吸附分离法
吸附分离的原理

吸附分离的原理
吸附分离是一种物质分离的常用方法,其原理是通过物质在吸附剂上的不同吸附性质,实现目标物的分离纯化。
吸附剂通常是一种多孔固体材料,具有大量的微观孔隙结构。
这些微孔能够提供大表面积,以增加目标物与吸附剂之间的接触面积。
吸附剂可以选择性地吸附目标物,使其他组分通过,实现目标物的分离。
不同的吸附剂对目标物的选择性吸附是基于物质间的相互作用力。
吸附分离的原理可以归结为两种主要类型:物理吸附和化学吸附。
物理吸附是指目标物与吸附剂之间的非化学吸附,主要通过范德华力、静电力和疏水作用来实现。
物理吸附的主要特点是吸附剂与目标物之间的吸附力较弱,可以通过改变温度和压力等条件来实现目标物的解吸。
化学吸附是指目标物与吸附剂之间发生化学键的吸附,吸附剂与目标物之间形成比较稳定的化学络合物。
化学吸附的主要特点是吸附力较强,不易被改变的外界条件所影响。
在吸附分离的实际应用中,通常需要考虑多种因素,包括吸附剂的选择、操作条件的优化以及吸附剂的再生等。
此外,也可以将不同类型的吸附剂进行组合,以提高分离效果。
总之,吸附分离是一种基于物质在吸附剂上的不同吸附性质实
现目标物分离纯化的方法。
通过选择适当的吸附剂和调节操作条件,可以高效地实现物质的分离纯化。
吸附分离法

待分离的料液 通入吸附剂
吸附质被吸附 在吸附剂表面 吸附质解吸 吸附剂再生
料液流出
吸附法概述
吸附法的发展
吸附法在各种层析技术中应用最早,
如一战期间发展起来的活性炭吸附, 后来使用的凝胶型离子交换树脂、分子筛和 纤维素等
近些年发展的大网格吸附剂
吸附法概述
常用的吸附剂
大网格聚合物吸附剂:
Chapter 2 生物活性物质粗分 的常用方法 2.2 吸附分离法
主 要 内 容 ①吸附概述 ②吸附的类型
③吸附等温线
④ 影响吸附的因素
一 吸附法概述
吸附法
吸附是利用吸附剂对液体或气体中某一组分具有选择 吸附的能力,使其富集在吸附剂表面,而从混合物中 的分离的的过程。
典型的吸附过程包括四个步骤:
1. 活性炭
活性炭对物质的吸附规律
活性炭是非极性吸附剂,在水中吸附能力大于有机溶剂中的吸附
能力。
针对不同的物质,活性炭的吸附遵循以下规律:
(1)对极性基团多的化合物的吸附力大于极性基团少的化合物
(2)对芳香族化合物的吸附能力大于脂肪族化合物
(3)对相对分子量大的化合物的吸附力大于相对分子量小的化合物 (4)pH 值的影响 碱性 中性吸附 酸性洗脱
活性碳:助滤,脱色,去热原
使用:偏酸性pH 5-7,加热(50-60℃) 搅拌30min 活性白土:脱组胺类过敏物,脱色。 硅藻土:助滤,澄清
吸附法概述
树脂的网络骨架
吸附法概述
树脂的网络骨架
吸附法概述
吸附法特点
(1) 不用或少用有机溶剂
(2) 操作简便、安全、设备简单
第六章吸附分离法

专属吸附 (special sorption):指在吸附过程中,除了化学键作用 外,尚有加强的憎水键和范德化力或氢键作用。该作用不但可以 使表面电荷改变符号,还可以使离子化合物吸附在同号电荷的表 面上。
Q = Q0·C /(A+C) 1/Q = 1/Q0 + (A/ Q0)(1/C) Q0——单位表面上达到饱和时间的最大吸附量; A——常数,表示达到1/2 Q0时的平衡浓度。
G
G
lgG
H型
c
G
F型 c
lgK
F型
lgc
1/G
G0/2
当溶0质A浓度甚L型低时,c可能在初始阶段呈现 HL型型,当浓1/c度较高 时,可能表现为 F 型,但统一起来仍属于 L 型的不同区段。
较少引起生物活性物质的变性失活。 缺点: (1) 选择性差,收率不高。 (2)一些无机吸附剂性能不稳定。
4
第一节 吸附法基本概念
一、吸附: 物质从流体相(气体或液体)浓缩到固体 表面从而达到分离的过程称为吸附作用 (adsorption),在表面上能发生吸附作用 的固体微粒称为吸附剂(adsorbent),而 被吸附的物质称为吸附物(adsorbate)。
三、影响吸附的因素
(一)吸附剂 吸附容量:比表面积、种类、活化状况 吸附速度:颗粒度、孔径 机械强度
15
(二)吸附物 能使表面张力降低的物质,易为吸附 溶解度:较小易吸附 极性吸附剂易吸附极性吸附物 同系物吸附量变化有规律 氢键
第八章 吸附分离法

