汽车纵向动力学

合集下载

车辆系统动力学复习重点

车辆系统动力学复习重点

车辆系统动⼒学复习重点1.系统动⼒学研究内容及发展趋势研究内容长期以来,⼈们⼀直在很⼤程度上习惯按纵向、垂向和横向分别独⽴研究车辆动⼒学问题;⽽实际中的车辆同时会受到三个⽅向的输⼊,各⽅向所表现的运动响应特性必然是相互作⽤、相互耦合的.纵向动⼒学:纵向动⼒学研究车辆直线运动及其控制的问题,主要是车辆沿前进⽅向的受⼒与其运动的关系。

按车辆⼯况的不同,可分为驱动动⼒学和制动动⼒学两⼤部分。

⾏驶动⼒学:主要是研究由路⾯的不平激励,通过悬架和轮胎垂向⼒引起的车⾝跳动和俯仰以及车辆的运动。

操纵动⼒学:主要研究车辆的操纵特性,主要与轮胎侧向⼒有关,并由此引起车辆侧滑、横摆和侧倾运动。

操纵动⼒学的研究范围分为三个区域:线性域:侧向加速度越⼩于0.4kg时,通常意味着车辆在⾼附着路⾯做⼩转向运动;⾮线性域:在超过线性域且⼩于极限侧向加速度(约为0.8kg)范围内;⾮线性联合⼯况:通常指车辆在转弯制动或转弯加速时的情况。

发展趋势:(1)车辆主动控制:ABS,TCS等逐步向车⾝侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当⾯扩展。

通过控制算法、传感器技术和执⾏机构的开发实现的⾃动调节。

(2)车辆多体运动动⼒学:车辆的多刚体模型逐步向多柔体模型发型。

可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从⽽缩短产品的设计周期,节约试制费⽤,同时提⾼物理样机与最终产品之间的相似性。

(3)“⼈—车—路”闭环系统:充分考虑驾驶员模型以及车辆本⾝的⼀些动⼒学问题来提⾼汽车稳定性。

2.轮胎滚动阻⼒概念及其分类:概念:当充⽓的轮胎在理想路⾯(通常指平坦的⼲、硬路⾯)上直线滚动时,其外缘中⼼对称⾯与车轮滚动⽅向⼀致,所受到的滚动⽅向相反的阻⼒。

分类:弹性迟滞阻⼒、摩擦阻⼒和风扇效应阻⼒。

3.什么是滚动阻⼒系数?影响因素有哪些?其值等于相应载荷作⽤下滚动阻⼒F R与车轮垂直载荷F X的⽐值。

影响因素:车轮载荷(反⽐)、胎压(反⽐)、车速(正⽐,先缓慢增加,再明显增加)、轮胎的结构设计、嵌⼊材料和橡胶混合物的选⽤。

汽车系统动力学第五章 纵向动力学概述

汽车系统动力学第五章 纵向动力学概述

第五章纵向动力学性能分析除空调等附属设备的能耗需求外,行驶过程中车辆所需的动力与能量由行驶阻力所决定。

本章将在分析动力需求与动力供应的基础上,分析车辆的纵向动力学特性,包括动力性、燃油经济性和制动性。

此外,还将讨论与路面附着条件相关的驱动和制动极限问题,最后进行制动稳定性的分析。

§5-1 动力的需求与供应本节首先介绍车辆的行驶阻力,然后分析车辆对动力的需求及供应,最后给出车辆的动力供求平衡方程。

一、车辆对动力的需求这里介绍的车辆行驶阻力,实际上代表了车辆对动力的需求。

按行驶状态的不同,车辆行驶阻力可分为稳态匀速行驶状态下的阻力和瞬态加速时的阻力两部分。

前者包括车轮滚动阻力、空气阻力和坡度阻力;后者主要是指加速阻力。

二、车辆的动力供应§5-2 动力性一、概述车辆的动力性由加速能力、爬坡能力和最高车速来衡量,也可通过对特定行驶工况下车辆动力需求与动力供应之间的比较来评定,而供求双方的平衡关系则由驱动轮轮胎与地面间的相互作用所决定。

