液晶显示器基础知识.

合集下载

液晶显示器基础知识-

液晶显示器基础知识-

液晶显示器基础知识-液晶显示器基础知识☆解析度目前市面上LCD monitor可以买得到的, 大概有以下几种解析度XGA: 1024*768 SXGA: 1280*1024 SXGA+: 1400*1050 UXGA: 1600*1200另外还有一些解析度更高的面板 (通常是有特殊用途的), 以及在台湾大概还没有人在用的宽萤幕16:9 or 16:10, 在此先不讨论 .液晶显示器的解析度, 表示它可以显示的点的数目. 这是一个固定值, 没有办法调整的. 同样的尺寸之下, 解析度越高则可以显示的画面越细致. 假设你买了一个XGA的monitor, 则你的显示卡千万不要设定成其他解析度, 比如说800*600 . 因为在这种情况之下, 电脑实际上是把一个800*600的画面, scale成1024*768在显示, 结果就是看到一个比较模糊的画面.正确的做法就是, 买了什麽解析度的monitor, 显示卡就设定成那个解析度.☆ DVI (Digital Visual Interface)电脑处理的是数位信号, 处理完之後送出来的也是数位信号, 但是传统的CRT monitor使用的是类比信号. 为了与CRT沟通, 送到CRT 的信号, 必须先转换成类比的才能使用. 因此一般显示卡的输出 (D-sub, 就是有15 pin的那个小插槽), 送的是类比信号.LCD monitor使用的也是数位信号, 但是为了与一般显示卡相容, 所以会设计成可以接收D-sub接头送出来的类比信号, 然後再把这个类比信号, 转换成数位信号去处理与显示. 这里就产生一个问题了, 不论是数位转类比, 或类比转数位, 一定都会有信号的遗失.因此为了与CRT相容的这个愚蠢理由, LCD monitor进行了两次本来不必要的信号损失. 造成的结果就是, 看到的画面会有一点点模糊. 而其实LCD原本的能力, 可以显示得更清楚.由於这两年液晶显示器开始热卖, 显示卡厂商也开始推出可以直接输出数位视讯的显示卡, 也就是多了一个叫作DVI的插槽. 如果你买一个有DVI插槽的显示卡, 再买一个有DVI插槽的LCD monitor, 这时LCD monitor所显示的清晰程度, 才是该LCD原本所设计出来的能力.当然, 这样的组合现在好像有比较贵, 如果你不是对画质非常挑剔, 可以用就好的话, 可以考虑省这笔钱 .☆坏点(dot defect)所谓坏点, 是指液晶显示器上无法控制的恒亮或恒暗的点 . 坏点的造成是液晶面板生产时因各种因素造成的瑕疵, 可能是particle落在面板里面, 可能是静电伤害破坏面板, 可能是制程式控制制不良等等.坏点分为两种:亮点与暗点. 亮点就是在任何画面下恒亮的点, 切换到黑色画面就可以发现. 暗点就是在任何画面下恒暗的点, 切换到白色画面就可以发现.一般来说, 亮点会比暗点更令人无法接受, 所以很多monitor厂商会保证无亮点, 但好像比较少保证无暗点的. 有些面板厂商会在出货前把亮点修成暗点. 另外某些种类的面板只可能有暗点不可能有亮点.例如MVA, IPS的液晶面板, 面板厂商会把有坏点的面板降价卖出. 通常是无坏点算A grade, 三点以内算B grade, 六点以内算C grade. 一般来说这都是可以正常出货的, 至於更低等级的面板, 在景气好面板缺货的时候 (例如2000年时), 还是会有人来买.今年的话, 大家眼睛最好也睁大一点 , 坏点没有办法修. 如果你买的monitor有保固坏点, 你拿去退给他, 他就是换一台给你.☆ muramura本来是一个日本字, 随着日本的液晶显示器在世界各地发扬光大, 这个字在显示器界就变成一个全世界都可以通的文字. mura是指显示器亮度不均匀, 造成各种痕迹的现象.最简单的判断方法就是, 在暗室中切换到黑色画面, 以及其他低灰阶画面. 然後从各种不同的角度用力去看, 随着各式各样的制程瑕疵, 液晶显示器就有各式各样的mura. 可能是横向条纹或四十五度角条纹, 可能是切得很直的方块, 可能是某个角落出现一块, 可能是花花的完全没有规则可言, 东一块西一块的痕迹.mura不会对使用上造成什麽影响, 这属於品味问题. 面板厂商会把有mura的面板, 打成次级品用较低价格卖出. 但是我没有听说, monitor厂商有那种保证无mura的. 这个通常也不会写进monitor规格, 所以买之前眼睛睁大一点, 买到了只好自认倒楣.☆对比显示器的对比是这样定义的, 在暗室之中, 白色画面下的亮度除以黑色画面下的亮度. 因此白色越亮, 黑色越暗, 则对比值越高. 一般LCD monitor的规格书上都会写出它的对比值, 但是这个值通常只能参考. 因为面板厂商为了保护自己, 有一些规格值会写得很保守, 对比就是其中一项.比如说, 某机种的对比值明明可以做到三百, 但是规格书写的是typical 200, minimum 150 , 这是为了量产的时候, 万一出了什麽问题, 导致黑色漏光对比下降, 该批货还是可以正常出货.如果你想比较的两款LCD monitor, 对比值分别是写350, 400, 不要以为四百的那个真的有比较好, 那只是这一家他敢写而已. 事实上, 两款分别写300, 400的, 我都还会怀疑那可能是差不多的. 实际上运气好的话, 都有可能是做到五六百.如果你会很care这个, 可以把想比较的两台显示器白色亮度调到一样, 然後切换到黑色画面, 在暗室下看谁比较黑. 如果不是对画质非常挑剔, 在一般使用情况下, 我认为对比三百应该是够用的.☆色饱和度 (color gamut)色饱和度是指显示器色彩鲜艳的程度. 显示器是由红色绿色蓝色三种颜色光, 来组合成任意颜色光. 如果RGB三原色越鲜艳, 则该显示器可以表示的颜色范围就更广. 这是因为无法显示比三原色更鲜艳的颜色, 所以某显示器三原色本来就不鲜艳, 那个该显示器所能显示的颜色范围就比较窄了.色饱和度是面板厂商的重要规格, 但是我到现在好像还没看过有monitor厂商把色饱和度写进规格的. 他们都是写可以组合出来的颜色数目. 比如说, 某显示器的RGB三种颜色光都可以分成64灰阶 (6 bit), 则该显示器的颜色种类总共有64*64*64=262,144种组合. 