C 色散力 非极性分子之间的引力属于色散力。当分子 由于外围电子运动及原子核在零点附近振动,正负电 荷中心出现瞬时相对位移时,会产生快速变化的瞬时 偶极矩,这种瞬时偶极矩能使外围非极性分子极化, 反过来,被极化的分子又影响瞬时偶极矩的变化,这 样产生的引力叫色散力。
在表面上能发生吸附作用的固体称为吸附剂, 而被吸附的物质称为吸附物。
二、吸附的类型
吸附作用是根据其相互作用力的不同来分类。 产生吸附效应的力有范德华力、静电作用力以 及在酶与基质结合成络合物时存在的疏水力、 空间位阻等。按照范德华分子间或键合力的特 性,通常可分为以下三种类型。
物理吸附 化学吸附 交换吸附
颗粒大小 小
较小 大
表面积 大
较大 小
吸附力 大
较小
吸附量 大
较小
小
小
洗脱 难 难 易
活性炭的选择
根据所分离物质的特性,选择吸附力适当的活 性炭是成功的关键。
当欲分离物质不易被吸附时,选择吸附力强的 活性炭;反之,则选择吸附力弱的活性炭。
首次分离样品时,一般先选用颗粒状活性炭, 如待分离的物质不能被吸附,则改用粉末状活 性炭。如待分离物质吸附后不能洗脱或难洗脱, 则改用锦纶活性炭。
换句话说,在分子间相互作用的总能量中,各种力所占 的相对比例是不同的,主要取决于两个性质,即吸附物 的极性和极化度,极性越大,定向力作用越大;极化度 越大,色散力的作用越大。诱导力是次级效应,计算结 果表明,其能量约为分子间力的总能量的5%。
D 氢键力 另一种特殊的分子间作用力是氢键力。它是一种 介于库仑引力与范德华引力之间的特殊定向力,比诱导 力、色散力都大。
一氧化碳与氢气分离方法

一氧化碳与氢气分离方法
一氧化碳和氢气的分离方法主要有以下几种:
1. 吸附分离法:利用一氧化碳和氢气在不同吸附材料上的亲和力差异,通过吸附材料将一氧化碳和氢气分离。
例如,可以使用活性炭、分子筛等吸附材料进行吸附分离。
2. 膜分离法:利用一氧化碳和氢气在不同类型的膜上的透过性差异,通过膜将一氧化碳和氢气分离。
例如,可以使用聚合物膜、陶瓷膜等进行膜分离。
3. 液体吸收分离法:利用一氧化碳和氢气在不同溶液中的溶解度差异,通过液体吸收剂将一氧化碳和氢气分离。
例如,可以使用碱性溶液吸收一氧化碳,再通过温度或压力变化等条件实现吸附剂的再生。
4. 蒸馏分离法:利用一氧化碳和氢气的沸点差异,在特定温度和压力下将一氧化碳和氢气进行蒸馏分离。
一氧化碳的沸点较高,氢气的沸点较低,可以通过控制温度和压力来实现分离。
这些分离方法可以单独或组合使用,具体选择方法取决于使用环境和要求。
吸附分离技术简述

