2017年人教版初二下数学期中考试题及答案
2017人教版八年级数学下册期中试卷含答案

期中测试(时间:90分钟 满分:120分)一、选择题☎每小题 分,共 分✆ .☎南通中考✆若⌧-在实数范围内有意义,则⌧的取值范围是☎ ✆✌.⌧≥ .⌧≥- .⌧>.⌧≠.一直角三角形的两直角边长为 和 ,则斜边长为☎ ✆✌. . . . .如图,在▱✌中,已知✌= ♍❍,✌= ♍❍,✌☜平分 ✌交 边于点☜,则☜等于☎ ✆ ✌. ♍❍ . ♍❍ . ♍❍ . ♍❍.下列计算错误的是☎ ✆✌ = = ♋+ ♋= ♋ . - = .如图,点 是平面坐标系内一点,则点 到原点的距离是☎ ✆ ✌. .下列根式中,是最简二次根式的是☎ ✆ ✌♌♋- ♌⌧ -⍓ ♋♌ .如图,已知四边形✌是平行四边形,下列结论中不正确的是☎ ✆✌.当✌= 时,它是菱形 .当✌时,它是菱形.当 ✌= °时,它是矩形 .当✌= 时,它是正方形.已知菱形✌中,对角线✌与 交于点 ,∠ ✌= °,✌= ,则该菱形的面积是☎✆✌. . . ..如图,在四边形✌中,✌= ,∠✌= ✌= °, ☜⊥✌于点☜,且四边形✌的面积为 ,则 ☜=☎✆✌. . . ..如图所示,✌☎- , ✆, ☎, ✆分别为⌧轴,⍓轴上的点,△✌为等边三角形,点 ☎,♋✆在第一象限内,且满足 ✌= △✌,则♋的值为☎✆✌ .二、填空题☎每小题 分,共 分✆.已知☎⌧-⍓+ ✆ + -⍓= ,则⌧+⍓=♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知 ✌中,✌= ♍❍, = ♍❍,✌= ♍❍,那么✌边上的中线 的长为♉♉♉♉♉♉♉♉♉♉♉♉♍❍.☎郴州中考✆如图,在矩形✌中,✌= , = ,☜是✌上一点,将矩形✌沿 ☜折叠后,点 落在✌边的点☞上,则 ☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知在 ♦△✌中,∠✌= °,✌= ,分别以✌, 为直径作半圆,面积分别记为 , ,则 + 等于♉♉♉♉♉♉♉♉♉♉♉♉..如图所示,直线♋经过正方形✌的顶点✌,分别过顶点 , 作 ☜♋于点☜, ☞⊥♋于点☞,若 ☜= , ☞= ,则☜☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,在图 中,✌ , , 分别是 ✌的边 , ✌,✌的中点,在图 中,✌ , , 分别是 ✌ 的边 , ✌ ,✌ 的中点,…,按此规律,则第⏹个图形中平行四边形的个数共有♉♉♉♉♉♉♉♉♉♉♉♉个.三、解答题☎共 分✆ .☎分✆计算: ☎✆ + - -; ☎✆ - +☎- ✆☎+✆..☎分✆在解答❽判断由长为 , ,的线段组成的三角形是不是直角三角形”一题中,小明是这样做的: 解:设♋= ,♌= ,♍= 又因为♋ +♌ =☎ ✆ + = ♊ =♍ , 所以由♋,♌,♍组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由..☎分✆如图,铁路上✌, 两点相距 ❍, , 为两村庄, ✌⊥✌于点✌, ⊥✌于点 ,已知 ✌= ❍, = ❍,现在要在铁路✌上建一个土特产品收购站☜,使得 , 两村到☜站的距离相等,则☜站应建在离✌站多少 ❍处?.☎分✆如图,☜,☞,☝,☟分别是边✌, , , ✌的中点. ☎✆判断四边形☜☞☝☟的形状,并证明你的结论;☎✆当 ,✌满足什么条件时,四边形☜☞☝☟是正方形.☎不要求证明✆.☎分✆如图,四边形✌是一个菱形绿地,其周长为 ❍,∠✌= °,在其内部有一个四边形花坛☜☞☝☟,其四个顶点恰好在菱形✌各边的中点,现在准备在花坛中种植茉莉花,其单价为 元 ❍ ,请问需投资金多少元?☎结果保留整数✆.☎分✆如图,在▱✌中,☜为 的中点,连接✌☜并延长交 的延长线于点☞☎✆求证:✌= ☞;☎✆当 与✌☞满足什么数量关系时,四边形✌☞是矩形,并说明理由..☎分✆如图,在 ♦△✌中,∠ = °,✌= ♍❍,∠✌= °,点 从点 出发沿 ✌方向以 ♍❍秒的速度向点✌匀速运动,同时点☜从点✌出发沿✌方向以 ♍❍秒的速度向点 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点 ,☜运动的时间是♦秒☎♦♎✆.过点 作 ☞于点☞,连接 ☜,☜☞☎✆求证:✌☜= ☞;☎✆四边形✌☜☞能够成为菱形吗?如果能,求出相应的♦值;如果不能,请说明理由;☎✆当♦为何值时,△ ☜☞为直角三角形?请说明理由.参考答案. ✌ π ⏹ .☎✆原式= + - -= ☎✆原式= - + + - - = -+ .小明的解答是错误的.设♋= ,♌= ,♍= 因为♋♍♌,且♋ +♍ =☎ ✆ +☎✆ =♌ ,所以由♋,♌,♍组成的三角形是直角三角形..设✌☜=⌧ ❍,则 ☜=☎-⌧✆❍,∵ ☜= ☜,又 在 ✌☜和 ☜中, ✌⊥✌于点✌, ⊥✌于点 ,∴⌧ + = +☎-⌧✆ 解得⌧= ☜站应建在离✌站 ❍处. .解:☎✆四边形☜☞☝☟是平行四边形.证明: ☜,☞分别是边✌ , 的中点,∴☜☞∥✌,且☜☞=✌ 同理:☟☝✌,且☟☝=✌☜☞☟☝,且☜☞=☟☝四边形☜☞☝☟是平行四边形.☎✆当 =✌且 ✌时,四边形☜☞☝☟是正方形..连接 ,✌∵菱形✌的周长为 ❍,∴菱形✌的边长为 ❍.∵∠✌= °,∴△✌,△ 是等边三角形. 对角线 = ❍,✌= ❍.∵☜,☞,☝,☟是菱形✌各边的中点,∴四边形☜☞☝☟是矩形,矩形的边长分别为 ❍, ❍.∴矩形☜☞☝☟的面积为 = ☎❍ ✆,即需投资金为 = ☟☎元✆.答:需投资金为 元. .☎✆证明: 四边形✌是平行四边形,∴✌∥ ☞∴∠ ✌☞= ☞✌☜为 的中点,∴ ☜= ☜又 ✌☜= ☞☜,∴△✌☜≌△☞☜☎✌✌✆. ✌= ☞☎✆当 =✌☞时,四边形✌☞是矩形.理由如下:由☎✆,得✌= ☞,∵✌∥ ☞,∴四边形✌☞是平行四边形. =✌☞,∴四边形✌☞是矩形..☎✆证明:在 ☞中,∠ ☞= °,∠ = °, = ♦,∴ ☞= ♦又 ✌☜= ♦,∴✌☜= ☞☎✆能.理由如下: ✌, ☞⊥ ,∴✌☜∥ ☞又 ✌☜= ☞,∴四边形✌☜☞为平行四边形.当四边形✌☜☞为菱形时,✌☜=✌=✌- 即 - ♦= ♦,解得♦= 当♦= 秒时,四边形✌☜☞为菱形.☎✆♊当 ☜☞= °时,由☎✆知四边形✌☜☞为平行四边形,∴☜☞∥✌,∴∠✌☜= ☜☞= ° ∵∠✌= °,∴∠✌☜= ° ∴✌= ✌☜=♦又✌= - ♦,即 - ♦=♦,解得♦= ;♋当 ☜☞= °时,四边形☜☞为矩形,在 ♦△✌☜中,∠✌= °,则∠✌☜= °,∴✌= ✌☜,即 - ♦= ♦,解得♦= ;♌若 ☜☞= ,则☜与 重合, 与✌重合,此种情况不存在.故当♦= 或 秒时,△ ☜☞为直角三角形.。
2017-2018学年f人教版八年级(下)期中数学试卷(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5 3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6 4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=25.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=16.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>57.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.128.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D .6,59.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根10.在平行四边形ABCD 中,AC 与BD 相交于0,AE ⊥BD 于E ,CF ⊥BD 于F ,则图中的全等三角形共( )A .5对B .6对C .7对D .8对二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 .12.一个多边形的每一个外角为30°,那么这个多边形的边数为 .13.化简:= .14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 市场.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 .16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6【分析】利用一元二次方程的定义判断即可.【解答】解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.【点评】本题考查了解一元二次方程的应用,关键是能正确配方.6.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).7.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.12【分析】先过点D作DE⊥AC于点E,由在▱ABCD中,AC=8,BD=6,可求得OD的长,又由对角线AC、BD相交成的锐角α为30°,求得DE的长,△ACD的面积,则可求得答案.【解答】解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S=AC•DE=×8×1.5=6,△ACD=12.∴S▱ABCD=2S△ACD故选:D.【点评】此题考查了平行四边形的性质以及三角函数的知识.注意准确作出辅助线是解此题的关键.8.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可. 【解答】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B .【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 9.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根【分析】先把方程化为一般式得到2x 2﹣3x ﹣3=0,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>0,然后根据△的意义判断方程根的情况. 【解答】解:方程整理得2x 2﹣3x ﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共()A.5对B.6对C.7对D.8对【分析】由四边形ABCD是平行四边形,可得OA=OC,OB=OD,AB=CD,AD=BC,即可证得△ABD≌△CDB(SSS),△ABC≌△CDA,△AOD≌△COB(SAS),△AOB≌△COD,又由AC⊥BD,AE⊥BD,可得△AOE≌△COF,△ABE≌△CDF(AAS),△ADE≌△CBF.