线路相间距离保护实验

合集下载

输电线路相间的距离保护整定计算

输电线路相间的距离保护整定计算

输电线路相间的距离保护整定计算输电线路是电力系统中重要的组成部分,其众多保护装置中,相间距离保护是最为常用的一种保护。

本文将介绍输电线路相间距离保护的概念、选择及整定计算方法。

1. 相间距离保护概述相间距离保护是指通过测量故障电流和电压的相量差来判断故障点到保护点的距离,从而对电力系统进行保护的一种保护方式。

在电力系统中,一般采用成对的线路传输电能,因此,在相间距离保护中,普遍采用两线的距离来判断故障点到保护点的距离。

由于线路距离不同,其对应的保护距离也不同,因此,需要根据输电线路的物理特征和系统要求进行保护距离的合理选择和整定计算。

2. 相间距离保护的选择在选择相间距离保护时,主要应考虑以下三个方面:1.距离保护的可靠性要求:距离保护是电力系统中最为常用的保护方式之一,要求能够可靠地进行故障检测和判断,确保及时有效地切除故障电路,防止故障扩散和系统失稳。

2.输电线路的物理特征:距离保护的选择应考虑输电线路的长度、电压等级、输电能力、线路类型等多个因素。

例如,在长距离输电线路中,由于线路阻抗大,传输过程中存在较大的电力损耗和电压降,保护阻抗需相应设置较低;而在变电站内,由于线路较短、电压高、抢修容易,可适当提高保护设置阻抗。

3.保护方案的选择:距离保护可分为单相、双相和三相保护,具体选择应考虑电力系统的运行特点、系统设备的类型和数量、以及系统负荷状况。

在实际工作中,应根据以上因素选定合适的距离保护,进行系统调试。

3. 相间距离保护整定计算方法相间距离保护整定计算的主要内容包括保护距离、阻抗设置和整定系数的确定。

3.1 保护距离的确定保护距离是指相间距离保护所对应的线路长度,其一般应按照以下公式进行计算:Lp = Kp * L其中,Lp为保护距离,Kp为保护系数,L为线路长度。

在实际计算中,应根据具体线路的物理特征选取合适的保护系数。

同时,由于混合线路的存在,可能会产生等效阻抗的问题,需要对阻抗进行修正。

微机保护实验报告参考模板

微机保护实验报告参考模板

实验七微机线路相间方向距离保护实验一、实验目的1、掌握微机相间方向距离保护特性的检验方法。

2、掌握微机相间方向距离保护一、二、三段定值的检验方法。

3、掌握微机保护综合测试仪的使用方法。

4、熟悉微机型相间方向距离保护的构成方法。

二、实验项目1、微机相间方向距离保护特性实验2、微机相间方向距离保护一、二、三段定值实验三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的15(I-7)、14(I-6)、13(I-5)、20(I-12)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-15)、2(I-16)、3(I-17)、6(I-18)号端子;K1、K2分别接到保护屏端子排对应的60(I-60)、71(I-71)号端子;n1、n2分别接到保护屏端子排对应的76(220VL)和77(220VN)号端子。

3、微机相间方向距离保护特性的测试第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护测试主界面。

(参见M2000使用手册)第二步:设置测试方式及各种参数。

将测试方式设置成自动搜索方式,时间参数设置:包括故障前时间、最长故障时间、间隔时间。

固定值:用户可以设置固定电压或电流及其大小。

间隔时间:是每一个脉冲后的停顿时间,在该时间内没有电压电流输出;若不希望在测试过程中有电压失压的情况,可将间隔时间设为 0 。

开关量输出:用户可以定义在故障发生时的开关量输出。

跳闸开关量:每个开关量输入通道以图形方式显示该通道的设定状态,设定状态包括:不选、断开、闭合三种。

您可以用鼠标点击相应开关的图形的中心即可切换开关状态。

在开关图形的右边有两个单选框分别为:与或,这是所有设定的开关量应满足的动作逻辑关系,与为所有设定的开关状态必须同时满足,或为设定的所有开关中某一个满足条件即可。

故障:设置故障类型。

设置成相间故障类型(如两相短路或三相短路)。

220kV线路距离保护设计探究

220kV线路距离保护设计探究

220kV线路距离保护设计探究摘要:本文对220kV线路距离保护实施方案进行了设计研究,供同行借鉴参考。

关键词:220kV线路距离保护重合闸一、220kV线路保护的基本原理1.距离保护的基本原理(1)距离保护的概念。

距离保护是利用短路时电压电流同时发生变化的特征,测量电压与电流的比值,反映故障点到保护安装处的距离的工作保护。

(2)距离保护的构成。

距离保护一般由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口等几部分组成。

(3)阻抗继电器及其动作特性。

在距离保护中,阻抗继电器的作用就是在系统发生短路故障时,通过测量故障环路上的测量阻抗Zm,并将它与整定阻抗Zset 相比较,以确定出故障所处的区段,在保护范围内部发生故障时,给出动作信号。