评价车辆动力性时,通常采用“驱动力平衡图”或“驱动功率平衡图”进行分析。

三、加速能力§5-3 燃油经济性目前,大多数车辆采用内燃机作为发动机,其经济性主要以燃油消耗量表示。

一、燃油消耗量的计算根据初始的车辆设计参数,在车辆开发初期即可进行其燃油经济性理论上的估计,从而方便地在车辆设计阶段进行设计参数的修正。

二、减少油耗的途径减少燃油消耗量的途径:1)交通管理因素:包括交通管理系统、信号灯控制系统、驾驶员培训等因素,实际上均影响了车辆的行驶速度。

2)车辆行驶阻力因素:在保证汽车安全性、人机工程、经济性和舒适性的同时,尽可能降低车辆行驶阻力,如减小整车质量、轮胎滚动阻力系数、空气阻力系数和迎风面积等。

3)尽可能地降低附属设备(如空调、动力转向、动力制动等)的能耗。

4)提高传动系效率,使发动机功率要尽可能多地传递到驱动轮上。

§5-4 驱动与附着极限和驱动效率第三章中对单个轮胎与地面附着极限问题已有介绍,本节将在整车受力分析的基础上,详细讨论整车驱动与附着极限。

6汽车系统动力学-纵向动力学控制系统

6汽车系统动力学-纵向动力学控制系统

(a)霍尔元件磁场较弱 (b)霍尔元件磁场较强 图 霍尔式车轮转速传感器 1—霍尔元件;2—永久磁铁;3-齿圈
20
6.1防抱死制动控制系统
霍尔元件输出的是毫伏级的准正弦波电压,通过电子电路转 换成标准的脉冲电压输出信号,电压幅值为 7V~14V,如图所示。

霍尔式车轮转速传感器电压波形
霍尔车轮转速传感器具有以下优点:输出信号电压幅值不受转 速的影响;频率响应高,其响应频率高达20 kHz,相当于车速为 1000km/h时所检测的信号频率;抗电磁干扰能力强。
26
6.2驱动力控制系统 基本原理和控制目标
■TCS(Bosch公司ASR)是在ABS基础上发展起来的主动安全系统
27
6.2驱动力控制系统
汽车牵引力控制系统的作用 汽车牵引力控制系统(Traction control System,TCS。也称 TRC)是继防抱死制动系统之后应用于车轮防滑的电子控制系统, 其功用是防止汽车在起步、加速时和在滑溜路面行驶时的驱动轮 滑转。故有些汽车公司也将该技术称为驱动防滑系统 (Acceleration Slip Regulation, ASR)。 当车轮转动而车身不动或是汽车的速度低于转动车轮的轮缘速 度时,轮胎与地面之间就有相对的滑动,这种滑动称为“滑转”。 汽车防滑控制系统可以在车轮出现滑转时,通过对滑转车轮 施以制动力或控制发动机的动力输出来抑制车轮的滑转,以避免 汽车牵引力和行驶稳定性下降。
2
6.1防抱死制动控制系统 控制目标
——由于前轮抱死,车辆失去转向能力;而
后轮抱死属于不稳定工况,易引起车辆急速 摔尾的危险。
——制动力通常在滑移率为某一特定值附近
达到最大值,因而将该滑移率值认为是最佳 滑移率,并作为ABS的控制目标。 ——由于车轮的滑移率不易直接测得,因此 必须采用其他参数作为ABS的控制目标参数。

单轮对纵向动力学数值分析

单轮对纵向动力学数值分析

单轮对纵向动力学数值分析严晓明,罗世辉,马卫华(西南交通大学牵引动力国家重点实验室,四川成都610031)摘要:轮对的纵向振动会影响机车车辆动力学性能,而且是轮轨非正常磨耗的一个重要因素。