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB=CD,AD=BC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ABC≌△CDA;在△AOD和△COB中,,∴△AOD≌△COB(SAS),同理:△AOB≌△COD,∴∠ABO=∠CDO,∵AC⊥BD,AE⊥BD,∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,在△AOE和△COF中,,∴△AOE ≌△COF (AAS ), 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ). 同理:△ADE ≌△CBF . 故选:C .【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 4 .【分析】把x =﹣2代入已知二次根式,通过开平方求得答案.【解答】解:把x =﹣2代入得,==4,故答案为:4.【点评】本题考查了二次根式的定义及性质,注意二次根式的结果是非负数是解答此题的关键. 12.一个多边形的每一个外角为30°,那么这个多边形的边数为 12 .【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.化简:=.【分析】根据二次根式的性质计算即可.【解答】解:原式==,故答案为:.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 乙 市场.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=7.5,S 乙2=1.5,S 丙2=3.1, ∴S 甲2>S 丙2>S 乙2,∴该月份白菜价格最稳定的是乙市场; 故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 x 1=﹣,x 2=0 .【分析】由于方程的解比二次方程a (x +h )2+k =0的解要大,则方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.【解答】解:∵关于x 的二次方程a (x +h )2+k =0的解为,∴方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.故答案为x 1=﹣,x 2=0.【点评】本题考查了一元二次方程的解:满足一元二次方程的未知数的值叫一元二次方程的解. 16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 【解答】解:连接E 、F 两点, ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等, ∴S △EFC =S △BCF , ∴S △EFQ =S △BCQ , 同理:S △EFD =S △ADF , ∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2, 故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第 ③ 步开始出错的; (2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案. 【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【分析】(1)利用配方法得到(x﹣7)2=57,然后利用直接开平方法解方程;(2)先计算判别式的值,然后利用求根公式解方程;(3)先移项得到(2x+3)2﹣4(2x+3)=0,然后利用因式分解法解方程;(4)先变形得到2(x﹣3)2﹣(x+3)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解一元二次方程.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:10,13,12,14,16;乙:13,14,12,12,14.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.【分析】根据图表就可以得到甲,乙的成绩,注意观察次数所对应的点的纵坐标,就是成绩;根据这两组数就可以求出每组的平均数,中位数、众数、方差;根据平均数的大小确定成绩的好坏,根据方差确定成绩哪个稳定.【解答】解:(1)甲:10,13,12,14,16;乙:13,14,12,12,14;(2)(3)选择乙去竞赛.因为甲乙的平均分相同,乙的成绩较稳定所以选乙去.【点评】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?【分析】设这种商品每千克应降价x元,利用销售量×每千克利润=2240元列出方程求解即可.【解答】解:设这种商品每千克应降价x元,根据题意得(60﹣x﹣40)(100+×20)=2240整理得x2﹣10x+24=0解得:x1=4(不合题意,舍去),x2=6.答:这种商品每千克应降价6元.【点评】本题考查了一元二次方程的应用,解题的关键是掌握销售问题中的基本数量关系.21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.【分析】(1)由题意可得:∠DAE=∠BAE=∠AEB=∠BAD=∠C,则∠C+∠FEC=90°,根据三角形内角和可得∠C+∠EFC=90°,则∠CEF=∠CFE,即可得结论;(2)连接AC,作AP⊥BC于P,由题意可求AB=BE=CD=5,CE=CF=2,即可求DH=3,根据勾股定理可求AE的长,根据勾股定理可列出方程,可求出BP,AP,PE,PC的长度,再根据勾股定理可求AC的长,由题意可证AC=GF,即可得GF的长.【解答】证明:(1)∵四边形ABCD是平行四边形∴∠BAD=∠C,AD∥BC∴∠DAE=∠AEB∵AE平分∠DAB∴∠BAE=∠DAE=∠BAD∴∠BAE=∠AEB=∠BAD∴AB=BE∵AE⊥EF∴∠AEF=90°∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°∴∠C+∠FEC=90°∵∠C+∠FEC+∠EFC=180°∴∠C+∠EFC=90°∴∠EFC=∠FEC∴CE=CF(2)如图连接AC,作AP⊥BC于P∵四边形ABCD是平行四边形∴AB=CD,AD=BC=7,AB∥CD∵CE=CF∴BC﹣BE=CD﹣DF,且AB=BE=CD∴7﹣AB=AB﹣3∴AB=5=BE=CD∴CE=CF=2∵AD∥BC∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC ∴∠H=∠DFH∴DH=DF=3∴AH=10在Rt△AEH中,AH2=AE2+EH2,且EH=2AE∴5AE2=100∴AE=2在Rt△ABP和Rt△APE中AP2=AB2﹣BP2,AP2=AE2﹣PE2.∴AB2﹣BP2=AE2﹣PE2.∴25﹣BP2=20﹣(5﹣BP)2.∴BP=3∴AP=4,PE=2,PC=4在Rt△APC中,AC==4∵AB∥CD,AG=CF∴四边形AGFC是平行四边形∴GF=AC=4【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.【分析】(1)由△=[﹣(k+1)]2﹣4×1×(2k﹣2)=(k﹣3)2≥0可得答案;(2)利用因式分解法可得(x﹣2)[x﹣(k﹣1)]=0,再进一步求解可得;(3)根据等边三角形的三边相等得出关于k的方程,解之可得.【解答】解:(1)依题意,得△=[﹣(k+1)]2﹣4×1×(2k﹣2)=k2+2k+1﹣8k+8=k2﹣6k+9=(k﹣3)2≥0,∴此方程总有两个实数根.(2)将方程左边因式分解得(x﹣2)[x﹣(k﹣1)]=0,则x﹣2=0或x﹣(k﹣1)=0,解得x1=2,x2=k﹣1;(3)∵此方程的根刚好是某个等边三角形的边长,∴k﹣1=2.∴k=3.【点评】此题考查了配方法解一元二次方程与一元二次方程判别式的知识.解题的关键是熟练掌握一元二次方程的根的个数与判别式的关系及因式分解法解一元二次方程及等边三角形的性质.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【分析】(1)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠BAD=30°;(2)由三棱柱的侧面展开图求出BC和MB的长,即是所需的矩形纸带的长度.【解答】解:(1)由图2的包贴方法知:∵AB的长等于三棱柱的底边周长,∴AB=30cm,∵纸带的宽为15cm,∴sin∠BAD=sin∠ABM===,∴∠BAD=30°;(2)在图3中将三棱柱沿过点A的侧棱剪开,得知如图甲的侧面展开图.将图甲的△ABF向左平移30cm,△CDE向右平移30cm,拼成如图乙中的平行四边形AMCN,此平行四边形即为图2中的平行四边形ABCD.由题意得:图2中的BC=图乙中的AM=2AE=2AB÷cos∠EAB=60÷cos30°=40(cm),故所需的矩形纸带的长度为MB+BC=30×cos30°+40=55cm.【点评】本题是一道立体图形的侧面展开,结合三角函数进行计算是一道综合题,难度较大.。
人教版2017-2018学年八年级下期中考试数学试题(含答案解析)