如果该显示器的RGB三种颜色光, 都可以分成256灰阶(8 bit). 则该显示器的颜色种类总共有256*256*256=16,777,216种组合.当然灰阶数越多颜色层次看起来会越细致, 但不表示颜色会比较鲜艳. 色饱和度的表示是以NTSC所规定的三原色色域面积为分母, 显示器三原色色域面积为分子去求百分比. 比如某显示器色饱和度为71% NTSC, 表示该显示器可以显示的颜色范围为NTSC规定的百分之七十一.71% NTSC大约为为目前CRT电视机的标准, LCD显示器目前作到这个程度的,在色彩上就算高阶了. 目前笔记型电脑用的萤幕色饱和度大约40~50% NTSC. 桌上型液晶萤幕大多作到60%~65% NTSC.当然各大厂都有持续开发高色饱和度显示器的计划, 或已有量产, 请不要拿来和我擡杠. 我说的是"目前"和"大多" . 选购的时候, 把喜欢的两台monitor摆在一起, 点相同的画面, 通常就可以看出谁的色饱和度比较好.☆亮度亮度是指显示器在白色画面之下明亮的程度, 单位是cd/m^2, 或是nit . 亮度是直接影响画面品质的重要因素. 在实验室里面我们常讲一句话: 「一亮遮三丑」. 一个明亮的显示器即使色饱和度比较差, 或颜色偏黄等其他不利因素, 还是有可能看起来画面会比较漂亮.目前市售的monitor, 一般亮度规格大约是250nits. Notebook亮度规格大约是150nits. 当然更亮规格的产品, 各厂都有在开发当中或已量产. 如果是液晶电视, 亮度通常会有400nits, 这是因为看电视时不像使用监视器时距离那麽近, 并且会考虑摆电视的环境会比较明亮.液晶显示器会发光, 是因为它的背光模组藏有灯管. 就像你现在擡头可以看到的照明用萤光灯管是很像的东西, 只不过小了一点. Notebook里面会摆一支, Monitor会摆上两到六支或以上.目前灯管厂商都会保证灯管寿命, 在三万小时或五万小时以上. 也就是使用三五万小时之後, 亮度会掉到一半. 所以其实液晶显示器还算蛮长寿的. 没有其他破坏性动作造成故障的话, 应该可以活到你想淘汰它的时候.显示器的亮度是使用者可以调整的, 调到你觉得舒服的亮度就可以, 调得太亮除了可能不舒服外, 也会损耗灯管寿命.☆视角(一)液晶显示器由於天生的物理特性, 使得使用者从不同角度去看时, 画面品质会有所变化. 与正看时相比, 斜看的时候, 转到当画面品质已经变化到无法接受的临界角度时, 称之为该显示器之视角. 视角的定义有三种1. 对比从斜的方向去看液晶显示器, 与正看时相比, 白色部分会变暗, 黑色部分会变亮, 因此对比会下降. 一般定义当对比下降到10的时候的角度为该显示器的视角. 也就是定义大於此视角的时候, 黑白已经不易分辨. 一般面板厂商与监视器厂商规格书上, 对於视角的定义最常使用这一条.2. 灰阶反转理论上显示器从零灰阶 (黑色) 到二五五灰阶 (白色), 应该是灰阶数越高则越亮. 但是液晶显示器在某个大角度的时候, 有可能看到低灰阶反而比高灰阶还亮, 也就是看到类似黑白反转的现象, 这种现象称之为灰阶反转.定义不会产生灰阶反转现象的最大角度为视角, 也就是超过这个角度就有可能看到灰阶反转, 而灰阶反转是无法接受的影像品质. 这个定义和第一个定义的差别在於, 用对比定义只考虑零灰阶和二五五灰阶, 而灰阶反转是考虑所有的灰阶.3. 色差从不同角度去看液晶显示器, 会发现颜色会随着角度而变化, 比如说本来是白色画面变得比较黄或比较蓝, 或是颜色变得比较淡等等. 随着角度变大, 当颜色的变化已经大到无法接受的临界点时, 定义该角度为视角.关於色差, 我说过颜色可以量化, 所以颜色的差异可以用数字表示, 但什麽叫做无法接受的色差, 目前并没有一定标准, 所以写规格的时候没有人用这个定义, 但是在实验室里面, 我们在比较两种显示器的时候还是会care相同角度时谁的色差比较大, 这是使用者会直接感觉到的品味问题.最早的TFT-LCD所使用的是一种叫做TN的液晶模式, 这种技术最大的缺点就是视角很小, 以对比来定义, 目前大概都是作到左右视角各45~50度, 上视角 15~20度, 下视角35~40度.为了解决视角的问题, 有几种广视角技术就发展出来, 目前市面上的主流广视角技术有三种: TN+film, MVA, IPS. 目前市售的notebook LCD, 通常不会应用广视角技术, 因为考量notebook是个人使用, 广视角效益不大, 而monitor通常会使用广视角, 考量使用monitor时, 可能会秀一些资料或画面给在旁边的人看.☆视角(二)1. TN+film所谓TN+film就是在原来的TN型TFT-LCD上贴上一种广视角补偿膜. 这种广视角补偿膜是Fuji Film (没错, 就是作底片的那一家) 的独家专利技术, 称为Fuji Wide View Film. 一旦贴上这种补偿膜, 以对比为定义, 原本大约左右视角100度, 上下视角60度, 立刻增加到左右140度, 上下120度. 但是TN+film, 还是没有解决灰阶反转的问题2. MVAMVA是Fujitsu所开发出来的独家专利技术. 除Fujitsu之外, 台湾尚有奇美电子与友达光电获得授权生产. MVA可以做到上下视角与左右视角都超过160度, (但不是每个方位都有这样的视角), 并且解决了大部分灰阶反转的问题. 除非是从很特殊的方位, 并且很大的角度去看, 才有可能看到灰阶反转3. IPSIPS最早由Hitachi所发展, 另外IBM Japan, NEC, Toshiba等也拥有IPS技术. 国内则有瀚宇彩晶获得Hitachi的授权生产. IPS上下视角与左右视角号称到170度, (但不是每个方位都有这样的视角), 并解决大部分灰阶反转问题.160度与170度的差异其实没有意义, 有兴趣的话拿起量角器来看看80度是多大的视角. 基本上超过这个视角, 一个平面已经快变成一条缝了, 根本没有办法进行量测. 他敢写170度(两边各85度), 是在80度的时候可能量到对比二三十, 所以有把握85度时对比仍可以超过十. 其实MVA也可以 .除了以上三项广视角技术, 比较有名的广视角技术, 另有Sharp拥有独家专利ASV. 