但是机车车辆动力学研究中,对轮对的纵向动力学特点的研究往往被忽略。

文章建立了一个包括x方向的运动、轮对的摇头、点头扰动和轮对的横移的4自由度单轮对计算模型,并对该模型进行数值仿真,研究其纵向振动现象。

最后讨论了系统参数对纵向动力学行为的影响,认为一系纵向刚度、轴重和黏着系数对纵向振动影响很大。

关键词:轮对;纵向振动;数值仿真;动力学;参数;影响中图分类号:U260.331+.1文献标识码:A文章编号:1672-1187(2005)06-0022-03NumericalanalysisoflongitudinaldynamicsofsinglewheelsetYANXiao-ming,LUOShi-hui,MAWei-hua(TractionPowerStateKeyLaboratory,SouthwestJiaotongUniversity,Chengdu610031,China)Abstract:Thelongitudinalvibrationofwheelseteffectsthedynamicsperformanceofrailwayvehicle,anditmaybecauseabnormalwheel/railcontactfatigueproblem.Butthelongitudinaldynamicsbehaviorofwheelsetisoftenneglectedwhilecarryingoutrailwayvehicledynamicsanalysis.Thedynamicscalculationmodelforsinglewheelsetincludinglongitudinaldisplacement,yaw,pitchandlateraldisplacementissetupinthispaper.Simulationofthismodelisdone,andthelongitudinalvibrationperformanceisinvestigated.Theeffectofthesystemparametersisdiscussed,thelongitudinalvibrationisinfluencedhighlybyprimarylongitudinalstiffness,axle-loadandcoefficientoffriction.Keywords:wheelset;longitudinalvibration;numericalsimulation;dynamics;parameters;influence电力机车与城轨车辆ElectricLocomotives&MassTransitVehicles第28卷第6期2005年11月20日Vol.28No.6Nov.20th,2005收稿日期:2005-06-13作者简介:严晓明(1980-),男,在读硕士研究生,研究方向为机车、城轨车辆动力学理论仿真及应用。

3 汽车纵向动力学解析

3 汽车纵向动力学解析
z x
u x
& p=φ
w z
γ=ψ &
x y
υ
y q=ϕ &
z
∑M I q′ − ( I − I ) pγ = ∑ M I γ ′ − (I − I ) pq = ∑ M
I x p′ − ( I y − I z )qγ =
y z x y
x y
∑ Fx )= z m s(w′ − u ⋅ q ) = ∑ F
y q =ϕ &
SAE坐标系
13
第三章
汽车纵向动力学
二、空间任一刚体的运动方程
ms (u′−υ⋅γ + w⋅q) = ms ms
∑F (v′−w⋅ p+u⋅γ ) = ∑F (w′−u⋅q+υ ⋅ p) = ∑F
z x
x y z
∑M I q ′ − ( I − I ) pγ = ∑ M I γ ′ − (I − I ) pq = ∑ M
2009-10-19 6
第三章
汽车纵向动力学
作用在每个驱动轮上的垂直载荷等于静态载荷加上动态载荷, 后者是由加速时的纵向载荷转移或驱动转矩造成的横向载荷转移引 起的。 (1) 驱动转矩引起的横向载荷转移 不管是前桥还是后桥,只要驱动桥是刚性桥就存在横向载荷转 移。绕车桥中心点的力矩平衡方程为:
∑T O = ( W
这部分在汽车理论和第二章 轮胎动力学中有相应介绍,在此不
再重复。
二、汽车加速性能
知道了驱动力和行驶阻力,就可以计算车辆的加速性能了。 1.取决于发动机功率的极限加速能力 2.取决于附着力的极限加速能力 假设发动机功率足够大,极限加速能力会受到轮胎与路面之间
摩擦系数的限制。这样的话,驱动力的极限值为:

应用于汽车主动避撞系统的车辆纵向动力学模型

应用于汽车主动避撞系统的车辆纵向动力学模型

中图分类号D8 (C*A+ 文 章 编 号 D$%%%&%%’(-*%%(.%*&%*’B&%(
文 献 标 识 码 DH
TUVWXYUYZ[\W]^_W[‘Y_a[‘bWXbZ_UY cZdeUVWXYUXZYYWfWZ[‘eZW_‘[XUfaf]Ubf
ghijklmn=oph qkrs=tuvkwxmrs=tupyzxmn{xr
+A+ 发动机模型 +A+A+ 理论模型
四冲程直喷式汽油机结构如图 *所示K此发动
收 稿 日 期 D*%%+&%’&*+ 基金项目D国家 E十五F科技攻关项目 -*%%*GH(%(H*$. 作 者 简 介 D侯 德 藻 -$IJ’&.=男 -汉 .=山 东 =博 士 研 究 生 K
L&M72@D5NO%%P M72@1AQ1234567A<N6A:3 通 讯 联 系 人 D李 克 强 =教 授 =L&M72@D@2RSP Q1234567A<N6A:3
延时 /&0和从点火到力矩产生的时间延时 /102进气歧
管的进气流量 %&’可用以下公式表示
%3&’4 %5&67897:;<#
=>?
其 中$%5&6表 示 最 大 进 气 流 量#对 于 一 定 结 构 的 发
动 机 来 说 是 一 常 数.789是 节 气 门 流 体 动 力 学 特 性
对 于 进 气 流 量 的 影 响 函 数.7:;<是 节 气 门 前 后 气 体
-清华大学 汽车工程系=汽车安全与节能国家重点实验室=北京 $%%%B(.

3汽车纵向动力学解析

3汽车纵向动力学解析

限主要看汽车的速度。低速时轮胎附着力可能是限制因素,而高速
时主要受限于发动机功率。
发动机的转矩经传动系传至驱动轮 汽车前进方向
上时,驱动轮将相对地面转动或具有转
Tt
动的趋势,如图所示。
附着力足够大时,车轮匀速转动时的
驱动力大小为:
r
分析受限于发动机功率的最大驱动 力时首先要了解发动机的特性及其与传
P
(1) 驱动转矩引起的横向载荷转移 不管是前桥还是后桥,只要驱动桥是刚性桥就存在横向载荷转 移。绕车桥中心点的力矩平衡方程为:
∑TO = (Wr / 2 + Wy ? Wr / 2 + Wy )t / 2 + Ts ? Td = 0
即 Wy = (Td ? Ts ) / t
Td :为传动轴作用在驱动桥上的转矩
T s :簧载质量经悬架作用于驱动桥的
转矩
刚性驱动桥受力分析图
2009-10-19
7
第三章 汽车纵向动力学
上面方程中,Td 与驱动力有关: Td = Ft r / i f
而 Ts = Ts f + Tsr = Kφ r φ + Kφ f φ = Kφ φ
综合以上几式可得: Wy = Ft r Kφ f i f t Kφ r+Kφ f
要 二、 汽车的加速性能

1. 驱动转矩引起的横向载荷转移
2. 附着极限

三、 汽车的制动性能
1. 制动系统功能
2. 制动系统的评价指标
2009-10-19
2
第三章 汽车纵向动力学
汽车驱动与制动动力学主要研究汽车纵向运动与其受力的 关系。驱动动力学主要涉及汽车的动力性,其主要评价指标通 常为最高车速、加速时间和最大爬坡度。制动动力学则主要涉 及汽车的制动性,通常定义为汽车行驶时能在短距离内停车且 维持行驶方向稳定性和在下长坡时能维持一定车速的能力。