2017-2018学年甘肃省武威市八年级(下)期中数学试卷一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,143.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=69.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠212.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.2513.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是.17.如图,数轴上点A表示的实数是.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG =.三、解答题(本大题共8小题,共60分)21.(6分)计算:(1)﹣5+(2)÷﹣×22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2017-2018学年甘肃省武威市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,14【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,所以是直角三角形;D、52+122≠142,不符合勾股定理的逆定理,所以不是直角三角形;故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直【分析】根据正方形的性质和菱形的性质,容易得出结论.【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.【点评】本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,推出AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB.∵AB=AE,AB=2CB,∴AE=2AD.∴∠DEA=30°.∵DC∥AB,∴∠DEA=∠EAB=30°.∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°.∵∠ABC=90°,∴∠EBC=90°﹣75°=15°.故选:A.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数.6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=6【分析】根据二次根式的乘法法则:•=(a≥0,b≥0),二次根式的除法法则:=(a ≥0,b>0)进行计算即可.【解答】解:A、5=,故原题计算错误;B、==(a>0,b>0),故原题计算正确;C、×3=3=,故原题计算错误;D、×=×16=24,故原题计算错误;故选:B.【点评】此题主要考查了二次根式的乘除法,关键是掌握计算法则.9.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定【分析】根据平行四边形的性质得到AB=DC,而△CMB的面积为S=CD•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,这样得到S1+S2=MA•高+BM•高=(MA+BM)•高=AB•高=S,由此则可以推出S,S1,S2的大小关系.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,∵△CMB的面积为S=DC•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,而它们的高都是等于平行四边形的高,∴S1+S2=AD•高+BM•高=(MA+BM)•高=AB•高=CD•高=S,则S,S1,S2的大小关系是S=S1+S2.故选:A.【点评】本题考查平行四边形的性质对边相等以及三角形的面积计算公式,分别表示出图形面积是解题关键.11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.12.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【分析】先将中能开方的因数开方,然后再判断n的最小正整数值.【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.【点评】解答此题的关键是能够正确的对进行开方化简.13.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8.故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是记住菱形的性质,学会利用菱形的面积的两种求法,构建方程解决问题,属于中考常考题型.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形.【分析】根据互逆命题的概念解答.【解答】解:命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形.【点评】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17.如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=5.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得答案.【解答】解:由直角三角形的性质,得CE=AB=5,故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,利用直角三角形的性质是解题关键.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).【分析】根据二次根式的性质和已知得出即可.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG= 4 .【分析】连接EO ,可得S △ABO =S △AEO +S △BEO ,再把AO =BO =4代入可求EF +EG 的值. 【解答】解:连接EO∵ABCD 为正方形∴AC ⊥BD ,AO =BO =CO =DO 且AC =BD =8 ∴AO =CO =BO =4 ∵S △ABO =S △AEO +S △BEO∴+∴EF +EG =4 故答案为4.【点评】本题考查了正方形的性质,本题关键是运用面积法解决问题. 三、解答题(本大题共8小题,共60分) 21.(6分)计算:(1)﹣5+(2)÷﹣× 【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可; (2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=4﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.【分析】连接BD,根据勾股定理可求出BC、CD、BD的值,再由BC2+CD2=BD2利用勾股定理的逆定理,即可证出∠BCD=90°.【解答】解:∠BCD是直角,理由如下:连接BD,如图所示.BC==2,CD==,BD==5.∵BC2+CD2=25=BD2,∴∠BCD=90°.【点评】本题考查了勾股定理及勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.【分析】通过△AEF≌△ABF,可以求证FE=FB,然后证得△CEF为等腰直角三角形即可.【解答】解:在Rt△AEF和Rt△ABF中,,∴Rt△AEF≌Rt△ABF(HL),∴FE=FB.∵正方形ABCD,∴∠ACB=∠BCD=45°,在Rt△CEF中,∵∠ACB=45°,∴∠CFE=45°,∴∠ACB=∠CFE,∴EC=EF,∴FB=EC=EF.【点评】本题考查了全等三角形的证明,考查了等腰直角三角形的判定,本题求证Rt△AEF≌Rt△ABF是解本题的关键.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.【分析】(1)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题;(2)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2y﹣xy2=xy(x﹣y)=1×2=2;(2))∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2﹣xy+y2=(x﹣y)2+xy=22+1=4+1=5.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.【分析】(1)首先判断四边形ABCD和四边形ANMD为平行四边形,然后由“平行四边形的对边相等”推知AB=CD,AN=CM,由等式的性质证得结论;(2)根据平行四边形的对边平行,平行线的性质以及平行四边形的对角相等进行解答.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD.又∵AN=CM,∴四边形ANMD为平行四边形,∴AN=CM,∴AB﹣AN=CD﹣CM,即BN=DM;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=180°﹣50°=130°.由(1)知,四边形ABCD是平行四边形,∴∠D=∠B=50°,AB=CD,AD=BC.∵BC=3,CD=2,∴四边形ABCD的周长=2(BC+CD)=2×(3+2)=10.【点评】考查了平行四边形的性质,解题的关键是平行四边形的判定,与平行四边形的性质的综合应用.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【解答】解:在Rt△AOC中,∵OA=OC,AC=18km,∴OA=OC=18(km),∵AB=0.2×40=8(km),CD=0.2×30=6(km),∴OB=10(km),OD=24(km),在Rt△OBD中,BD==26(km).答:此时B处距离D处26km远.【点评】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.。
2016-2017八年级下期期中考试(新人教)

DEF H第9题第17题ACDBEFO2016~2017学年度下学期期中考试八年级数学试题姓名一、选择题(每小题2分,共20分)1.其中最简二次根式有【】A.2个 B.3个C.4个D. 5个2.x的取值范围是……………………………………【】A. x≥12B. x≤12C. x≥12- D. x≤12-3.一个直角三角形的两条直角边的长分别为6cm和8cm,则其斜边上的中线的长为【】.A.3cm B.4cm C.5cm D. 7cm4. 计算221-631+8的结果是…………………………………………………【】A.32-23B.5-2C.5-3D.225. 如图,台风过后,一旗杆在B处断裂,旗杆顶部A落在离旗杆底部C8米处,已知旗杆长16米,折痕处离地面的高度是………………………………………【】A,米6.如图所示:数轴上点A所表示的数为a,则a的值是…………………………【】A.7.如图所示,在□ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两不同的点,当E、F两点满足下列哪个条件时,四边形DEBF不一定是平行四边形………………【】A.AE=CFB.DE=BF D.∠AED=∠CFE8.如图所示,边长为6的大正方形中有两个小正方形,如果它们的面积分别为1S、2S,那么1S+2S的值是…………………………………………………………………………………【】A.16 B. 17 C.18 D. 199.如图,已知矩形ABCD的对角线AC的长为10cm,连结各边中点E、F、G、H得到EFGH,则四边形EFGH的周长为…………………………………………………………………………【】A. 20cmB.C.D.25cm10.如图,E、F分别是正方形ABCD的边CD、AD上的点且CE=DF,AE、BF相交于点O,下列结论:①AE=BF, ②AE⊥BF,③AO=OE,④AOB DEOFS=SV四边形中,错误的有…………………【】A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11.