韩国的Samsung有一种MVA的变形叫做PVA的. 韩国的Hydis (原Hyundai的TFT-LCD部门)则拥有IPS的变形FFS等.☆视角(三)Notebook的液晶萤幕, 不使用广视角技术有几个理由. 除了之前说过的notebook是个人使用的之外, 最主要的原因是notebook讲求轻薄省电, 所以背光板只能摆一根灯管, 而且必须做很薄(也就是天生作不亮).为了得到比较好的光使用效率, 所以采用穿透率最高的TN型设计, 而比较少使用MVA, IPS, ASV等等技术. 而TN+film技术, 除了穿透率有比TN低一些之外, 多了两张广视角补偿膜, 也会增加厚度与重量. 而notebook用面板对厚度重量的要求, 一向是机构工程师的恶梦 .判断monitor是不是使用TN+film最简单的方法, 就是去看灰阶反转. 下视角是最容易看到灰阶反转的角度. 把monitor随便切到一个有不同颜色与亮度的图案, 把脸贴到monitor下方, 然後眼睛往上看. 如果看到灰阶反转的现象(就是亮的地方变暗, 暗的地方变亮), 就可以肯定这是TN+film型monitor了. 如果是notebook液晶萤幕,连左右视角都很容易看到TN+film的左右视角, 依设计可能有120度或140~150度(以对比为定义). 这是因为Fuji Film又有推出新一代的广视角补偿膜. 不过有件令我印象非常深刻的事, 有一次拿到某社的TN+film面板, 规格写左右typical各75度, 但是没有写minimun值, 实际一量发现只有60度. 这才发现敝公司在写视角规格时, 实在稍嫌老实了一点, 不但都typical value老实写, 而且还保证minimum value. 人家大笔一挥, 技术立刻日进千里, 难怪卖得那麽好.MVA和IPS的判断, 像我们靠这一行吃饭的, 其实就是把显微镜拿起来去看面板的画素设计, 一般使用者则可以从规格书看出一点端倪. 除了视角规格>160与170的差别之外, MVA的响应时间规格是25ms,IPS的响应时间大约是40ms. 如果是Sharp的面板规格, 又写上下左右视角超过160度, 那一定就是ASV.MVA和IPS各有优缺点, 比如说MVA的响应速度比IPS快, 但色差也比IPS大等等. 针对各自的缺点, 厂商都有持续开发改进的研究, 甚至已经量产. 而TN+film也不会有消失的一天, 因为它容易作得亮, 而且对面板厂商而言, 不须要特别的制程, 是低价monitor非常适合的选择 .☆响应时间(一)响应时间的定义就是在面板的同一点上面, 从黑色变到白色所需时间, 加上从白色变到黑色所需时间. LCD有响应时间的问题, 是因为 LCD 是以液晶分子的旋转角度, 来控制光线的灰阶亮暗, 而液晶分子旋转时需要时间.一般monitor使用的目的是文书处理与网页浏览 . 一般情况之下就是monitor会持续显示同一个画面很久一段时间, 然後才切换到另一个不同的画面. 这样的使用状况下, 其实反应时间多快多慢对使用者而言是没有影响的. 但是如果要使用monitor来看动画或影片, 因为画面会持续变化没有停止, 这时候响应时间就会影响画面品质.响应时间分为rise time和fall time, 对TN型面板来说, 驱动电压从低电压变成高电压时, 画面会从白色变成黑色 (电压rise). 因此白色变成黑色所需时间就是rise time. 而驱动电压从高电压变成低电压时, 画面会从黑色变成白色 (电压fall), 因此黑色变成白色就是fall time.MVA和IPS则刚好相反, 黑变成白是rise time, 白变成黑是fall time. 目前市面上量产面板的规格, TN型rise time大约15ms, fall time大约35ms. 实际上作到10ms + 20ms也不算难. 这里其实有一个陷阱.对LCD面板来说, 从全黑变到全白, 以及从全白变到全黑的响应时间, 其实是最快的. 但是中间灰阶的切换, 就不能保证这个速度. 比如说从128灰阶切换到140灰阶, 响应时间都会比规格值大上很多, 大於七八十毫秒都是可能的, 而你使用monitor时, 不可能只使用黑色和白色两种颜色.☆反应时间(二)一般LCD面板的画面更新频率是60Hz, 也就是每秒钟要换60次画面. 不管目前显示的图片是否有在变动, 都会以这种频率重新显示, 因此每个画面持续时间是1/60 = 16.67ms. 如果响应时间远大於这个值, 画面在动时, 就可能看到模糊的影像. 注意是模糊的影像, 不是残影. 残影是另外一个问题, 你可以这样测试:在MS Windows所附的萤幕保护当中有一个"留言显示", 设定值里面可以更改背景颜色和留言内容. 把背景选成灰色, 留言打入++++++, 字型选大一点, 然後让它跑. 仔细看, 可以看到加号背後拖着一个模糊的尾巴, 这就是响应时间不够快造成的.CRT没有这样的问题. 这就是说目前的LCD monitor, 其实不是很适合用来看影片. 不过我实际测试的结果, 普通使用者如果是观看一般影片(比如说ㄟ片), 其实影响不大, 要看那种画面闪来闪去的动作片, 很用力去盯着看某些, 其实平常不会去注意的背景, 才会发现品质下降. 玩game的话也没有什麽太大的问题.市售的LCD monitor对於响应时间的规格, 还有另一个陷阱. 有些厂商响应时间只写rise time, 所以如果买monitor时, 看到响应时间只有15ms甚至更低, 最好问清楚. 通常就是这种情况 , 真正小於15ms的产品, 大概还要过好些时间, 才有可能在市面上看到.另外有一些高阶LCD的响应时间的规格, 可能是写全灰阶切换小於16.67ms. 这是指不管是多少灰阶切换到多少灰阶, 都保证在16.67ms 之内完成动作. 注意不是rise + fall time 16.67ms, 这是在驱动电压上面, 动了一些手脚达到的. 目前还不多见, 但不是没有. 这种面板用来看影片, 画质比起传统的LCD就有相当程度的改善.☆保护玻璃有些人在购买液晶显示器的时候, 会要求装上保护玻璃. 这个动作好不好见仁见智, 我个人就很反对. 但我有一个同事就买一个有装玻璃的, CRT的表面是玻璃, 最大的问题就是会反光. 