1)圆特性。

圆特性阻抗继电器,有全阻抗圆、方向阻抗圆、偏移阻抗圆,后者是传统继电保护中应用最为广泛的阻抗继电器。

其中全阻抗圆特性无方向性,方向阻抗圆存在电压死区,偏移阻抗圆特性是前两者的综合,特性较好,应用较多。

2)四边形特性。

四边形特性阻抗继电器综合了电阻电抗型直线特性,并考虑了阻抗的方向性,是一种较为精确反映故障测量阻抗边界的阻抗继电器,具有良好的抗过渡电阻的能力。

在传统继电保护中,因难于实现而很少使用。

但随着微机保护的出现,这些功能在微机中非常容易实现,因此得到了广泛应用。

圆特性的阻抗元件在整定值较小时,动作特性圆也就比较小,区内经过渡电阻短路时,测量阻抗容易落在区外,导致测量元件拒动作;具有多边形特性的阻抗元件可以克服这些缺点,能够同时兼顾耐受过渡电阻的能力和躲负荷能力。

2.自动重合闸的基本原理(1)自动重合闸的作用。

大多数发生在送电线路上的故障都是瞬时性的,在线路被继电保护迅速断开以后,电弧即行熄灭,此时,如果把断开的线路断路器再合上,就能够恢复正常供电。

由于重合闸装置本身投资很低,工作可靠,因此,在电力系统中得到了广泛的应用。

(2)输电线路的三相一次重合闸。

距离保护I、Ⅱ、Ⅲ段定值校验

距离保护I、Ⅱ、Ⅲ段定值校验

在“距离与零序保护试验”菜单可以定性分析距离保护各段动作的灵敏性和可靠性,能一次性自动完成相间距离Ⅰ、Ⅱ、Ⅲ段定值和接地距离Ⅰ、Ⅱ、Ⅲ段定值校验,根据规程,一般是以5%误差为标准对动作值进行定点校验,即距离保护Ⅰ、Ⅱ、Ⅲ段在0.95 倍定值时,应可靠动作;在1.05 倍定值时,应可靠不动作。

1、保护相关设置:保护定值设置:(2)保护压板设置:在“定值整定”里,把运行方式控制字“投I 段接地距离”、“投II 段接地距离”、“投III 段接地距离”、“投I 段相间距离”、“投II 段相间距离”、“投III 段相间距离”均置“1”,其他的均置“0”;在“压板定值”中,仅把“投距离保护压板”置“1”;在保护屏上,仅投“距离保护”硬压板。

2、试验接线:将测试仪的电压输出端“Ua”、“Ub”、“Uc”、“Un”分别与保护装置的交流电压“Ua”、“Ub”、“Uc”、“Un”端子相连。

将测试仪的电流输出端“Ia”、“Ib”、“Ic”分别与保护装置的交流电流“IA”、“IB”、“IC”(极性端)端子相连;再将保护装置的交流电流“IA'”、“IB'”、“IC'”(非极性端)端子短接后接到“IN”(零序电流极性端)端子,最后从“IN'”(零序电流非极性端)端子接回测试仪的电流输出端“In”。

将测试仪的开入接点“A”、“B”、“C”、“R”分别与保护装置的分相跳闸出口接点“跳A”、“跳B”、“跳C”以及“重合闸”接点相连。

测试仪的开入量公共端“+KM”与保护装置的公共端相连。

做距离保护试验时如果不带重合闸试验可以不用接重合闸出口,也可以直接一个开入量。

具体如下图所示:图1.7.1RCS-901B 距离保护接线图3、距离保护Ⅰ、Ⅱ、Ⅲ阻抗定值校验:在“距离与零序保护”菜单里,根据测试项目和故障类型的选择,试验分别由若干个子试验项目构成,各子试验项目都可以选择不同的故障内型和不同的阻抗倍数,整个试验项目中故障的启动方式由用户设置(时间启动,或按键启动)。

07-第七部分 输电线路相间的距离保护整定计算

07-第七部分 输电线路相间的距离保护整定计算
2
I I Z op K .1 res Z AB
式中
I Z op .1
I K rel
0.8 ~ 0.85 ;
Z AB
图7-1 距离保护整定计算系统图 若被保护对象为线路变压器组,则送电侧线路距离保护第Ⅰ段可 按保护范围伸入变压器内部整定,即 (7-2) Z I K I Z K Z
2.与相邻距离保护第Ⅱ段配合 为了缩短保护切除故障时间,可与相邻线路相间距离保护第Ⅱ段 配合,则 III III II (7-10)
Kb. min Z op.2 Z op.1 K rel Z AB K rel
12
式中 K IIi ——距离保护第Ⅲ段可靠系数,取 0.8 ~ 0.85 ; rel
相间距离保护第Ⅱ段的灵敏度按下式校验
K
II sen