命题“对顶角相等”的逆命题是:.12. 14、函数y=x+2x-1中自变量x的取值范围是。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.02.下列各式属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=24.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣16.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,237.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.249.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A .6B .4C .10D .210.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =12m B .MN ∥ABC .△CMN ∽△CABD .CM :MA =1:2二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12.已知▱ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE ﹣CF = .13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.14.若最简二次根式与能合并成一项,则a = .15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .16.若x=﹣1,则x3+x2﹣3x+2019的值为.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.0【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.2.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣1【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.6.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.9.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A.6B.4C.10D.2【分析】连接AC,则EF垂直平分AC,推出△AOE∽△ABC,根据勾股定理,可以求出AC的长度,根据相似三角形对应边的比等于相似比求出OE,即可得出EF的长.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=16,BC=8,∴AC=,∴AO=,∵∠EAO=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴OE:BC=AO:BA,即∴OE=,∴EF=2OE=.故选:B.【点评】本题主要考查了矩形的性质、勾股定理、相似三角形的判定和性质、折叠的性质;熟练掌握矩形的性质和折叠的性质,证明三角形相似是解决问题的关键.10.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【分析】由已知条件得出MN是△ABC的中位线,CM=MA,由三角形中位线定理得出MN∥AB,MN=AB,AB=2MN=12m,得出△CMN∽△CAB;即可得出结论.【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.【点评】本题考查了三角形中位线定理;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12【分析】直接利用二次根式乘法运算法则计算得出答案.【解答】解:×=×2=12.故答案为:12.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.已知▱ABCD的周长为28,自顶点A作AE⊥DC于点E,AF⊥BC于点F.若AE=3,AF=4,则CE﹣CF=14﹣7或2﹣(答对前者得2分,答对后者得1分).【分析】首先可证得△ADE∽△ABF,又由四边形ABCD是平行四边形,即可求得AB与AD的长,然后根据勾股定理即可求得DE与BF的长,继而求得答案.【解答】解:如图1:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴△ADE∽△ABF,∴,∵AD+CD+BC+AB=28,即AD+AB=14,∴AD=6,AB=8,∴DE=3,BF=4,∴EC=CD﹣DE=8﹣3,CF=BF﹣BC=4﹣6,∴CE﹣CF=(8﹣3)﹣(4﹣6)=14﹣7;如图2:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴∠ADE =∠ABF ,∴△ADE ∽△ABF ,∴,∵AD +CD +BC +AB =28,即AD +AB =14,∴AD =6,AB =8,∴DE =3,BF =4,∴EC =CD +DE =8+3,CF =BC +BF =6+4,∴CE ﹣CF =(8+3)﹣(6+4)=2﹣.∴CE ﹣CF =14﹣7或2﹣.【点评】本题主要考查的是平行四边形的性质.解题时,还借用了勾股定理这一知识点. 13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 四边形EPFQ =41cm 2,故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.14.若最简二次根式与能合并成一项,则a = 1 .【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【解答】解:=2,由最简二次根式与能合并成一项,得a +1=2.解得a =1.故答案为:1.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 (﹣5,4) .【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.若x=﹣1,则x3+x2﹣3x+2019的值为2018.【分析】先根据x的值计算出x2的值,再代入原式=x•x2+x2﹣3x+2019,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,由勾股定理得,CD2=AC2﹣AD2,CD2=BC2﹣BD2,∴AC2﹣AD2=BC2﹣BD2,即32﹣(2x)2=22﹣x2,解得,x=,即BD的长为.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE∥DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵E、F分别是OA、OC的中点∴OE=OA,OF=OC∴OE=OF∴四边形BFDE是平行四边形∴BE∥DF【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?【分析】(1)由CD垂直于AB,得到三角形BCD与三角形ACD都为直角三角形,由BC与DB,利用勾股定理求出CD的长,再利用勾股定理求出AD的长即可;(2)三角形ABC为直角三角形,理由为:由BD+AD求出AB的长,利用勾股定理的逆定理得到三角形ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.【分析】(1)连接DE,根据矩形的性质可得△ADE是等腰直角三角形,所以,∠AED=45°,设∠BGE=x,根据角平分线的定义可得∠DGE=x,根据直角三角形两锐角互余求出∠BEG,根据等腰三角形两底角相等求出∠DEG,然后根据平角等于180°列式求解即可得到x=30°,再根据30°所对的直角边等于斜边的一半证明;(2)先求出∠CGD=60°,然后解直角三角形求出CD的长度,根据矩形的对边相等求出AB的长度,在Rt△BGE中,求出BE、BG的长度,然后求出AE,即可得到AD,然后利用梯形的面积公式列式计算即可得解.【解答】(1)证明:如图,连接DE,∵AD=AE,∴△ADE是等腰直角三角形,∴∠AED=45°,设∠BGE=x,∵GE是∠BGD的平分线,∴∠BGE=∠DGE=x,在Rt△BGE中,∠BEG=90°﹣x,∵EG=DG,∴∠DEG=(180°﹣x),又∵∠AED+∠DEG+∠BEG=180°,∴45°+(180°﹣x)+90°﹣x=180°,解得x=30°,即∠BGE=30°,∴GE=2BE;(2)解:∵GE是∠BGD的平分线,∴∠CGD=∠BGE+∠DGE=30°+30°=60°,∴CD=DG sin60°=4×=2,在Rt△BGE中,BE=EG=×4=2,BG=EG cos30°=4×=2,∴AD=AE=AB﹣BE=2﹣2,梯形ABGD的面积=(AD+BG)CD=(2﹣2+2)×2=(4﹣2)=12﹣2.【点评】本题考查了矩形的性质,解直角三角形,直角三角形30°角所对的直角边等于斜边的一半的性质,题目设计巧妙,难度较大,利用∠BGE的度数恰好30°求解是解题的关键.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【分析】(1)可以证明四边形AEFD为平行四边形,如果四边形AEFD能够成为菱形,则必有邻边相等,则AE=AD,列方程求出即可;(2)当△DEF为直角三角形时,有三种情况:①当∠EDF=90°时,如图3,②当∠DEF=90°时,如图4,③当∠DFE=90°不成立;分别找一等量关系列方程可以求出t的值.【解答】(1)解:四边形AEFD能够成为菱形,理由是:由题意得:AE=2t,CD=4t,∵DF⊥BC,∴∠CFD=90°,∴∠C=30°,∴DF=CD=×4t=2t,∴AE=DF;∵DF⊥BC,∴∠CFD=∠B=90°,∴DF∥AE,∴四边形AEFD是平行四边形.当AE=AD,四边形AEFD是菱形,∵AC=100,CD=4t,∴AD=100﹣4t,∴2t=100﹣4t,t=,∴当t=时,四边形AEFD能够成为菱形;(3)分三种情况:①当∠EDF=90°时,如图3,则四边形DFBE为矩形,∴DF=BE=2t,∵AB=AC=50,AE=2t,∴2t=50﹣2t,t=,②当∠DEF=90°时,如图4,∵四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,在Rt△ADE中,∠A=60°,AE=2t,∴AD=t,则100=t+4t,t=20,③当∠DFE=90°不成立;综上所述:当t为s或20s时,△DEF为直角三角形.【点评】本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