尤其如果背後有窗户或灯光就非常的讨厌, 常常会看不到画面.LCD的表面最外一层是一片偏光片, 这一片偏光片通常作过一些特殊表面处理, 硬度比较高 (一般规格是3H), 并且具有防炫光与抗反射的功能, 所以LCD不会有像CRT那样有反光的问题. 可是一旦装上保护玻璃, 这一切就毁了, 你背後的光源对你的CRT萤幕, 造成什麽样的困扰, 都会在LCD的保护玻璃上重现.浪费了表面偏光片原本的设计, 破坏影像品质. 那为什麽有人要装玻璃? 因为使用monitor时手指常常会在上面指来指去, 而偏光片印上指纹印之後会很难消除, 光用布是擦不掉的, 如果装上保护玻璃就很容易清理.另外就像我同事的情形, 他一买回家放, 他两个还没念幼稚园的儿子就来用力压, 当场让他觉得玻璃买对了. 其实LCD没有那麽脆弱, 若不是很用力去压或是撞击是不会破的, 坏点也不是摸出来的.除非摆LCD的地方, 常常有很没斩节的小朋友出没, 否则不建议装保护玻璃. 要擦掉偏光片上的指纹, 可以用水加一点点洗碗精, 用布沾湿後去擦, 再用布沾清水去擦即可. 轻压液晶萤幕不会使液晶流出来, 那是密封在面板里面的. 万一打破液晶萤幕的话(破裂处会黑掉), 要尽快处理掉, 并用肥皂洗手, 因为液晶是有毒的, 不要摸一摸然後不小心吃下去.☆残影残影是指画面切换之後, 前一个画面不会立刻消失, 而是慢慢不见的现象. 残影与反应时间不算同一件事, 残影可能要两三秒後才会完全消失, 而液晶的反应时间是十几到几十毫秒. 一个设计得好的液晶显示器, 就算反应时间是15+35ms, 也不可能让使用者看到残影.残影发生机制有些复杂, 通常是同一画面显示太久的情况下, 液晶内的带电离子吸附在上下玻璃两端形成内建电场, 画面切换之後这些离子没有立刻释放出来, 使得液晶分子没有立刻转到应转的角度所造成.另外一种可能情况则是因为画素电极设计不良, 使得液晶分子在状态切换时排列错乱, 这种情况之下也有可能看到残影, 所以以为反应时间快就不会看到残影, 这种观念是错误的.面板厂商测试残影的方法是, 常温下点西洋棋棋盘黑白方格画面十二小时, 然後切换到128灰阶去看, 标准是在5秒(?)内残影必须消失.一般使用者选购monitor时, 可以用power point画一些白底黑格的图, 以及一张128灰阶图去切换. 如果嫌麻烦, 也可以把萤幕背景设成128灰阶, 然後叫出踩地雷点到暴掉(所有黑色地雷会显示出来), 摆个几十秒或几分钟, 然後关闭.如可以看到残影 (不是五秒喔, 看得到就算), 那就不要买. 注意一点, 不要一直盯着测试画面看, 切换後才去看, 不然可能看到的是人眼的视觉残留.☆色温 (color temperature)色温是用来形容显示器的白色的颜色, 不限於LCD, 所有的显示器都通用. 当显示器的颜色与黑体的温度高到某一绝对温度时, 所发出来的光一样时, 称为该显示器的色温等於该温度.比如说, 当显示器的白色, 设计成接近黑体在温度6500K的时候, 所发出来的光颜色(接近晴天时上午的太阳光), 称为该显示器的色温为6500K.上面听不懂没关系, 下面三句记起来就好. 色温越低颜色会越偏黄色, 色温越高颜色会越偏蓝色, 一个色温偏高的显示器在秀图片的时候, 整个画面看起来色调就会偏蓝.据说亚洲人比较喜欢偏蓝色的白色, 欧洲人比较喜欢偏黄色的白色 , 所以在日本卖的CRT电视机色温内定值, 可以高到9300K甚至12000K. 在欧洲卖的色温就内定在6500K左右, 台湾则是follow日本. 你不喜欢偏蓝的白色也没有关系, CRT的色温可以让使用者很容易地去调整, 但LCD就有困难.目前LCD面板的白色通常设计在6500K左右(电视用的面板要求色温会更高), 但也有故意设计成更偏黄的, 因为灯管越偏黄亮度会越高, 偏蓝亮度就低. 如果偏蓝又要维持一样的亮度, 就要在其他部份花更多成本把亮度补回来 .色温高低没有好坏标准, 有人喜欢偏蓝有人喜欢偏黄, 选购的时候把几台中意的monitor摆在一起点同一个画面, 挑你喜欢的色调即可.☆ Gamma CurveGamma curve是指不同灰阶与亮度的关系曲线. 把零到二五五灰阶当x轴, 亮度当y轴, 画出来的曲线就叫做gamma curve. Gammacurve通常不会是一条直线, 因为人眼对不同亮度有不同辨识的效果, 比如说低亮度的辨识能力较高(一点点亮度变化就有感觉), 高亮度的辨识能力较低.Gamma curve会直接影响到显示器画面的渐层效果. 比如说一个显示器的gamma curve, 如果在高亮度的地方切得太细, 最高灰阶的那几阶亮度都差不多亮, 那麽在显示亮画面的图片时, 就会觉得很多地方都泛白太亮, 看不见渐层. 那麽使用者就会觉得影像不自然, 有些比较高阶的显示卡, 会提供调整gamma curve的功能不过若不是比较专业的使用者, 通常不会去动到那边, 而是直接使用监视器厂商的原始设定值. 测试的时候, 多带几张不同种类的图片. 整体而言, 比较亮的, 比较暗的, 或比较中间灰阶的都准备. 最好准备几张有大大的人像的, 因为肤色对人眼来说, 是很容易辨识的印象, 仔细看看图片的渐层效果, 会不会让你觉得很自然.☆ CrosstalkLCD的crosstalk是指萤幕中某区域的画面, 影响到邻近区域亮度的现象. 一般crosstalk测试画面如附档. 在底色一二八灰阶的状态下, 画一个有萤幕四分之一大的黑色方块摆在正中央, 理论上周围还是都要维持一二八灰阶, 但若发现上下左右四块区域变暗, 就作叫crosstalk.也可以把黑色方块换成白色, 有crosstalk的话上下左右就会变亮. 一般面板厂商的规格是, 有黑色方块时与没有黑色方块时, 上下左右区域的亮度差别不可以超过4%. 不过其实这是蛮宽松的规格, 通常达到2%时人眼就可以看得很清楚了, 所以有些客户会要求小於1%, 而这通常也是面板厂设计标准. 选购的时候, 就点上面讲的那个画面, 看得见crosstalk就不要买. 另外通常商家都经挑选最完美的机子展示, 以上的标准看看,展示机非常值得考虑.TFT LCD液晶显示器常见的广视角架构良好光学补偿膜抵消TN型液晶的相位延迟现在大尺寸的液晶显示器大多是利用TN(Twisted Nematic)型液晶来制作的。