汽车纵向动力学研究综述

汽车纵向动力学研究综述

Internal Combustion Engine&Parts・23・汽车纵向动力学研究综述Research Progress of Automobile Longitudinal Dynamics于旺YU Wang(沈阳理工大学汽车与交通学院车辆工程专业,沈阳110159)(Vehicle Engineering,School of Automobile and Transportation,Shenyang University of Technology,Shenyang110159,China)摘要:随着汽车工业的发展,汽车纵向动力学研究不断加深,汽车在道路上行驶,就会存在驱动、制动、滑移等纵向动力学方面的问题。

针对这一问题的研究,人们提出了汽车纵向动力学的概念。

汽车纵向动力学的研究主要包括:汽车制动动力学、汽车防抱死系统、汽车驱动防滑系统、汽车自适应巡航系统、汽车自动刹车系统。

本文将主要介绍汽车纵向动力学控制系统组成和原理、汽车制动动力学控制系统的研究进展、汽车防抱死系统的研究进展、汽车驱动防滑系统的研究进展、汽车自适应巡航控制系统的研究进展、汽车自动刹车辅助系统的研究进展。

Abstract:With the development of the automotive industry,the research on the longitudinal dynamics of automobiles has continued to deepen,and there are problems with longitudinal dynamics such as driving,braking,and slipping when the car is driving on the road.In view of this problem,people have proposed the concept of automobile longitudinal dynamics.The research of automobile longitudinal dynamics mainly includes:automobile braking dynamics,automobile anti-lock braking system,automobile driving anti-skid system, automobile adaptive cruise system,automobile automatic braking system.This article will mainly introduce the composition and principle of automotive longitudinal dynamics control system,the research progress of automotive brake dynamics control system,the research progress of automotive anti-lock system,the research progress of automotive drive anti-skid system,the research of automotive adaptive cruise control system Progress,research progress of auto brake assist systems.关键词:汽车;纵向动力学;防抱死;驱动防滑;制动动力学;自适应巡航;自动刹车;系统Key words:automobile;longitudinal dynamics;anti-lock braking;driving anti-skid;braking dynamics;adaptive cruise;automatic braking;system中图分类号:U469.72文献标识码:A文章编号:1674-957X(2020)24-0023-020引言目前城市的发展和道路的优化设计极大地考验了汽车在道路上的行驶性能,要想在现有的道路上道路上提高交通流量并控制交通事故的发生,这就要求汽车设计者能在提高汽车安全行驶的车速和减小汽车与前后车之间的距离(但能有足够的安全距离)的同时能够保证汽车的各方面的稳定性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


传动系统设计方案的影响
• 除行驶阻力和发动机特性的影响外,传动系 统设计方案和控制策略对车辆的动力性也有 显著影响。 • 必须对每个档位下的加速能力和爬坡能力逐 一进行校核。
• 由于CVT可以根据所需的功率任意选择发动机的 工作点,采用合理的控制策略,可使发动机始终 工作在最大输出功率的工况下,从而使车辆总可 以获得最佳的爬坡性能和加速性能。
便可以分析汽车在附着条件良好路面上的行驶能 力。即在油门全开时,汽车可能达到最高车速、加速 能力和爬坡能力。
动力性
•驱动力与行驶阻力平衡图定义 • 为了清晰地描述汽车行驶时受力情况及其平 衡关系,通常将平衡方程式用图解方式进行描 述,即将驱动力Ft和常见行驶阻力FD和Ff 绘在 同一张图上。
驱动力Ft
Ft1 Ft 2 Ft 3 Ft 4
Ff FD
Ff
F f mgf
车速ua,km / h
ua ua max
• 汽车驱动力-行驶阻力平衡图
1. 最大速度和部分负荷时的力平衡
以及 uamax 和部分负荷时的等速
2. 加速能力
3. 最大爬坡度