新人教版本20172018学年初中八年级的下期初中中考试数学试卷试题包括答案2018.4.docx

新人教版 2017-2018 学年八年级下期中考试数学试题含答案2018.4(考试时间:120 分钟总分150分)一、选择题(每小题 4 分,共 48 分)1.如图,下列哪组条件能判别四边形ABCD是平行四边形?()A.AB ∥ CD,AD= BCB.AB = CD, AD= BCC. ∠ A=∠ B,∠ C=∠ DD.AB= AD, CB= CD2. 三角形的三边为 a、b、 c,由下列条件不能判断它是直角三角形的是()A . a:b:c =13∶ 5∶12B. a 2-b 2=c22D. a:b:c=8 ∶16∶ 17C . a =(b+c )(b-c)3.在△ ABC中,∠ C=90°,周长为 60,斜边与一直角边比是13: 5,?则这个三角形三边分别是()A . 5, 4,3B . 13, 12, 5C . 10, 8, 6D . 26, 24,104.已知:如图,在矩形 ABCD中, E、 F、G、 H 分别为边 AB、BC、 CD、DA的中点.若 AB= 2,AD = 4,则图中阴影部分的面积为( )A.5B.4.5C.4D.3.5A DB C第 1题第4题第5题5.如图 ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是()。
A.AC ⊥ BDB.∠ABC=90°C.OA=OB=OC=ODD.AC=BD6.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是()A . CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF7.若a 2 b24b 4c2c10 ,则 b2a c =()4A . 4B. 2C. -2D. 111则ab(a b)8.若a1, bb) 的值为(2 2 1aA. 2B.-2C.2D.229.如图, D 是△ ABC内一点, BD⊥ CD,AD=6, BD=4,CD=3, E,F,G,H 分别是 AB,AC,CD,BD的中点,则四边形EFGH的周长是 ( )A . 7 B.9 C.10 D.1110.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则 S +S 值为()12A . 16 B.17 C.18 D.19[来源 : 学科网 ZXXK]第 11 题第 12 题11.如图,在 Rt△ ABC中,∠ BAC=90°, D、E 分别是 AB、BC的中点, F 在 CA延长线上,∠ FDA=∠ B,AC=6, AB=8,则四边形 AEDF的周长为()A. 14 B.15 C.16 D.1812. 已知如图,矩形ABCD中, BD=5cm, BC=4cm, E 是边 AD上一点,且BE = ED, P是对角线上任意一点, PF⊥ BE, PG⊥ AD,垂足分别为F、 G。
人教版2017初二(下册)数学期中考试试卷(附答案)

人教版2017初二(下册)数学期中考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不是二次根式的是()A.B.C.D.2.中x的取值范围是()A.x≤2 B.x≠﹣2C.x≠2 D.x≥23.下列根式中属最简二次根式的是()A.B.C.D.4.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100C.4,5,6 D.5,6,75.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=86.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5C.4 D.37.如图,下面不能判断是平行四边形的是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠DC.AB=CD,AD∥BC D.AB=CD,AD=BC8.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形9.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=8,BD=6,则DH⊥AB于H,则DH等于()A.B.C.5 D.410.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论:①AF=AE;②AF=EF;③△ABE≌△AGF;④EF=2,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)11.计算:=.12.若直角三角形两条边分别是8,15,则斜边长为.13.若最简二次根式与是同类二次根式,则a=,b=.14.如图,在四边形ABCD中,已知AB∥CD,AB=CD,在不添加任何辅助线的前提下,要想该四边形成为菱形,只需再添加上的一个条件是.15.如图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a,较长边为b,那么(a+b)2的值是.16.如图,菱形ABCD中,∠BAD=45°,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于2,则AB=.三、解答题(本大题共8小题,共72分)17.计算:(1)×÷(2)(+)2×(﹣2)18.观察下列各式:;;…,请你猜想:(1)=,=.(2)计算(请写出推导过程):(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.19.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.20.如图,四边形ABCD中,AD∥BC,点E在边AB上,∠A=∠B=90°△ADE≌△BEC时,设AD=a,AE=b,DE=c,请利用如图,证明勾股定理:a2+b2=c2.21.如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.22.如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.(1)证明:四边形OCED为菱形;(2)若AC=4,求四边形CODE的周长.23.如图,正方形ABCD中,点P是BC边上的任意一点(异于端点B,C),连接AP,过点B,D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:△ADF≌△BAE;(2)若DF=5,BE=2,求EF长度.24.如图,在Rt△ABC中,∠B=90°,AC=60,∠C=30°,点D从点C出发沿CA 方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)当t=时,四边形BEDF是矩形;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.人教版2017初二(下册)数学期中考试试卷参考答案一、1-5 DDABD 6-10 DCDAC二、11.﹣112.17或113.1,114.AB=AD或AC⊥BD15.2516.2三、17.解:(1)原式==;(2)原式=(3+2+2)(5﹣2)=(5+2)(5﹣2)=25﹣24=1.18.解:(1),;(2);(3)(n≥1).19.解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,=.∴S△=20.解:当△ADE≌△BEC时,AD=BE=a,AE=BC=b,则有∠AED=∠BEC,∵∠AED+∠ADE=90°,∴∠AED+∠BEC=90°,∴∠DEC=90°,且DE=CE=c,=(AD+BC)AB=(a+b)2,S△ADE=S△BEC=ab,S△DEC=c2,∴S梯形ABCD=S△ADE+S△BEC+S△DEC,∵S梯形ABCD∴(a+b)2=ab+2,整理可得a2+b2=c2.21.证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,OE=OF.∵OA=OC,∴AECF是平行四边形;∵∠AEC=90°,∴四边形AECF为矩形.22.(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形又∵四边形ABCD 是矩形∴OD=OC∴四边形CODE为菱形;(2)解:∵四边形ABCD 是矩形∴OC=OD=AC又∵AC=4∴OC=2由(1)知,四边形CODE为菱形∴四边形CODE的周长为=4OC=2×4=8.23.(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,∴∠DAF=∠ABE,在△ADF和△BAE中,,∴△ADF≌△BAE(AAS),(2)解:∵△ADF≌△BAE(AAS),∴AF=BE,DF=AE,∴EF=AE﹣AF=DF﹣BE=5﹣2=3;24.(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=CD=2t.又∵AE=2t,∴AE=DF;(2)∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即60﹣4t=4t,∴t=.故答案是:;(3)能;理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又AE=DF,∴四边形AEFD为平行四边形.∵∠C=30°,AC=60,∴AB=30,∴AD=AC﹣DC=6﹣2t,若平行四边形AEFD为菱形,则AE=AD,∴2t=60﹣4t,∴t=10;即当t=10时,四边形AEFD能够成为菱形.。
2017年八年级下学期期中数学试卷两套合集五附答案解析