液晶显示器件制作基础知识试题

液晶显示器件制作基础知识试题

液晶显示器件制作基础知识试题姓名_______________考号________________班级________________学院________________一、不定项选择题(共35小题,每小题2分,共70分)1、24C08集成块用途为()DA、产生菜单B、行场扫描C、视频放大D、存储器2、在ITO玻璃清洗过程中,DI水浸泡目的为去除()BA、有机物B、残留杂质D、颗粒杂质3、在万用表中,“V~”表示测量()挡位。

BA、直流电压B、交流电压C、电阻D、直流电流4、液晶显示器中液晶体在工作,为否发光()BA、发光B、不发光C、反光D、随条件变化发光5、1F=()pF CA、106B、103C、1012D、1096、当线圈中通入()时,就会引起自感现象。

AA、变化电流B、不变电流D、电流7、以下芯片中不为图像处理为()BA、GM5020B、TL1451CNSC、AD9883D、GMZAN28、N个触发器可以构成能寄存多少位二进制数码寄存器?()AA、NB、N-1C、2ND、N+19、异或门电路逻辑关系为()AA、相同出1、相反出0B、相同出0、相反出1C、都不正确D、同1出1、同0出010、对普通电阻器检测主要使用万用表()BA、电压挡B、欧姆挡C、三极管挡D、电流挡11、高纯水制备流程中,能将水中阴、阳离子分别被树脂吸附,去除水中无机离子对应步骤为()CA、电渗析B、活性碳过滤C、离子交换D、微孔过滤12、焊锡材料为由锡铅合金及一定量活性焊剂配置而成,焊锡液化温度在()DA、300℃以下B、200℃以下C、500℃以下D、400℃以下13、液晶电视机优于CRT电视机方面为()CA、机械强度高B、亮度高C、体积小重量轻D、接收频道多14、导光板为一种高科技产品,它将线光源转变为()DA、激光源B、偏光源C、电光源D、面光源15、关于道德,准确说法为()DA、做事符合他人利益就为有道德B、道德就为做好人好事C、道德因人、因时间异,没有确定标准D、道德为处理人与人、人与社会、人与自然之间关系特殊行为规范16、目前主流英寸显示器通常采用背光灯管数为()DA、2根B、1根C、10根D、4根或6根17、以下表达式中符合逻辑运算法则为()CA、1+1=10B、C•C=C2C、A+1=1D、0<118、用人单位及职业介绍机构发布技术工种人员招聘广告,在应聘人员应该备条件中须注明()BA、籍贯B、民族C、婚姻状况D、职业资格要求19、液晶电视及显示器两用机必须具备哪些接口?()CA、HDMI接口B、耳机接口C、VGA接口D、复合视频及音频信号接口20、一个16选一数据选择器,其地址输入(选择控制输入)端个数为()BA、2B、1C、16D、421、TFT-LCD背光模组由冷阴极荧光灯(CCFL)、导光板、扩散板及棱镜片等组成,()部分功能用于导引光线方向。

LCD基础知识及制造工艺流程介绍

LCD基础知识及制造工艺流程介绍

LCD基础知识及制造工艺流程介绍LCD(液晶显示器)是一种运用液晶技术显示图像的平面显示设备。

它由一系列的液晶层、玻璃基板、导线及亮度调节膜等组成,能够实现高清晰度和低功耗的图像显示。

下面将介绍LCD的基础知识以及制造工艺流程。

一、LCD的基础知识1.液晶层:液晶是一种类似于液体的物质,具有一定的流动性。

液晶分为向列型液晶和向量型液晶两种。

其中,向列型液晶具有电流传输性能,可用于显示器制造。

液晶层通常由两块玻璃基板夹层组成。

2.基板:LCD的基板通常由玻璃或塑料材料制成。

它是液晶显示器的结构支撑物,上面附着有液晶材料,起到固定液晶和导线的作用。

3.导线:液晶显示器中的导线用于传输电信号,驱动液晶层完成图像的显示。

导线通常由透明导电材料(如铟锡氧化物)制成,通过在基板上形成通道和窗口的方法实现。

4.亮度调节膜:亮度调节膜用于控制液晶层的透光度,实现图像亮度的调节。

它通常由聚合物、薄膜材料或金属制成。

二、LCD的制造工艺流程1.基板生产:使用特制的玻璃或塑料材料制造基板,通过磨削、抛光和清洗等步骤形成平整的表面。

2.导线制作:将透明导电材料(如铟锡氧化物)涂布在基板上,然后通过光刻技术制作出导线的图案。

这包括涂覆光刻胶、曝光、显影和洗涤等步骤。

3.形成储存电容:在导线制作完成后,在基板上制作出储存电容的结构。

这通常通过在导线上涂覆并定位特定的电介质材料,然后用导线封装住这种材料。

4.液晶层制作:将液晶材料涂布在基板上,并进行取向处理。

液晶材料的涂布可以通过刮板涂布或滚涂等方法完成。

5.封装背光模块:将背光源(通常是冷阴极荧光灯或LED)和光学片封装在一起,形成背光模块。

6.封装前端制程:在液晶层基板中制造出色彩滤光片、液晶层与色彩滤光板的层间空气封闭结构,同时加工出液晶层之间分隔固体极板和液晶层封装胶。

7.封装:将两块形成互相关系的液晶层基板合并在一起,使用封装剂将其密封。

8.后端制程:液晶显示器的后端制程包括模组组装、封装测试、调试和包装等步骤。

液晶彩电显示技术基础知识

液晶彩电显示技术基础知识
上一页 下一页 返回
第二节 液晶显示屏概述
• 2.TFT 液晶显示屏的主要元器件介绍 • (1) 液晶电容和存储电容 • 根据TFT 液晶显示屏的结构可知, 在上下两层玻璃间夹着液晶, 液晶
是容性材料, 其等效电容一般称为液晶电容CLC, 它的大小约为0.1 pF, 但是实际应用上, 这个电容并无法将电压保持到下一次再更新画 面数据的时候, 也就是说当TFT 液晶显示屏对这个电容充好电时, 它 并无法将电压保持住, 直到下一次TFT 液晶显示屏再对此点充电的时 候(以一般60 Hz 的画面更新频率, 需要保持约16 ms 的时间), 这样一 来, 电压有了变化, 所显示的灰阶就会不正确,因此, 一般在面板的设计 上, 会再加一个储存电容CS (一般由像素电极与公共电极走线形成), 其容量约为0.5 pF, 以便让充好电的电压能保持到下一次更新画面的 时候。
上一页 下一页 返回
第二节 液晶显示屏概述
• 2.液晶显示屏的采光技术 • 液晶显示屏是被动型显示器件, 它本身不会发光, 是靠调制外界光实现
显示的, 外界光是液晶显示屏进行显示的前提条件。液晶显示屏的采 光技术分为自然光采光技术和外光源设置技术。而在外光源设置上, 又有背光源、前光源和投影光源3 类技术, 其中, 液晶彩电采用的是背 光源采光技术。 • (1) 背光源的任务 • 透射型和半透射型液晶显示屏一般都需要加背光源, 背光源的任务主 要有两点: 一是使液晶显示屏在有无外界光的环境下都能使用; 二是 提高背景光的亮度, 以改善显示效果。 • (2) 背光源的分类 • 常用的背光源主要有CCFL、LED 和EL3 种。
• 三、TFT 液晶显示屏的结构
• 1.TFT 液晶显示屏的基本结构 • TFT 液晶显示屏的局部结构示意图如图1 -2 所示。