D
• 利用驱动力-行驶阻力平衡图 确定汽车的爬坡能力
加速阻力分量
• 旋转质量转动惯量
i w i0 dr i0 ig (e c Ti )
2 2 2
• 定义质量换算系数
i i 2 1 rd
• 有
Fa (i mv mc )ax
• 代表车辆动力需求的车辆总行驶阻力
FDem Fa FG FR FD ( i mv mc )ax (iG f R )(mv mc ) g CD A
总制动力和制动潜力
Fa FR FD FG Fe,t Fb
若制动减速度为 axb ,则所需的制动力Fb为
Fb Fa ( FR FD FG Fe,t Fb ) ( i mv mc )axb ( FR FD FG Fe,t )
• 采用电涡流缓速器和发动机制动的车辆下 坡行驶稳定性
评价指标
①常选取单位行程的燃油消耗量,即L/100km,或单位运输
工作的燃油消耗量,即L/100tkm、L/kpkm。前者用于比较相 同容量的汽车燃油经济性,也可用于分析不同部件(如发动 机、传动系等)装在同一种汽车上对汽车燃油经济性的影响; 后者常用于比较和评价不同容载量的汽车燃油经济性。其 数值越大,汽车燃油经济性越差。 ②汽车燃油经济性也可用单位量燃油消耗汽车所行驶的里程, 即km/L作为评价指标,称为汽车经济性因数。例如,美国
FR f R FZ ,W
a
2 FD CD A
Fa,t (mv mc )ax
u2
M a tw i Fa ,r 2 ax rd rd rd
旋转质量总等效转动惯量
• • • • 发动机、离合器 某特定传动比时的传动系统 驱动桥、差速器 车轮(包括制动鼓或制动盘及半轴)
ua ua max
• 汽车加速度-速度图
1/ a j
速度ua
ui u const
加速时间曲线
1 a j1
1 a j2
1 a j3
1 a j4
• 加速度倒数曲线
ua
由驱动力、滚动阻力和空气阻力,就 可按行驶方程式计算加速度及其倒数, 从而求得加速时间或者加速距离。
Meq n Ft ua Ft ua Ff FD Me1 n1 Ft1 ua1 Ft1 ua1 Ff FD Me2 n2 Ft2 ua2 Ft2 ua2 Ff FD Me3 n3 Ft3 ua3 Ft3 ua3 Ff FD … …… …… …… …… …… …… …… Mem n1m Ftm uam Ftm uam Ff FD
I档 II 档
Fj aj Fj aj t
Fj1 a1 Fj1 a1 t1
Fj2 a2 Fj2 a2 t2
Fj3 a3 Fj3 a3 t3
…… …… …… ……
Fjm a1m Fjm a1m Tm
I档 II 档
1 aj [ Ft ( F f Fw )] m 1 1 dt du t u aj aj
采用每加仑燃油能行驶的英里数,即MPG或mile/USgal。其
数值越大,汽车燃油经济性越好。
汽车燃油经济性试验方法
测定汽车燃油经济性的试验方法有多种。根据对各 种使用因素的控制程度,试验方法可分为以下几类: 不加控制的道路试验;


控制的道路试验;
道路循环试验(包括等速油耗、加速油耗、制动油耗、 怠速油耗等); 在室内实验,如汽车底盘测功机(即转鼓试验台)上的循 环试验。
纵向动力学
纵向动力学性能分析
• • • • • 动力的需求与供应 动力性 燃油经济性 驱动与附着极限和驱动效率 制动性
驱动力平衡图