2017年八年级下学期期中数学试卷两套合集五附答案解析八年级(下)期中数学试卷一、选择题(共10小题,每题3分,总分值30分)1.以下各式中不是二次根式的是()A.B.C.D.2.化简的结果正确的选项是()A.﹣2 B.2 C.±2 D.43.以下二次根式中,最简二次根式是()A.B.C.D.4.在Rt△ABC中,∠A=90°,BC=13cm,AC=5cm,那么第三边AB的长为()A.18cm B.12cm C.8cm D.6cm5.知足以下条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5 B.三边之比为1:1:C.三边长别离为5、13、12 D.有两锐角别离为32°、58°6.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°7.假设一个菱形的边长为2,那么那个菱形两条对角线的平方和为()A.16 B.8 C.4 D.18.△ABC中,AB=15,AC=13,高AD=12,那么△ABC中BC边的长为()A.9 B.5 C.4 D.4或149.如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,那么AE的长为()A.2cm B.4cm C.6cm D.8cm10.如图,直线l过正方形ABCD的极点B,点A、C至直线l的距离别离为2和3,那么此正方形的面积为()A.5 B.6 C.9 D.13二、填空题(共6小题,每题3分,总分值18分)11.已知:+|b﹣1|=0,那么(a+b)2016的值为.12.已知直角三角形的两边长为3、2,那么另一条边长的平方是.13.某楼梯的侧面视图如下图,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,那么在AB段楼梯所铺地毯的长度应为米.14.如下图,已知▱ABCD,以下条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC 中,能说明▱ABCD是矩形的有(填写序号).15.如图,在▱ABCD中,E、F别离是AD、DC的中点,假设△CEF的面积为3,那么▱ABCD的面积为.16.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,假设P、Q 别离是AD和AC上的动点,那么PC+PQ的最小值是.三、解答题(共8小题,总分值72分)17.计算(1)2﹣++(2)÷(﹣)×.18.如图,网格中每一个小正方形的边长都为1,(1)求四边形ABCD的面积;(2)求∠BCD的度数.19.阅读下面的文字后,回答下列问题:甲、乙两人同时解答题目:“化简并求值:,其中a=5.”甲、乙两人的解答不同;甲的解答是:;乙的解答是:.(1)的解答是错误的.(2)错误的解答在于未能正确运用二次根式的性质:.(3)仿照上题解答:化简并求值:,其中a=2.20.小强想明白学校旗杆的高,他发觉旗杆端的绳索垂到地面还多1米,当他把绳索的下端拉开5米后(即BC=5米),发觉下端恰好接触地面,你能帮他算出来吗?假设能,请你计算出AC的长.21.嘉淇同窗要证明命题“两组对边别离相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的方式写出证明;(3)用文字表达所证命题的逆命题为.22.如图,四边形ABCD是正方形,F别离是DC和BC的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)假设BC=8,DE=6,求EF的长.23.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:AO=CO;(2)假设∠OCD=30°,AB=,求△AOC的面积.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)假设D为AB中点,那么当∠A的大小知足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案与试题解析一、选择题(共10小题,每题3分,总分值30分)1.以下各式中不是二次根式的是()A.B.C.D.【考点】二次根式的概念.【分析】依照二次根式的被开方数是非负数,可得答案.【解答】解:被开方数是非负数,故C不是二次根式,应选:C.2.化简的结果正确的选项是()A.﹣2 B.2 C.±2 D.4【考点】二次根式的性质与化简.【分析】依照=|a|计算即可.【解答】解:原式=|﹣2|=2.应选B.3.以下二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方式,确实是逐个检查最简二次根式的两个条件是不是同时知足,同时知足的确实是最简二次根式,不然就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D. =5,被开方数,含能开得尽方的因数或因式,故D选项错误;应选C.4.在Rt△ABC中,∠A=90°,BC=13cm,AC=5cm,那么第三边AB的长为()A.18cm B.12cm C.8cm D.6cm【考点】勾股定理.【分析】依照勾股定理:在任何一个直角三角形中,两条直角边长的平方之和必然等于斜边长的平方进行计算即可.【解答】解:∵∠A=90°,BC=13cm,AC=5cm,∴AB===12(cm),应选:B.5.知足以下条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5 B.三边之比为1:1:C.三边长别离为5、13、12 D.有两锐角别离为32°、58°【考点】勾股定理的逆定理.【分析】依照三角形内角和定理和勾股定理的逆定理判定是不是为直角三角形.【解答】解:A、依照三角形内角和定理,求得各角别离为45°,60°,75°,因此此三角形不是直角三角形;B、三边符合勾股定理的逆定理,因此其是直角三角形;C、52+122=132,符合勾股定理的逆定理,因此是直角三角形;D、依照三角形内角和定理,求得第三个角为90°,因此此三角形是直角三角形;应选A.6.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92° D.88°,92°,88°【考点】平行四边形的判定.【分析】两组对角别离相等的四边形是平行四边形,依照所给的三个角的度数能够求出第四个角,然后依照平行四边形的判定方式验证即可.【解答】解:两组对角别离相等的四边形是平行四边形,故B不是;当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A不是;当三个内角度数依次是88°,92°,92°,第四个角是88°,而C中相等的两个角不是对角故C错,D中知足两组对角别离相等,因此是平行四边形.应选D.7.假设一个菱形的边长为2,那么那个菱形两条对角线的平方和为()A.16 B.8 C.4 D.1【考点】菱形的性质.【分析】依照菱形的对角线相互垂直平分,即菱形被对角线平分成四个全等的直角三角形,依照勾股定理,即可求解.【解答】解:设两对角线长别离是:a,b.那么(a)2+(b)2=22.那么a2+b2=16.应选A.8.△ABC中,AB=15,AC=13,高AD=12,那么△ABC中BC边的长为()A.9 B.5 C.4 D.4或14【考点】勾股定理.【分析】分两种情形讨论:锐角三角形和钝角三角形,依照勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故BC长为14或4.应选:D.9.如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,那么AE的长为()A.2cm B.4cm C.6cm D.8cm【考点】平行四边形的性质.【分析】利用平行四边形的性质和角平分线的性质得出∠BEC=∠BCE,进而得出BE=BC=6cm,再依照AE=AB﹣BE计算即可.【解答】解:∵在▱ABCD中,AB∥CD,AB=CD=8cm,BC=AD=6cm,∴∠DCE=∠BEC,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠BEC=∠BCE,∴BE=BC=6cm,∴AE=AB﹣BE=2cm,应选:A.10.如图,直线l过正方形ABCD的极点B,点A、C至直线l的距离别离为2和3,那么此正方形的面积为()A.5 B.6 C.9 D.13【考点】正方形的性质;全等三角形的判定与性质.【分析】第一证明△ABE≌△BCF,推出AE=BF,EB=CF,再利用勾股定理求出AB2,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,∵AE⊥EF,CF⊥EF,∴∠AEB=∠CFB=90°,在△ABE和△BCF中,,∴△ABE≌△BCF,∴AE=BF=2,EB=CF=3,∴AB2=AE2+EB2=22+32=13,∴正方形ABCD面积=AB2=13.应选D.二、填空题(共6小题,每题3分,总分值18分)11.已知: +|b﹣1|=0,那么(a+b)2016的值为 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】依照非负数的性质别离求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a+2=0,b﹣1=0,解得,a=﹣2,b=1,那么(a+b)2016=1,故答案为:1.12.已知直角三角形的两边长为3、2,那么另一条边长的平方是13或5 .【考点】勾股定理.【分析】依照勾股定理,分两种情形讨论:①直角三角形的两条直角边长别离为3、2;②当斜边为3时,进而取得答案.【解答】解:设第三边长为c,①直角三角形的两条直角边长别离为3、2,那么c2=32+22=13;②当斜边为4时,c2=32﹣22=5.故答案为13或5.13.某楼梯的侧面视图如下图,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,那么在AB段楼梯所铺地毯的长度应为(2+2)米.【考点】解直角三角形的应用-坡度坡角问题.【分析】求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.【解答】解:依照题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.14.如下图,已知▱ABCD,以下条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号)①④.【考点】矩形的判定;平行四边形的性质.【分析】矩形是特殊的平行四边形,矩形有而平行四边形没有的特点是:矩形的四个内角是直角;矩形的对角线相等且相互平分;可依照这些特点来选择条件.【解答】解:能说明▱ABCD是矩形的有:①对角线相等的平行四边形是矩形;④有一个角是直角的平行四边形是矩形.15.如图,在▱ABCD中,E、F别离是AD、DC的中点,假设△CEF的面积为3,那么▱ABCD 的面积为24 .【考点】平行四边形的性质.【分析】由平行四边形的性质得出△ABC的面积=△ADC的面积=平行四边形ABCD的面积,由中点的性质得出△DEF的面积=△CEF的面积=3,△ACE的面积=△CDE的面积=6,求出△ADC的面积=2△CDE的面积=12,即可得出▱ABCD的面积.【解答】解:连接AC,如下图:∵四边形ABCD是平行四边形,∴△ABC的面积=△ADC的面积=平行四边形ABCD的面积,∵E、F别离是AD、DC的中点,△CEF的面积为3,∴△DEF的面积=△CEF的面积=3,△ACE的面积=△CDE的面积=3+3=6,∴△ADC的面积=2△CDE的面积=12,∴▱ABCD的面积=2△ADC的面积=24;故答案为:24.16.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,假设P、Q别离是AD 和AC上的动点,那么PC+PQ的最小值是 2.4 .