纳米技术在医学上的应用

纳米技术在医学上的应用
纳米技术在医学上的应用

纳米技术在医学上的应用

随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。

纳米药物

纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料

抗菌材料

抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。

通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。

生物传感器

生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。

由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。

纳米技术医学应用的展望

虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

是纳米科技的世纪,人们将以全新的角度和视野看待生物医学问题,在纳米水平上可以更加深入地研究各种组织的结构和功能,并充分发挥其优势。纳米医学技术的发展必将为基础与临床研究带来新的机遇,为现阶段尚不能解决的问题带来新的思路和方法。

纳米技术在促进医药、工业发展的同时,对人类健康和环境卫生也同样构成潜在的威胁。相同化学组成的纳米材料与其他材料相比具有许多不同的物理、化学和生物学特性其潜在毒性、次级效应、生物降解能力也存在质疑。如何评价纳米医药的安全性和毒性,如何优化纳米技术使这些医药材料适合于人体生物系统,以及如何避免或降低可能出现的毒副反应,成为摆在人们面前的一个重要问题。但在医学方面,尚难找到只有治疗作用而没有不良反应的物质,问题的关键是怎样利用物质的性质。对于纳米技术也是一样,只要我们能够认识到其负性效应,就能够解决它、避免它,从而对其进行安全利用。

综上所述,和其他前沿学科一样,纳米医学也充满了机遇和挑战。但我们完全可以相信,在不远的将来,随着对其在生物医学中应用研究的深入及生物安全性问题的阐明和解决,纳米技术将成为医学研究和临床治疗中的一个重要手段,为许多重大疾病患者带来福音。

纳米技术在医学上的应用

纳米技术在医学上的应用 随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。 纳米药物 纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料 抗菌材料 抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。 通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。 生物传感器 生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。 由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。 纳米技术医学应用的展望 虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

纳米技术的应用与前景展望

纳米技术的应用与前景展望 【摘要】纳米技术是二十一世纪最具潜力的学科分支,有可能成为下一世纪前二十年的主导技术。本文概述了纳米技术在陶瓷、电器、医学等方面的应用,并对纳米技术的发展进行了展望。 【关键词】纳米技术;应用;发展前景 0.引言 纳米技术是上世纪末出现的高技术,有科学家预言,在21世纪纳米材料将是“最有前途的材料”,纳米技术甚至会超过计算机和基因学,成为“决定性技术”.1990年,第一届国际纳米科学技术会议在美国巴尔的摩召开,《纳米技术》与《纳米生物学》这两种国际性专业期刊也相继问世.从此一个崭新的科学技术领域—纳米科技开始得到科技界的广泛关注。[1] 1.纳米技术 1.1纳米技术的发展现状 二十世纪90年代以后,纳米技术飞速发展。自首届国际纳米科学技术会议召开以后,世界各国的纳米技术研究风起云涌,各种形式的研究机构像雨后春笋遍布世界各地,纳米技术研究所涉及的科学领域及应用范围在不断扩大,各个领域都取得了可喜的进展,纳米技术研究获得了空前的快速发展。纳米材料是纳米技术的重要组成部分,在纳米材料领域,人们研究出了纳米金属、合金、陶瓷和有机高分子等复合型材料并在实际中应用,取得了明显的效果。[2] 1.2发展纳米技术的重要性 纳米技术的研究开发可能在精密机械工程、材料科学、微电子技术、计算机技术、光学、化工、生物和生命技术以及生态农业等方面产生新的突破。世界各国都给予极大的重视,美国国家关键技术委员会将纳米技术列为政府重点支持的22项关键技术之一,制定了投资2亿美元进行大规模开发纳米技术的10年计划。英国成立了纳米技术战略委员会,国家纳米技术计划已开始实施。科学家们认为,纳米技术的深远意义可与18世纪的工业革命相媲美,它的重要性非常大,表现在技术和科学方面,主要有以下几点: (1)纳米技术是一项交叉领域学科,对它的基础研究和应用研究是能否拥有国际竞争力的先决条件。 (2)由于它的交叉学科性能,决定了它不仅应用于一种技术领域,它为许多学科的发展奠定基础并起到推动的作用。

纳米生物医学材料的应用

纳米生物医学材料的应用 摘要:纳米材料和纳米技术是八十年代以来兴起的一个崭新的领域,随着研究的深入和技术的发展,纳米材料开始与许多学科相互交叉、渗透,显示出巨大的潜在应用价值,并且已经在一些领域获得了初步的应用。本文论述了纳米陶瓷材料、纳米碳材料、纳米高分子材料、微乳液以及纳米复合材料等在生物医学领域中的研究进展和应用。 关键字:纳米材料;生物医学;进展;应用 1. 前言 纳米材料是结构单元尺寸小于100nm的晶体或非晶体。所有的纳米材料都具有三个共同的结构特点:(1)纳米尺度的结构单元或特征维度尺寸在纳米数量级(1~100nm),(2)有大量的界面或自由表面,(3)各纳米单元之间存在着或强或弱的相互作用。由于这种结构上的特殊性,使纳米材料具有一些独特的效应,包括小尺寸效应和表面或界面效应等,因而在性能上与具有相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。 “纳米材料”的概念是80年代初形成的。1984年Gleiter首次用惰性气体蒸发原位加热法制备成功具有清洁表面的纳米块材料并对其各种物性进行了系统研究。1987年美国和西德同时报道,成功制备了具有清洁界面的陶瓷二氧化钛。从那时以来,用各种方法所制备的人工纳米材料已多达数百种。人们正广泛地探索新型纳米材料,系统研究纳米材料的性能、微观结构、谱学特征及应用前景,取得了大量具有理论意义和重要应用价值的结果。纳米材料已成为材料科学和凝聚态物理领域中的热点,是当前国际上的前沿研究课题之一[1]。 2. 纳米陶瓷材料 纳米陶瓷是八十年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平[2]。纳米微粒所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分[3]。 陶瓷是一种多晶材料,它是由晶粒和晶界所组成的烧结体。由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷性能的主要因素是组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响,使材料的强度、韧性和超塑性大大