吸附分离技术简述现代用于混合溶剂的分离方法有:萃取分离、色谱分离、膜分离、离子交换分离和吸附分离。
其中,吸附分离是现代最常用的一种分离方法。
现主要围绕吸附分离做讨论。
吸附作用是指各种气体、蒸气以及溶液里的溶质被吸着在固体或液体物质表面上的作用。
吸附是一个非均相过程。
具有吸附性的物质叫做吸附剂,被吸附的物质叫吸附质。
吸附作用实际是吸附剂对吸附质质点的吸引作用。
吸附剂所以具有吸附性质,是因为分布在表面的质点同内部的质点所处的情况不同。
内部的质点同周围各个方面的相邻的质点都有联系,因而它们之间的一切作用力都互相平衡,而表面上的质点,表面以上的作用力没有达到平衡而保留有自由的力场,借这种力场,物质的表面层就能够把同它接触的液体或气体的质点吸住。
一、物理吸附与化学吸附吸附作用可分为物理吸附和化学吸附。
物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力所引起,此力也称作范德华力。
吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。
被吸附物质也较容易解吸出来,所以物理吸附是可逆的。
如:活性炭对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。
化学吸附则以类似于化学键力的相互吸引,其吸附热较大。
例如,许多催化剂对气体的吸附如:镍对氢气的吸附就属于这一类。
被吸附的气体往往需要在很高的温度下才能解脱,而且在性状上有变化。
所以化学吸附大都是不可逆过程。
同一物质,可能在低温下进行物理吸附而在高温下为化学吸附,或者两者同时进行。
吸附作用的大小跟吸附剂的性质和表面的大小、吸附质的性质和浓度的大小、温度的高低等密切相关。
如活性炭的表面积很大,吸附作用强;活性炭易吸附沸点高的气体,难吸附沸点低的气体。
二、脱附吸附的逆过程就是脱附,脱附就是吸附剂的再生。
现工艺上常用的脱附方法有:○1降低压力:使气相压力小于吸附剂表面的压力,那样吸附在吸附剂表面的气体就会因压差逸出吸附剂。
免疫吸附分离法

免疫吸附分离法
免疫吸附分离法是一种血液净化技术,通过结合高度特异性的抗原、抗体或有特定物理化学亲和力的物质(配体)与吸附材料(载体)制成吸附剂(柱)。
这种吸附剂能选择性或特异地清除血液中的致病因子,从而达到净化血液、缓解病情的目的。
免疫吸附分离法在多个医学领域都有应用场景
例如,它可以应用于系统性红斑狼疮、类风湿关节炎、干燥综合征、银屑病关节炎、系统性硬化症、多发性肌炎、皮肌炎、系统性血管炎、脂膜炎、成人Still病、复发性多软骨炎等的治疗。
此外,免疫吸附分离法还可以用于清除血液中的致病物质,如某些抗体或免疫复合物。
例如,对于肾移植或其他器官移植患者,该方法可以迅速清除HLA抗体,减少急性排斥反应的发生率。
在新月体型肾炎、脂蛋白肾病、IgA肾病等疾病的治疗中,免疫吸附分离法也能通过清除自身抗体和免疫复合物,改善患者的临床症状和肾脏功能。
以上信息仅供参考,建议咨询专业医生获取更全面更准确的内容。
化工原理第九章吸附分离

化工原理第九章吸附分离
吸附分离,也称为吸收或吸收分离,是指利用一定的相互作用“粘合剂”或“吸附剂”使混合物中一些组成部分粘合或吸附到该粘合剂或吸附剂上,从而使混合物中一些组分有机地被分离出来的过程。
它是一种新型的分离方法,有可能替代传统的分离工艺,是现代化工的一项重要技术。
吸附分离的原理:吸附分离可以分为物理吸附和化学吸附两种形式。
物理吸附是指物质相互作用的结果,包括空气、气体、液体、溶剂等。
物理吸附是指在一些固体表面上建立的物理性相互作用,其实质是由于表面粗糙形成的能量障碍,而在能量障碍的阻碍下,物质相互作用,物质就被吸附在这种固体表面上。
如果这种固体表面在特定的温度和压力条件下,具有良好的表面化学稳定性,即可建立有效的物理吸附。
化学吸附又叫做专配吸附,是指物质间由于共价作用形成的固体表面和溶剂之间的作用过程。
它是一种特殊的吸附作用,是由于固体表面上化学基团构成的膜层,以及溶剂中的其中一种物质,在化学反应中形成化学键而发生的吸附作用。
吸附分离的应用:吸附分离已被广泛应用于催化剂分离、石油的湿气处理、空气净化、废气处理、提纯溶剂等行业。