【考点】轴对称-最短线路问题.【分析】如图作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC现在PC+PQ最短,利用面积法求出CQ′即可解决问题.【解答】解:如图,作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC现在PC+PQ最短.∵PQ⊥AC,PQ′⊥AB,AD平分∠CAB,∴PQ=PQ′,∴PQ+CP=PC+PQ′=CQ′∴现在PC+PQ最短(垂线段最短).在RT△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵•AC•BC=•AB•CQ′,∴CQ′===2.4.∴PC+PQ的最小值为2.4.故答案为2.4.三、解答题(共8小题,总分值72分)17.计算(1)2﹣++(2)÷(﹣)×.【考点】二次根式的混合运算.【分析】(1)先把各个二次根式依照二次根式的性质化为最简二次根式,归并同类二次根式即可;(2)依照二次根式的乘除运算法那么计算即可.【解答】解:(1)原式=2﹣2++=3﹣;(2)原式=×(﹣)×=﹣=﹣=9.18.如图,网格中每一个小正方形的边长都为1,(1)求四边形ABCD的面积;(2)求∠BCD的度数.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【分析】(1)利用正方形的面积减去四个极点上三角形及小正方形的面积即可;(2)连接BD,依照勾股定理的逆定理判定出△BCD的形状,进而可得出结论.=5×5﹣1﹣×1×4﹣×1×2﹣×2×4﹣×1×5=24﹣2﹣1【解答】解:(1)S四边形ABCD﹣4﹣=;(2)连BD,∵BC=2,CD=,BD=5,BC2+CD2=BD2,∴∠BCD=90°.19.阅读下面的文字后,回答下列问题:甲、乙两人同时解答题目:“化简并求值:,其中a=5.”甲、乙两人的解答不同;甲的解答是:;乙的解答是:.(1)甲的解答是错误的.(2)错误的解答在于未能正确运用二次根式的性质:=|a|,当a<0时, =﹣a .(3)仿照上题解答:化简并求值:,其中a=2.【考点】二次根式的化简求值.【分析】(1)当a=5时,1﹣3a<0,甲求的算术平方根为负数,错误;(2)二次根式的性质, =|a|,当a<0时, =﹣a;(3)将被开方数写成完全平方式,先判定当a=2时,1﹣a,1﹣4a的符号,再去绝对值,代值计算.【解答】解:(1)当a=5时,甲没有判定1﹣3a的符号,错误的选项是:甲;(2)=|a|,当a<0时, =﹣a.(3)|1﹣a|+=|1﹣a|+.∵a=2,∴1﹣a<0,1﹣4a<0,∴原式=a﹣1+4a﹣1=5a﹣2=8.20.小强想明白学校旗杆的高,他发觉旗杆端的绳索垂到地面还多1米,当他把绳索的下端拉开5米后(即BC=5米),发觉下端恰好接触地面,你能帮他算出来吗?假设能,请你计算出AC的长.【考点】勾股定理的应用.【分析】依照题意设旗杆的高AC为x米,那么绳索AB的长为(x+1)米,再利用勾股定理即可求得AC的长,即旗杆的高.【解答】解:设AC=x,那么AB=x+1,在Rt△ACB中,由勾股定理得:(x+1)2=x2+25,解得x=12(米),故:旗杆的高AC为12米.21.嘉淇同窗要证明命题“两组对边别离相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的方式写出证明;(3)用文字表达所证命题的逆命题为平行四边形两组对边别离相等.【考点】平行四边形的判定;命题与定理.【分析】(1)命题的题设为“两组对边别离相等的四边形”,结论是“是平行四边形”,依照题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,依照两组对边别离平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边别离相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边别离相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字表达所证命题的逆命题为:平行四边形两组对边别离相等.22.如图,四边形ABCD是正方形,F别离是DC和BC的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)假设BC=8,DE=6,求EF的长.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】(1)依照正方形性质得出∠ADE=∠ABC=90°=∠ABF,依照SAS推出全等即可;(2)依照全等三角形的性质求出BF=6,求出CF和CE,依照勾股定理求出即可.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ADE=∠ABC=90°=∠ABF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,DE=6,∴BF=DE=6,∵BC=DC=8,∴CE=8﹣6=2,CF=8+6=14,在Rt△FCE中,EF===10.23.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:AO=CO;(2)假设∠OCD=30°,AB=,求△AOC的面积.【考点】矩形的性质;全等三角形的判定与性质;翻折变换(折叠问题).【分析】(1)由矩形的性质和折叠的性质证明∠DAC=∠ECA,即可取得AO=CO;(2)第一求出AO,CO的长,再由三角形面积公式计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠BCA,又由折叠可知:∠BCA=∠ECA,∴∠DAC=∠ECA,∴OA=OC;(2)在Rt△COD中,∠D=90°∠OCD=30°∴OD=OC,又∵AB=CD=,∴(OC)2=OC2﹣()2,∴OC=2,∴AO=OC=2,∴S=AO•CD=×2×=△AOC24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)假设D为AB中点,那么当∠A的大小知足什么条件时,四边形BECD是正方形?请说明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【分析】(1)先求出四边形ADEC是平行四边形,依照平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,依照菱形的判定推出即可;(3)求出∠CDB=90°,再依照正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.八年级(下)期中数学试卷一、选择题(本部份共12小题,每题3分,共36分,每题只有一个选项正确)1.已知a>b,以下不等式中正确的选项是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>2.以下各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)3.以下多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)24.将一把直尺与一把三角板如图那样放置,假设∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°5.已知点P(3﹣m,m﹣1)在第二象限,那么m的取值范围在数轴上表示正确的选项是()A.B.C.D.6.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.假设a﹣b=2,ab=3,那么ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣58.等腰三角形两边长别离为4和8,那么那个等腰三角形的周长为()A.16 B.18 C.20 D.16或209.若是关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣110.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,那么以下确信P 点的方式正确的选项是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点11.某校举行关于“爱惜环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,那么他至少答对的题数是()A.17 B.16 C.15 D.1212.如下图,在△ABC中,已知点D,E,F别离为边BC,AD,CE的中点,且S△ABC=4cm2,那么S阴影等于()A.2cm2B.1cm2C. cm2D. cm2二、填空题(此题共4小题,每题3分,共12分)13.分解因式:4x2﹣8x+4=______.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,那么∠DAE=______.15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),那么不等式kx1+b1<kx2+b2的解集是______.16.如图,已知Rt△ABC中,AC⊥BC,∠B=30°,AB=10,过直角极点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A1⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,如此一直做下去,取得了一组线段A1C1,A2C2,…,那么A1C1=______;那么A 3C3=______;那么AnCn=______.三、解答题(此题共7小题,共52分)17.计算:(1)解不等式:x﹣(2x﹣1)≤3(2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a2x+12ax﹣9x.18.先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中x=,m=3.19.如图,方格纸中的每一个小方格都是边长为1个单位的正方形,在成立平面直角坐标系后,Rt△OAB的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角极点A在y轴,画出△OAB.①点B的坐标是______;②把△OAB向上平移5个单位后取得对应的△O1A1B1,画出△O1A1B1,点B1的坐标是______;③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是______.20.