液晶屏基本知识及关键指标参数

液晶屏基本知识及关键指标参数

液晶屏基本知识及关键指标参数Revised by Chen Zhen in 2021液晶屏基本知识及关键指标参数液晶显示屏(LCDLiquidCrystalDisplay)的工作原理与传统球面显示屏完全不同。

液晶显示屏就是两块玻璃中间夹了一层(或多层)液晶材料,玻璃后面有几根灯管持续发光,液晶材料在信号控制下改变自己的透光状态,这样就能在玻璃面板前看到图像了。

液晶显示屏性能是有以下几个参数:响应时间响应时间的快慢是衡量液晶显示屏好坏的重要指标,响应时间指的是液晶显示屏对于输入信号的反应速度,也就是液晶由暗转亮或者是由亮转暗的反应时间。

一般来说分为两个部分:Tr(上升时间)、Tf(下降时间),而我们所说的响应时间指的就是两者之和,响应时间越小越好,如果超过40毫秒,就会出现运动图像的迟滞现象。

目前液晶显示屏的标准响应时间大部分在25毫秒左右,不过也有少数机种可达到16毫秒。

拥有16ms的超快响应时间,就可以用每秒显示60帧画面以上的速度,完全解决传统液晶显示屏在玩游戏或者看DVD影碟时所存在的拖影、残影问题。

对比度对比度是指在规定的照明条件和观察条件下,显示屏亮区与暗区的亮度之比。

对比度是直接体现该液晶显示屏能否体现丰富色阶的参数,对比度越高,还原的画面层次感就越好。

目前液晶显示屏的标称为250:1或者300:1,高档产品在400:1或500:1。

这里要说明的是,对比度必须与亮度配合才能产生最好的显示效果。

400:1或500:1的高对比度将使显示出来的画面色彩更加鲜艳,图像更柔和,让您玩游戏或者看电影效果直逼CRT显示屏。

亮度液晶显示屏亮度普遍高于传统CRT显示屏,液晶显示屏亮度一般以cd/m2(流明/每平方米)为单位,亮度越高,显示屏对周围环境的抗干扰能力就越强,显示效果显得更明亮。

此参数至少要达到200cd/m2,最好在250cd/m2以上。

传统CRT显示屏的亮度越高,它的辐射就越大,而液晶显示屏的亮度是通过荧光管的背光来获得,所以对人体不存在负面影响。

TFT-LCD基础必学知识点

TFT-LCD基础必学知识点

TFT-LCD基础必学知识点1. TFT-LCD是什么?TFT-LCD是一种使用薄膜晶体管(TFT)作为控制元件的液晶显示技术。

液晶TFT-LCD使用各个像素点的液晶颗粒来控制光的透过与阻挡,从而实现显示功能。

2. TFT-LCD的工作原理是什么?TFT-LCD的工作原理是通过控制各个像素的液晶颗粒的存储和释放电荷来控制光的透过与阻挡。

当没有电荷通过液晶颗粒时,液晶就会阻挡光线的透过,显示为黑色;当有电荷通过液晶颗粒时,液晶就会允许光线透过,显示为亮色。

3. TFT-LCD的组成结构是什么?TFT-LCD主要由以下几个组件组成:玻璃基板、液晶层、色彩滤光器、透明导电薄膜、液晶晶体管、背光源等。

其中,玻璃基板是整个显示结构的主体,液晶层用于控制光的透过与阻挡,色彩滤光器用于产生各种颜色,透明导电薄膜用于传输电荷,液晶晶体管用于控制电荷的存储和释放,背光源用于提供光源。

4. TFT-LCD的分辨率是什么?TFT-LCD的分辨率是指显示器能够显示的像素数量。

分辨率通常以水平像素数和垂直像素数来表示,例如1920×1080表示水平有1920个像素,垂直有1080个像素。

5. TFT-LCD的色彩深度是什么?TFT-LCD的色彩深度是指每个像素能够显示的不同颜色的数量。

常见的色彩深度有16位、24位和32位,分别表示能够显示2^16、2^24和2^32种颜色。

6. TFT-LCD的刷新率是什么?TFT-LCD的刷新率是指显示器每秒更新显示内容的次数。

刷新率越高,显示的画面就越流畅。

常见的刷新率有60Hz、120Hz和240Hz等。

7. TFT-LCD的视角是什么?TFT-LCD的视角是指显示器在不同角度下能够保持观看画面的质量和亮度。

通常以水平视角和垂直视角来表示,视角越大表示观看画面的范围越广。

8. TFT-LCD的响应时间是什么?TFT-LCD的响应时间是指液晶颗粒从接收到电荷到改变状态所需的时间。

LCD基础知识讲解

LCD基础知识讲解
正方形排列,是把四个点作为一个pixel.
■ LCD显像原理则是运用两个电极夹住一层液晶材料,然后靠 电极间电场的驱动,引起液晶分子扭转向列的电场效应,以 控制光源的透射或遮断功能,❹驱动红、绿、蓝三个格点构 成一个画素,进而透过彩色滤光片显示彩色影像。且由于液 晶分子本身不发光,故須于液晶后面加裝背光源模组,藉由 背光源模组发光。
Nematic(线状液晶) Cholesteric(胆固醇液晶)
线状液晶在空间上具 其名称的来源是因为它们大
有一维的规则排列, 部分是由胆固醇的衍生物所
所有的棒状液晶分子 产生的,如果把他们一层一
长轴方向一致,并平 层分开,就会象线状液晶,
行排列,不具有分层 但从Z轴方向,会发现其指向
结构,与层状液晶比, 矢会随着一层一层的不同象
■ 还会有一些分辨率更高的面板(通常是有特 殊用途的).以及较少人用的宽屏幕,16:9 OR 16:10
■ 液晶显示器的分辨率表示它可以显示的点, 的数目这是一个固定值.没有办法调整的同 样的尺寸之下,分辨率越高则可以显示的画 面越细致.
WXGA(Wide Extended Graphics Array):作为普通XGA屏幕的宽屏 版 本,WXGA采用16:10的横宽比例来扩大屏幕的尺寸。其最大显示分辨 率为1280×800.由于其水平像素只有800,所以除了一般15英寸的本本 之外,也有12.1英寸的本本采用了这种类型的屏幕。
4.什么是响应时间
■ LCD是以液晶分子的旋转角度来控制光线的灰阶亮 暗,而液晶分子旋转时需要时间.
■ 响应时间33ms 1/0.030=33Hz 每秒钟显示器能够 显示33帧画面
■ 响应时间25ms 1/0.025=40Hz 每秒钟显示器能够 显示40帧画面