Z
II op .1
Z AB

1 . 3 ~ 1 .5
当灵敏度不满足要求时,可与相邻线路相间距离第Ⅱ段配合,其 动作阻抗为 (7-5) II II II op.1 rel AB rel b. min op.2
Z
K Z
K K
Z
8
式中

——可靠系数,取 K rel
II Z op .2
≤ K rel
0 .8 ;
——相邻线路相间距离保护第Ⅱ段的整定值。
13
当距离保护第Ⅲ段的动作范围未伸出相邻变压器的另一侧时, 应与相邻线路不经振荡闭锁的距离保护第Ⅱ段的动作时间配 合,即
III t op.1 II t op.2
5
式中
II K rel
——距离保护第Ⅰ段可靠系数,取 0.8 ~ 0.85 ;

距离保护综合实验报告

距离保护综合实验报告

一、实验目的1. 理解距离保护的基本原理和工作特性。

2. 掌握距离保护的调试方法和步骤。

3. 分析距离保护在不同故障情况下的动作行为。

4. 提高对电力系统保护装置的维护和管理能力。

二、实验原理距离保护是一种根据电力系统故障点的距离来判定故障位置并实施保护的继电保护装置。

它利用故障点距离保护装置的距离与系统各元件阻抗的关系,通过测量保护装置处的电压和电流,计算出故障点的距离,从而实现对故障的快速切除。

距离保护的基本原理如下:1. 利用故障点的电压和电流的相位差,确定故障点与保护装置之间的距离。

2. 根据距离计算结果,判断是否发出跳闸信号,实现对故障的切除。

三、实验仪器与设备1. 距离保护实验装置2. 电力系统模拟器3. 数字示波器4. 电流表5. 电压表6. 计算器四、实验步骤1. 熟悉实验装置的结构和原理,了解各部件的功能。

2. 将实验装置按照实验要求进行接线,确保接线正确无误。

3. 打开电力系统模拟器,设置实验参数,如故障类型、故障位置等。

4. 启动实验装置,观察保护装置的动作情况,记录相关数据。

5. 改变故障参数,重复步骤4,观察保护装置的动作行为。

6. 分析实验数据,验证距离保护的工作原理和特性。

五、实验内容1. 故障类型:短路故障、接地故障、过负荷故障。

2. 故障位置:线路末端、线路中部、保护装置附近。

3. 故障类型与位置组合:共9种组合。

六、实验结果与分析1. 短路故障:在故障点附近,距离保护装置能够迅速动作,切除故障;在故障点较远的位置,距离保护装置动作时间有所延迟。

2. 接地故障:距离保护装置对接地故障的灵敏度较高,能够迅速动作,切除故障。

3. 过负荷故障:距离保护装置对过负荷故障的灵敏度较低,不能有效切除故障。

七、实验结论1. 距离保护能够根据故障点的距离,实现对电力系统故障的快速切除。

2. 距离保护在不同故障类型和位置下的动作行为有所不同,需要根据实际情况进行调整和优化。

3. 距离保护在实际应用中,需要定期进行维护和校验,确保其可靠性和准确性。

实验一距离保护实验一、实验目的掌...

实验一距离保护实验一、实验目的掌...

实验一 距离保护实验一、实验目的1. 了解距离保护的原理;2. 熟悉接地距离保护的多边形特性和相间距离保护的圆特性;3. 掌握距离保护的逻辑组态方法。

二、实验原理及逻辑框图相间距离保护采用圆特性的阻抗元件。

相间阻抗元件由ZAB 、ZBC 、ZCA 三个阻抗元件和偏移阻抗元件、电抗线、负荷特性曲线组成。

a. 阻抗元件在故障发生150 ms 之内采用带记忆的正序电压作极化量的欧姆继电器,记忆电压采用故障前八周电压。

动作方程:1ΦΦY ΦΦ|0|1m 1θ270I Z U U Argθ90-<-<-︒︒式中:|0|1m U 为故障前的正序电压;AB、BC、CA ΦΦ=; 1θ为方向特性向一象限偏移角;Zy 为各段定值。

150ms 之后取消记忆,采用正序电压作极化量,动作方程为:1ΦΦY ΦΦ1m1θ270I Z U U Argθ90-<-<-︒︒若正序电压较低(15% Un ),为三相短路,为保证正方向故障能动作,反方向故障不动作,设置了偏移特性。