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线别离交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.21.某产品生产车间有工人10名.已知每名工人天天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,若是要使此车间天天所获利润不低于15600元,你以为至少要派多少名工人去生产乙种产品才适合.22.某校张教师寒假预备率领他们的“三勤学生”外出旅行,甲、乙两家旅行社的效劳质量相同,且报价都是每人400元,经协商,甲旅行社表示:“若是带队张教师买一张全票,那么学生可半价”;乙旅行社表示:“所有游客全数享受6折优惠.”那么:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?23.如图,已知△ABC中AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)若是点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①假设点P点Q的运动速度相等,通过1秒后,△BPD与△CQP是不是全等,请说明理由;②假设点P点Q的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)假设点Q以②中的运动速度从点C动身,点P以原先的运动速度从点B同时动身,都逆时针沿△ABC三边运动,求通过量长时刻,点P与点Q第一次在△ABC的哪条边上相遇?参考答案与试题解析一、选择题(本部份共12小题,每题3分,共36分,每题只有一个选项正确)1.已知a>b,以下不等式中正确的选项是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>【考点】不等式的性质.【分析】依照不等式的性质1,可判定A,B;依照不等式的性质3,可判定C;依照不等式的性质2,可判定D.【解答】解;A、不等式的两边都加上那个同一个数,不等号的方向不变,故A错误;B、不等式的两边都减去同一个数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都除以同一个负数不等号的方向改,故D正确;应选:D.2.以下各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把那个多项式因式分解,也叫做分解因式,依照概念即可判定.【解答】解:A、结果不是乘积的形式,不是分解因式,选项正确;B、是分解因式,选项错误;C、是分解因式,选项错误;D、是分解因式,选项错误.应选A.3.以下多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2【考点】因式分解-运用公式法.【分析】能运用平方差公式因式分解的式子的特点是:两项平方项;符号相反.【解答】解:A、﹣m2+4符合平方差公式因式分解的式子的特点,故A错误;B、﹣x2﹣y2两项的符号相同,因此不能用平方差公式因式分解,故B正确;C、x2y2﹣1符合平方差公式因式分解的式子的特点,故C错误;D、(m﹣a)2﹣(m+a)2符合平方差公式因式分解的式子的特点,故D错误.应选B.4.将一把直尺与一把三角板如图那样放置,假设∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°【考点】平行线的性质.【分析】先依照平行线的性质求出∠3的度数,再由三角形外角的性质即可得出结论.【解答】解:∵直尺的两边相互平行,∠1=35°,∴∠3=∠1=35°,∴∠2=35°+30°=65°.应选A.5.已知点P(3﹣m,m﹣1)在第二象限,那么m的取值范围在数轴上表示正确的选项是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【分析】依照第二象限内点的坐标特点,可得不等式,依照解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,应选:A.6.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的概念和中心对称图形的概念回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.应选:D.7.假设a﹣b=2,ab=3,那么ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣5【考点】因式分解-提公因式法.【分析】直接将原式提取公因式ab,进而分解因式将已知代入求出答案.【解答】解:∵a﹣b=2,ab=3,那么b﹣a=﹣2,∴ab2﹣a2b=ab(b﹣a)=3×(﹣2)=﹣6.应选:C.8.等腰三角形两边长别离为4和8,那么那个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,那么应该分两种情形进行分析.【解答】解:①当4为腰时,4+4=8,故此种情形不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.应选:C.9.若是关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【考点】解一元一次不等式.【分析】此题可对a>﹣1,与a<﹣1的情形进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解此题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.应选:D.10.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,那么以下确信P 点的方式正确的选项是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点【考点】角平分线的性质;线段垂直平分线的性质.【分析】别离作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点.【解答】解:作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点,应选C.11.某校举行关于“爱惜环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,那么他至少答对的题数是()A.17 B.16 C.15 D.12【考点】一元一次不等式的应用.【分析】依照竞赛得分=10×答对的题数+(﹣5)×未答对的题数,依照本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,15x>200,解得:x>,依照x必需为整数,故x取最小整数14,即小彤参加本次竞赛得分要超过100分,他至少要答对14道题.应选C.12.如下图,在△ABC中,已知点D,E,F别离为边BC,AD,CE的中点,且S△ABC=4cm2,那么S阴影等于()A.2cm2B.1cm2C. cm2D. cm2【考点】三角形的面积.【分析】依照三角形的面积公式,知:等底等高的两个三角形的面积相等.【解答】解:S阴影=S△BCE=S△ABC=1cm2.应选:B.二、填空题(此题共4小题,每题3分,共12分)13.分解因式:4x2﹣8x+4= 4(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式4,再依照完全平方公式进行二次分解即可求得答案.【解答】解:4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,那么∠DAE= 12°.【考点】三角形内角和定理.【分析】由角平分线的概念可求得∠BAE,在Rt△ABD中可求得∠BAD,再利用角的和差可求得∠DAE的大小.【解答】解:∵AE是∠BAC的平分线,∠BAC=84°,∴∠BAE=∠BAC=×84°=42°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=42°﹣30°=12°,故答案为:12°15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),那么不等式kx1+b1<kx2+b2的解集是x<1 .【考点】一次函数与一元一次不等式.【分析】看两函数交点坐标左侧的图象所对应的自变量的取值即可.【解答】解:一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),因此不等式kx1+b1<kx2+b2的解集是x<1.故答案为:x<1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4B.1:2:2:1C.1:2:1:2D.1:1:2:2
6•在平行四边形ABCD中,/A:/B:ZC:ZD的值可以是(
A.1:2:3:
二、填空题:(每小题3分,共24分)
7.
B
4
10题图
3x在实数范内有意义,则x的取值范围是
9.
b
10.如图,口ABCD与口DCFE的周长相等,且/BAD=60° /F=110°则/DAE的度数书为.
2017
一、选择题(每小题2分,共12分)
1•下列式子中,属于最简二次根式的是(
2.如图,在矩形ABCD中,
AD=2AB,点M、
连接BM、
DN.若四边形
MBND是菱形,则
N分别在边AD、BC上,
等于 ()
MD
2
B.
3
C.
4
D.-
5
2题图
-x
3•若代数式.有意义,则实数
x
4题图
x的取值范围是(
A.x工1B.x>0C.x>0D.x>0且x工1
11.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对厶OAB连续作旋转变换,依次得到△1、
△2、△3、△4…,则△2013的直角顶点的坐标为
12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD
成为菱形.(只需添加一个即可)
13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边
4.如图,把矩形
/EFB=60,
ABCD沿EF翻折,点B恰好落在 则矩形ABCD的面积是
AD边的B'处,若
( )
AE=2,
DE=6,
A.12
B. 24
C.
D.
ABCD的边长为4,点E在对角线
)
C.4-2 2
5.如图,正方形
EF丄AB,垂足为F,则EF的长为(
A.1
BD上,且/
BAE=22.5 o,
3.'2-4
长为2cm,/A=120,贝U EF=.
14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把/B沿AE折叠,使点B落在 点B处,当△CEB为直角三角形时,BE的长为.
/
LaZI
*
11题图
12题图
A
13题图
D
三、解答题(每小题5分,共20分)
15•计算:恵卜厲1
14题图