液晶基础知识

液晶基础知识

液晶基础知识什么是液晶?液晶是一种特殊的物质,在两种不同状态下会有不同的光学性质。

在液晶的有序状态下,它可以通过外加电场来控制光的传输,从而实现图像的显示。

液晶主要由有机分子和无机分子构成,其中最常见的液晶是由苯酚和苯酚酯类化合物组成的有机液晶。

液晶的工作原理液晶的工作原理基于它对电场的响应性。

当外加电场施加在液晶分子上时,液晶分子会改变它们的朝向和排列,从而改变了光的传输特性。

这种电场控制的光传输特性可以用来显示图像。

液晶显示器通常由液晶层和背光源组成。

液晶层是一个由液晶分子组成的薄膜,在其上区域加上电压时,液晶分子会重新排列,改变光的传输特性。

背光源则提供了光源,使得通过液晶层的光可以显示出来。

液晶的种类液晶根据不同的排列方式和性质可以分为各种类型,常见的液晶类型有:1.扭曲向列液晶(TN液晶):具有较高的响应速度,但是视角较窄。

2.间隔调制液晶(IPS液晶):具有较宽的视角和较好的色彩表现力,但是响应速度较低。

3.电视液晶(VA液晶):具有较高的对比度和良好的颜色饱和度,但是响应速度和视角有一定限制。

液晶显示器的优势和应用领域液晶显示器具有许多优势使其在各种应用领域得以广泛应用。

液晶显示器具有以下优势:1.节能:相比传统的CRT显示器,液晶显示器的能耗更低。

2.显示效果优越:液晶显示器具有较高的对比度、较好的色彩表现力和准确的色彩还原能力。

3.体积轻薄:液晶显示器的体积较小,重量较轻,方便携带和安装。

4.视角广:液晶显示器具有较大的视角范围,使得多个观察者可以同时看到清晰的图像。

液晶显示器在电视、计算机显示器、手机、平板电脑等领域都有广泛应用。

不仅如此,液晶显示技术还逐渐应用于汽车显示器、智能家居等领域。

液晶显示器的发展趋势随着科技的不断发展,液晶显示器也在不断创新和进步。

目前,液晶显示器的发展趋势主要体现在以下几个方面:1.高分辨率:随着显示器尺寸的增大,用户对更高分辨率的需求也越来越高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液晶显示器基础知识(一)、液晶显示器的显像原理1、什么是液晶液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以液晶可以说是处于一个中间相的物质。

而要了解液晶的所产生的光电效应,我们必须先来解释液晶的物理特性,包括它的黏性( visco-sity )与弹性(elasticity)和其极化性(polarizalility)。

液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量的不同方向,会有不同的效果。

就好像是将一簇细短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,达到排列状态,这表示黏性最低的流动方式,也是流动自由能最低的一个物理模型。

此外,液晶除了有黏性的特性反应外,还具有弹性的表现,它们都是对于外加的力,呈现出方向性的特点。

也因此光线射入液晶物质中,必然会按照液晶分子的排列方式传播行进,产生了自然的偏转现象。

至于液晶分子中的电子结构,都具备着很强的电子共轭运动能力,所以,当液晶分子受到外加电场的作用,便很容易的被极化产生感应偶极性(induced dipolar),这也是液晶分子之间互相作用力量的来源。

而一般电子产品中所用的液晶显示器,就是利用液晶的光电效应,藉由外部的电压控制,再通过液晶分子的光折射特性,以及对光线的偏转能力来获得亮暗差别(或者称为可视光学的对比),进而达到显像的目的。

2、液晶的光学特性液晶同固态晶体一样具有特异的光学各向异性。

而且这种光学各向异性伴随分子的排列结构不同将呈现不同的光学形态。

例如,选择不同的初期分子取向和液晶材料,将分别得到旋光性、双折射性、吸收二色性、光散射性等各种形态的光学特性。

一旦使分子取向发生变化,这些光学特性将随之变化,于是在液晶中传输的光就受到调制。

由此可见,变更分子的排列状态即可实行光调制。

由于液晶是液体,分子排列结构不象固态晶体那样牢固。

另一方面液晶又具有显著的介电各向异性△ε和自发偶极子P0。

一旦给液晶层施加上电压,则在介电各向异性△ε和自发偶极子P0 和电场的相互作用下,分子排列状态很容易发生变化。

因此利用外加电场即可改变液晶分子取向,产生调制。

这种由电场产生的光调制现象叫做液晶的电光效应(electro-optic effect)。

它是液晶显示的基础。

这种光学特性可通过表面处理、液晶材料选择、电压及其频率的选择获得。

3、液晶的物理特性液晶的物理特性是:当通电施加上电场时,液晶排列变得有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。

让液晶如闸门般地阻隔或让光线穿透,从技术上说,液晶面板包含了两片相当精致的无钠玻璃薄板,中间夹着一层液晶。

当光束通过这层液晶时,液晶本身会一排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。

大多数液晶都属于有机复合物,由长棒状的分子构成。

在自然状态下,这些棒状分子的长轴大致平行。

但将液晶倒入一个经精良加工的开槽平面,液晶分子长轴会顺着槽排列。

所以,假如那些槽非常平行,则各分子也是完全平行的。

4、液晶显示器的分类液晶显示器,英文通称为LCD(Liquid Crystal Display),是属于平面显示器的一种,依驱动方式来分类可分为静态驱动(Static)、被动矩阵驱动(SimpleMatrix)以及主动矩阵驱动(Active Matrix)三种。

