2),AE →=(2,1), 由AP →=λAD →+μAE →,得2μ=cos α+1且2λ+μ=sin α,α∈[0,π], 所以λ=14(2sin α-cos α-1)=54sin(α-θ)-14≤5-14,故A 错误; 当α=0时,μmax =1,故B 正确; AP →·AD →=2sin α≤2,故C 正确; AP →·AE →=sin α+2cos α+2=5sin(α+φ)+2≤5+2,故D 正确.7.(2022·广东六校联考)已知菱形ABCD 的边长为2,∠BAD =60°,E 是边CD 的中点,连接AE 并延长至点F ,使得AE =2EF ,若H 为线段BC 上的动点,则FH →·AH →的取值范围为______________. 答案 ⎣⎡⎦⎤-17764,-32 解析 方法一 连接AC ,BD 交于点O ,以点O 为坐标原点,以BD 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,则A (0,3),B (-1,0),C (0,-3),D (1,0),E ⎝⎛⎭⎫12,-32. 设F (x 0,y 0),因为AE →=2EF →,所以⎝⎛⎭⎫12,-332=2⎝⎛⎭⎫x 0-12,y 0+32 =()2x 0-1,2y 0+3, 所以2x 0-1=12,2y 0+3=-332, 所以x 0=34,y 0=-534, 所以F ⎝⎛⎭⎫34,-534. 易知直线BC 的方程为y =-3x -3,设H (x ,-3x -3)(-1≤x ≤0),则AH →=(x ,-3x -23),FH →=⎝⎛⎭⎫x -34,-3x +34, 所以FH →·AH →=⎝⎛⎭⎫x -34x +⎝⎛⎭⎫3x -34(3x +23)=4x 2+92x -32, 因为-1≤x ≤0,所以FH →·AH →∈⎣⎡⎦⎤-17764,-32.方法二 设BH →=tBC →(0≤t ≤1),则AH →=AB →+BH →=AB →+tBC →=AB →+tAD →. 连接AC (图略),因为E 为CD 的中点, 所以AE →=12(AC →+AD →)=12(AB →+2AD →), AF →=AE →+EF →=32AE →=34(AB →+2AD →), 所以FH →·AH →=(AH →-AF →)·AH →=AH →2-AF →·AH →=(AB →+tAD →)2-34(AB →+2AD →)·(AB →+tAD →)=4+4t 2+4t -34(4+2t +4+8t ) =4+4t 2+4t -6-15t 2=4t 2-72t -2. 设y =4t 2-72t -2,0≤t ≤1,根据二次函数的图象与性质可知,函数y =4t 2-72t -2,0≤t ≤1的最小值在t =716处取得,为-17764,最大值在t =1处取得,为-32, 所以FH →·AH →的取值范围是⎣⎡⎦⎤-17764,-32. 8.已知向量a ,b 满足|a |=1,|b |=3,则|2a +b |+|2a -b |的最小值是________,最大值是________.答案 6 213解析 ∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |=4,且|2a +b |+|2a -b |≥|2a +b -2a +b |=2|b |=6,∴|2a +b |+|2a -b |≥6,当且仅当2a +b 与2a -b 反向时取等号.此时|2a +b |+|2a -b |的最小值为6.∵|2a +b |+|2a -b |2≤|2a +b |2+|2a -b |22 =|2a |2+|b |2=13, ∴|2a +b |+|2a -b |≤213,当且仅当|2a +b |=|2a -b |时取等号, ∴|2a +b |+|2a -b |的最大值为213.。

平面向量的应用重难点解析版

平面向量的应用重难点解析版

突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。

考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。

高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思

高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思

《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。

正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。

二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。

学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。

三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。

六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。

数形结合在初中数学的应用

数形结合在初中数学的应用

数形结合在初中数学的应用
数形结合是初中数学中非常重要的一个概念,它是指在分析解决数学问题时,既可以运用数学知识,也可以利用几何图形来帮助解决问题。

数形结合在初中数学的应用非常广泛,例如:
1.求解面积和体积问题:我们可以通过利用几何图形来求解各种面积和体积问题,例如求解长方形、正方形、圆形、三角形等图形的面积,以及球、圆柱、圆锥等图形的体积。

2.利用相似三角形求解问题:我们可以通过数形结合的方法,利用相似三角形来解决各种数学问题,例如求解直角三角形的斜边长度、求解比例问题等等。

3.利用图形坐标系求解问题:我们可以通过建立图形坐标系,将数学问题转化为几何问题,利用几何图形来解决各种问题,例如求解直线方程、解决距离问题等。

4.利用平面向量求解问题:我们可以通过利用平面向量的性质和特点,来解决各种数学问题,例如求解向量的模长、向量的方向、向量的加减等等。

总之,数形结合在初中数学中的应用是非常广泛的,它能够帮助我们更好地理解和掌握各种数学知识,提高我们的数学思维和解决问题的能力。

- 1 -。

数形结合思想在数学教学中的运用论文

数形结合思想在数学教学中的运用论文

毕业论文〔设计〕材料题目:数形结合思想在数学教学中的应用
学生姓名:
学生学号:
系别:
专业:
届别:
指导教师:
2021年12月10日
填写说明
1、本材料包罗淮南师范学院本科毕业论文〔设计〕任务书、开题陈述以及毕业论文〔设计〕评审表三局部内容。