在I 、II 段距离继电器暂态动作后,改用反偏阻抗继电器,保证继电器动作后能保持到故障切除。

在I 、II 段距离继电器暂态不动作时,改用上抛阻抗继电器,保证母线及背后故障时不误动。

对后加速则一直使用反偏阻抗继电器。

反偏或上抛的阻抗值为:)ZY Ω,0.5 min(0.3Z 1q =1ZY 为相间距离I 段定值Ⅰ、Ⅱ段阻抗继电器暂态及稳态动作特性如图5-1,5-2所示:图5-1 Ⅰ、Ⅱ段阻抗继电器暂态特性 图5-2 Ⅰ、Ⅱ段阻抗继电器稳态特性Ⅲ段阻抗继电器的动作特性:1ΦΦY ΦΦ1m1θ270I Z U U Argθ90-<-<-︒︒b.电抗线为防止相间阻抗元件偏移后的超越,距离Ⅰ、Ⅱ增加电抗线特性,其动作特性为:︒︒<⨯φφ<90Zy/Uop)Arg(-I 90-c.负荷特性曲线在重负荷时,测量阻抗可能落入阻抗元件内,因此增加负荷特性曲线。

实验三距离保护

实验三距离保护

实验三、距离保护及方向距离保护整定实验一、实验目的1.熟悉阶段式距离保护及方向距离保护的工作原理和基本特性。

2.掌握时限配合、保护动作阻抗(距离)和对DKB、YB的实际整定调试方法。

二、预习与思考1.什么是距离保护?距离保护的特点是什么?2.什么是距离保护的时限特性?3.什么是方向距离保护?方向距离保护的特点是什么?4.方向距离保护的Ⅰ段和Ⅱ段为什么在单电源或多电源任何形状的电网中都能够保证有选择性地切除故障线路?5.阶段式距离保护中各段保护是如何进行相关性配合的?6.在整定距离保护动作阻抗时,是否要考虑返回系数。

三、原理说明1.距离保护的作用和原理电力系统的迅速发展,使系统的运行方式变化增大,长距离重负荷线路增多,网络结构复杂化。

在这些情况下,电流、电压保护的灵敏度、快速性、选择性往往不能满足要求。

电流、电压保护是依据保护安装处测量电流、电压的大小及相应的动作时间来判断故障是否发生以及是否属于内部故障,因而受系统的运行方式及电网的接线形式影响较大。

针对被保护的输电线路或元件,在其一端装设的继电保护装置,如能测量出故障点至保护安装处的距离并与保护范围对应的距离比较,即可判断出故障点的位置从而决定其行为。

这种方式显然不受运行方式和接线的影响。

这样构成的保护就是距离保护。

以上设想,表示在图5-1中。

图中线路A侧装设着距离保护,由故障点到保护安装处间的距离为l,按该保护的保护范围整定的距离为l zd,如上所述,距离保护的动作原理可用方程表示:l≤l zd。

满足此方程时表示故障点在保护范围内,保护动作;反之,则不应动作。

图5-1 距离保护原理说明Z—表示距离保护装置距离比较的方程两端同乘以一个不为零且大于零的z1(输电线每千米的正序阻抗值)得到:Z d = z1l ≤ z1l zd ( 5-1 )式(5-1)称为动作方程或动作条件判别式。

表明距离保护是反应故障点到保护安装处间的距离(或阻抗)并与规定的保护范围(距离或阻抗)进行比较,从而决定是否动作的一种保护装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二相间距离保护(1)实验目的
1. 了解距离保护的原理;
2. 熟悉相间距离保护的圆特性;
3. 掌握距离保护的逻辑组态方法。

(2)实验原理及逻辑框图
1.距离保护的原理及整定方法;
2.距离保护评价
3.距离保护逻辑框图;
(3)实验内容
1.装置接线检查无误后,合上三相漏电断路器,使装置上电,按照电力系统同期并网操作步骤进行并网。

2.修改保护定值:进入微机线路保护装置菜单“定值”→“定值”,输入密码后,进入→“相间距离保护Ⅰ段”→按“确认”按钮,进入定值修改界面,修改输电线路相间距离保护的保护定值,距离保护定值清单如下:
3.投入保护压板。

将相间距离保护的硬压板(用导线将端子“开入+”接到端子“距离保护压板”,用导线将端子“合闸断线+”与端子“合闸断线-”短接,将端子“跳闸断线+”与端子“跳闸断线-”短接)和软压板投入(“定值”→“压板”,输入密码后,进入→“相间距离保护Ⅰ段,相间距离保护Ⅱ段,相间距离保护Ⅲ段”,分别将其保护软压板投入后→按“确认”后显示压板固化成功),其他所有保护的硬压板和软压板均退出。

4.参考“输电线路实验系统的故障模拟”中的三段式相间距离保护实验模拟的方法进行输电线路的距离保护实验。

(4)实验数据
记录WXH-825微机输电线路保护装置中记录的三段式相间距离保护动作时的三相电流值、故障阻抗及保护的整定值,并制作相应的表格。

线路相间距离保护实验数据表。

相关文档
最新文档