动力的需求与供应
• 车辆对动力的需求(行驶阻力)
稳态匀速行驶阻力
车轮滚动阻力、空气阻力、坡度阻力
瞬态加速行驶阻力(加速阻力)
车辆对动力的需求
FG (mv mc ) g sin G (mv mc ) giG
a
2
u 2 ( imv mv )ax ]
• • • •
可以从以下几方面找出减少油耗的途径 (1)交通管理因素 (2)车辆行驶阻力因素 (3)尽可能地降低附属设备(空调、动力转向 等)的消耗 • (4)提高传动效率
• 匀速工况下不同档位油耗
• 单位里程所需能量的影响因素
各参数变化对轿车油耗的影响
燃油经济性
• 汽车燃油经济性:①指汽车以最少的燃油消耗完成单位运 输工作量的能力,它是汽车使用的主要性能之一;②在保 证动力性的条件下,以尽量少的燃油消耗量经济行驶的能
力。
• 汽车发动机的燃油经济性:通常由有效燃油消耗率
be(ge) 或有效效率η
e
来评价。因其不能反映发动机在具
体汽车上的功率利用情况及行驶条件的影响,所以,它不 能直接用于评价整车的燃油经济性。
Ft ( Ff FD ) mg
)
imax
FD Ff mg
i0 max
汽车爬坡度
umax
• 加速能力 它用aj,但aj不方便评价。通常用 加速时间或加速距离来评价。
du 1 加速度:a j ( Ft Байду номын сангаасF f FD ) dt i m 则加速度倒数曲线为 F du j du du aj dt t dt m aj aj u 离散化处理后t t aj
2
a
前后轴的附着率

ff
Fxf Fzf
Fxr fr Fzr
不同驱动形式不同行驶工况下的前后轴附着率 (表5-4)
由路面附着限制的加速或爬坡能力
, f amax, b g L
b L
,r amax,
a g L
a L
tan G ,max, , f
a
2
u2
车辆的动力供应
• 驱动轮毂的转矩
M H (Me M L )i0ig
• 发动机额定工况下的转矩损失
M L (1 t 0 )M e,0 P0 (1 t 0 ) 2 n0
动力供求平衡式

Fx M H / rd M nig i0 / rd
若车辆传动系统的效率为ηt,则驱动力为
• 其前提条件是路面良好,克服 Fw+Ff 后的全部力都用于克服坡道阻力,即
du aj 0 dt Ft F f Fw Fi C D Au F f Fw mgf 21.15 (假设 cos 1)
2 a
坡度i 100%
Ft mg
imax tg tg (arcsin

• 发动机转速变化对油耗的影响
驱动与附着极限和驱动效率
• 车辆所受的垂向力 静载 动载 坡道分量 空气动力学分量
车辆所受的垂向力

Fzf ( Fzsf Fzgf ) FLf Fzdf
a b h h 2 mg ( cos G sin G ) CLf A (u uw ) max ( ) L L 2 L mrd L
Fx M nig i0 / rd t Meig i0 / rd
则动力供求平衡式为
M et ig i0 rd
(i mv mc )ax (iG f R )(mv mc ) g CD A
a
2
u2
汽车驱动力-行驶阻力平衡图
行驶方程式反映了汽车行驶时,驱动力和外界阻 力之间的普遍情况。当已知条件:
tan G,max, ,r
表5-5 不同驱动形式不同路面附着下车 辆的加速及爬坡能力
驱动效率
• Fzs
W
驱动轴静载 与整车重量 之比
制动性
汽车行驶时能在短距离内停车且维持行驶方向稳定性
和在下长坡时能维持一定车速的能力,称为汽车的制动性。
制动性是汽车主动安全性的重要评价指标。 制动性的评价指标包括: 制动效能—制动距离与制动减速度; 制动效能恒定性; 制动时的方向稳定性。
燃油消耗量计算
• (4)所需的发动机缸内平均有效压力pme
2 M Dem 2 FDem rd pme ( ML) Vsi Vsi ig i0
• (5) 由车辆行驶速度u求得发动机转速ne为
ne uig i0 / (2 rd )
燃油消耗量计算
• (6)根据发动机万有特性图即可确定发动机相 应的工况,得到该工况下的燃油消耗率,根据所 需的功率及燃油密度,得到 瞬时燃油消耗量
a
2
相关文档
最新文档