其中,被动矩阵型又可分为扭转式向列型(Twisted Nematic;TN)、超扭转式向列型(Super Twisted Nematic;STN)及其它被动矩阵驱动液晶显示器;而主动矩阵型大致可区分为薄膜式晶体管型(ThinFilm Transistor;TFT)及二端子二极管型(Metal/Insulator/Metal;MIM)二种方式。

静态驱动分段型TN被动矩阵驱动扭转向列型(TN)超扭转向列型(STN)强诱电型(FLC)高分子分散型(PDLC)二极体元件(MIM)薄膜式电晶体(TFT)主动矩阵驱动TN、STN 及TFT 型液晶显示器因其利用液晶分子扭转原理之不同,在视角、彩色、对比及动画显示品质上有高低程次之差别(如图6),使其在产品的应用范围分类亦有明显区隔。

以目前液晶显示技术所应用的范围以及层次而言,主动式矩阵驱动技术是以薄膜式晶体管型(TFT)为主流,多应用于笔记型计算机及动画、影像处理产品。

而单纯矩阵驱动技术目前则以扭转向列(TN)、以及超扭转向列(STN)为主,目前的应用多以文书处理器以及消费性产品为主。

在这之中,TFT 液晶显示器所需的资金投入以及技术需求较高,而TN 及STN 所需的技术及资金需求则相对较低。

5、显示器的显像原理目前液晶显示技术大多以TN、STN、TFT 三种技术为主轴,因此我们就这从这三种技术来探讨它们的运作原理。

TN 型的液晶显示技术可说是液晶显示器中最基本的,而之后其它种类的液晶显示器也可说是以TN 型为原点来加以改良。

同样的,它的运作原理也较其它技术来的简单。

其显像原理是将液晶材料置于两片贴附光轴垂直偏光板之透明导电玻璃间,液晶分子会依配向膜的细沟槽方向依序旋转排列,如果电场未形成,光线会顺利的从偏光板射入,依液晶分子旋转其行进方向,然后从另一边射出,形成了亮的效果如果在两片导电玻璃通电之后,两片玻璃间会造成电场,进而影响其间液晶分子的排列,使其分子棒进行扭转,光线便无法穿透,进而遮住光源,形成了暗的效果这样所得到光暗对比的现象,叫做扭转式向列场效应,简称TNFE(twisted nematicfield effect)。

在电子产品中所用的液晶显示器,几乎都是用扭转式向列场效应原理所制成。

STN 型的显示原理也似类似,不同的是TN 扭转式向列场效应的液晶分子是将入射光旋转90 度,而STN 超扭转式向列场效应是将入射光旋转180~270 度。

要在这边说明的是,单纯的TN 液晶显示器本身只有明暗两种情形(或称黑白),并没有办法做到色彩的变化。

而STN 液晶显示器牵涉液晶材料的关系,以及光线的干涉现象,因此显示的色调都以淡绿色与橘色为主。

但如果在传统单色STN 液晶显示器加上一彩色滤光片(color filter),并将单色显示矩阵之任一像素(pixel)分成三个子像素(sub-pixel),分别透过彩色滤光片显示红、绿、蓝三原色,再经由三原色比例之调和,也可以显示出全彩模式的色彩。

另外,TN 型的液晶显示器如果显示屏幕做的越大,其屏幕对比度就会显得较差,不过藉由STN 的改良技术,则可以弥补对比度不足的情况。

6、液晶显示器的驱动方式在TN 与STN 型的液晶显示器中,所使用单纯驱动电极的方式,都是采用X、Y 轴的交叉方式来驱动,如图(9)所示,因此如果显示部份越做越大的话,那么中心部份的电极反应时间可能就会比较久。

而为了让屏幕显示一致,整体速度上就会变慢。

讲的简单一点,就好象是CRT 显示器的屏幕更新频率不够快,那是使用者就会感到屏幕闪烁、跳动;或着是当需要快速3D 动画显示时,但显示器的显示速度却无法跟上,显示出来的要果可能就会有延迟的现象。

所以,早期的液晶显示器在尺寸上有一定的限制,而且并不适合拿来看电影、或是玩3D 游戏。

为了改善此一情形,后来液晶显示技术采用了主动式矩阵(active-matrixaddressing)的方式来驱动,这是目前达到高资料密度液晶显示效果的理想装置,且分辨率极高。

方法是利用薄膜技术所做成的硅晶体管电极,利用扫描法来选择任意一个显示点(pixel)的开与关。

这其实是利用薄膜式晶体管的非线性功能来取代不易控制的液晶非线性功能。

在TFT 型液晶显器中,导电玻璃上画上网状的细小线路,电极则由是薄膜式晶体管所排列而成的矩阵开关,在每个线路相交的地方则有着一弄控制匣,虽然驱动讯号快速地在各显示点扫瞄而过,但只有电极上晶体管矩阵中被选择的显示点得到足以驱动液晶分子的电压,使液晶分子轴转向而成「亮」的对比,不被选择的显示点自然就是「暗」的对比,也因此避免了显示功能对液晶电场效应能力的依靠。

7、液晶屏的结构TFT 型的液晶显示器较为复杂,主要的构成包括了,萤光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等等。

首先液晶显示器必须先利用背光源,也就是萤光灯管投射出光源,这些光源会先经过一个偏光板然后再经过液晶,这时液晶分子的排列方式进而改变穿透液晶的光线角度。

然后这些光线接下来还必须经过前方的彩色的滤光膜与另一块偏光板。

因此我们只要改变刺激液晶的电压值就可以控制最后出现的光线强度与色彩,并进而能在液晶面板上变化出有不同深浅的颜色组合了。

8、液晶显示器的基本电路组成液晶显示器的基本组成结构比CRT 显示器的基本组成结构简单很多,而且液晶显示器制作工艺比CRT 显示器更高,元件贴技术使用普遍,集成度很高。

具体回路包含:信号处理回路、供电回路、升压回路、液晶面板。

信号处理回路(包含调整控制回路)PC、信号、供电、回路、液晶面板、面板驱、动信号、市电升压、回路、信号处理回路。

信号回路主要负责对PC 输出信号的处理,包括D/A 转换、图像缩放、图像彩色处理,通过对图像信号怕处理,产生驱动液晶面板的驱动信号,从而使液晶屏呈现不同的图像,信号处理回路还包括留给用户调整控制图像信号用的相应部分。

供电回路供电回路的功能主要是将交流市电转变成直流电,并产生不同的直流电压,供不同的回路使用。

一般的液晶显示器需要12V、5V 或3.3V 直流电压。

升压回路升压回路的目的是将供电回路的低压直流电,经过处理产生在开机1000 伏以上,正常工作时600 伏以上的交流高压,供液晶屏的荧光灯管工作之用。

相关文档
最新文档