2、本材料填写挨次依次为:
〔1〕指导教师下达毕业论文〔设计〕任务书;
〔2〕学生按照毕业论文〔设计〕任务书的要求,在文献查阅的根底上撰写开题陈述,送交指导教师审阅并签字承认;
〔3〕毕业论文〔设计〕工作后期,学生填写毕业论文〔设计〕主要内容,连同毕业论文〔设计〕全文一并送交指导教师审阅,指导教师按照学生实际完成的论文〔设计〕质量进行评价;
〔4〕指导教师将此表连同学生毕业论文〔设计〕全文一并送交评阅教师评阅。

3、指导教师、评阅教师对学生毕业论文〔设计〕的成就评定均采用百分制。

4、毕业论文〔设计〕辩说记录不包罗在此表中。

一、毕业论文〔设计〕任务书
二、毕业论文〔设计〕开题陈述
三、毕业论文〔设计〕评审表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

uuur
区 域 = P 0 r P Q R, r R .若 C I
为两段分离的曲线,则
A.1 r R 3 C .r 1 R 3
B.1 r 3 R D .1 r 3 R
Q( 2 , 2)
Q( 2 , 2)
练一练 (2014年湖南理)
3.在平面直角坐标系中,O是原点,A1, 0,
2sin4
当=时, cr 2 2.
4
max
C1 B
b
aA
思考:还有其它解答本题的方法吗?
Q 法cr 二-ar、-br
ar
r -b
cr
-ar
r -b
2
ar -br
2

c -a -b
2
-
a-b
2
=0
c-2a c-2b =0
rr
2b c
B1
C
C1
2b
2ar cr
2a
A1
r
c OA1 cossin2
给自己一个目标,让生命为他燃烧!
数形结合在平面向量中的应用
高三平面向量复习
1.构建圆模型,解决与向量有关的范围问题
(2013年湖南理)
rr
r
例 1.已 知 a , b 是 相 互 垂 直 的 单 位 向 量 , 若 c 满
rrr
r
足 c-a-b= 1 , 则 c的 取 值 范 围
A. 21,21 C.1,21
uuur uuur 2 ,OA,OB = 3 .
B
O
A
D
练一练
r r r r
r
4.已知平面向量a, b ab满足a2,且
rr r
rr
a, b-a =120o,tR,则1-tatb的取
值范围是 3,+).
Br r
ab
b
D
O
A
a
3.构建函数模型,解决与向量有关的范围 问题
例 4. 正方形 ABCD 是边长为 4 ,动点 P 在以 AB
uuur
B 0,3 ,C3, 0,动点D满足CD=1,则
uuur uuur uuur
OAOBOD的最大值是
.
B D C
A
2.构建三角形模型,解决与向量有关的范围问题 uuur uuur
例3.已知OA 4,OB 6,AOB是钝角,
uuur uuur
若f tOAtOB的最小值是2 3,则
t的值是
1 3
为直径的圆弧 APB 上,则 PC PD 的取值范围

.
y
x O
练一练
y x
解:设A 0,0,B 1,0,C 1,1
D
0,1

E
1 2
,0

P
cos
,sin
uuur AP
cos,sin
uuur
,DE
1 2
, -1
Q
uuur AC
1 2
, -1
cos,sin
1,1
2co3ssi+nsin12cos3+sin
22c3os6c+ossin

f
3 6cos 2cos +sin

0, 2
f
'
3 6cos 2cos +sin
'
3 2 2 sin cos 2cos +sin 2
Q 0,2
f ' 0
即 f 在 0, 2 单 调 递 增
f f 0 3
m in
2
2 3 1 .
B. 21,22 D.1,22
C C1
B
D
b
C2
aA
r c 21
max
r c 21
min
思考:还有其它解答本题的Leabharlann 法吗?变式提升:rr
r
1.已 知 a, b为 单 位 向 量 , 若 向 量 c满 足
c r-a r-b ra r-b r, 则 c r的 最 大 值 是 2 2 .
r
c 2OAcossin2
r
则 c的 取 值 范 围 是
1,2
2 .
r r r r r r r r r rr
2.已 知a, b, c满 足a=1, a-b=b, a-c b-c=0, 若
r
对 每 一 确 定 的 b, c的 最 大 值 和 最 小 值 分 别 为 m和 n,
r
1
则 对 任 意 的 向 量 b, m-n的 最 小 值 为 2
m in
22
小结
1.可从数和形两方面出发解决向量问题. 2.数形结合的关键是构造几何图形,关注向量 的大小(模)、方向(夹角)、可平移性.
转化思想 3.两个思想
建模思想
4.三个方法:坐标法、代数法、几何法
.
(2014年安徽理)
例 2.在 平 面 直 角 坐 标 系 xoy 中 , 已 知 向 量
r r r r
uuur
rr
a = b =1,a b = 0 , 点 Q 满 足 O Q 2 a b .
uuur r
r
曲 线 C P O P a c o s b s in ,0 2 ,
2sin4
当=时, cr 2 2.
4
max
rr r
rr
2. 已知a, b, c为单位向量,且ab0,
r r r r
rrr
a-c b-c 0,则c-a-b的最大值是
1.
ab
B
D
b
C
aA
练一练
1.设 向 量 a r, b r, c r满 足 a r=b r=1, a rb r=-1, a r-c r, b r-c r =60o,
相关文档
最新文档