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不仅是一个可观察的手段,而且已成为可以排布原子的工具。STM与AFM(原子力显微镜)

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

纳米技术在医学上的应用

纳米技术在医学上的应用 1.关键词:纳米技术医学 2.Keywords:nanotechnology medicine 3.ISI检索结果 表1-1每年出版的文献数 表1-2每年的引文柱状图 从以上两个柱状图可以看出21世纪之前关于纳米技术在医学上的应用的研究几乎为零,但是一进入21世纪国内外关于纳米技术在医学上的应用逐年增加,每年的引文数更是呈指数倍增长,在2013年更是达到了最大出版量。虽然出版 作者记录数占总记录数的百分比FERRARI M 12 1.064% SEIFALIAN AM 11 0.975% LANGER R 10 0.887% DYGAI AM 9 0.798% JAIN KK 9 0.798% MIROSHNICHENKO LA 9 0.798% SIMANINA EV 9 0.798%

表1-3主要研究成员分析 从上表的数据可以看出,就算是发表文献最多的研究者也只发表了12篇,说明专攻纳米技术在医学上应用的人很少,都是从事相关研究的,说明此项目与 表1-4主要研究机构分析 从上表可以看出,关于纳米技术在医学上的应用的研究比较分散,因为取了前17个机构的数据,而其发表的文献数只占了总记录数的21.543%,而绝大部

SPAIN 49 4.344% SWITZERLAND 39 3.457% CANADA 36 3.191% JAPAN 33 2.936% AUSTRALIA 26 2.305% FRANCE 25 2.216% 总合1002 88.838% 表1-5主要国家地区分析(选取发表数占2%以上) 从上表中可以看出,美国、中国和英国占总发表数的53.635%,其中美国就占了38.475%,说明美国研究纳米技术在医学上应用的水平站在世界的顶端,其次就是中国,说明中国在这方面的研究也比较先进。从另一方面来说,纳米技术在医学上的应用将会被广泛的应用,我们的健康水平也能相应的提高。 4.合成路线 ①With tetrabutylammomium bromide,dihydrogen peroxide,bromine in water,Time= 8h,T=65℃,92% ②With copper(l) iodide,potassium iodide,Time= 5h,T= 200℃ , Inert atmosphere,Finkelstein reaction,100%. ③With potassium fluoride,Pd(3wt)/C in N,N-dimethyl-formamide,Time=7h,T=130℃, p= 1500.15Torr, Inert atmosphere,Hiyama Coupling,92%. ④With hydrogen bromide,tri-n-butylhexadecylphosphonium bromide,Time=0.2h,T=115℃,93%.

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米技术在生物医药中的应用(一)

纳米技术在生物医药中的应用(一) 摘要纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。 关键词纳米技术纳米材料生物医药1990年在美国召开了第一届纳米技术国际学术会议,成为纳米科技发展进步的一个重要标志。1999年,美国的RobertAFreitasJr出版了《纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。1纳米技术 纳米是英文nanometre的译名,像米、厘米、毫米等一样,是一个长度单位。1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。 纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。 纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。 2纳米技术在生物医药中的应用 方兴未艾的纳米技术把人类对微观世界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。 2.1万能的机器人 1986年,美国预见研究所的工程师埃里克·德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。” 同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。 除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的DNA片段装配进染色体,使机体正常运作。 2.2灵敏的检测器

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米技术在医学上的应用

纳米技术在医学上得应用 1、关键词:纳米技术医学 2、K eywords:nanotechnology medicine 3、I SI检索结果 表1-2每年得引文柱状图 从以上两个柱状图可以瞧出21世纪之前关于纳米技术在医学上得应用得研究儿乎为零,但就是一进入21世纪国内外关于纳米技术在医学上得应用逐年增加,每年得引文数更就是呈指数倍增长,在2013年更就是达到了最大出版量。虽然岀版数在2013年有所下降,但就是从总体上瞧来,2014年得相关研究数也会持 续升高。

3 从上表得数据可以瞧出,就算就是发表文献最多得研究者也只发表了12篇, 说明专攻纳米技术在医学上应用得人很少,都就是从事相关硏究得,说明此项LI 与其她项U比如说医学上得相关性很大。 4 从上表可以瞧出,关于纳米技术在医学上得应用得研究比较分散,因为取了前17个机构得数据,而其发表得文献数只占了总记录数得21、543%,而绝大部分得文献发表自大学机构,因为大学一般具有更好地设备,与充裕得资金。

INDIA 59 5、 230% SPAIN 49 4、344% SWITZERLAND 39 3、457% CANADA 36 S、191% JAPAN 33 2、936% AUSTRALIA 26 2、305% FRANCE 25 2、216% 总合1002 88、838% 1-5 从上表中可以瞧出,美国、中国与英国占总发表数得53、635%,其中美国就占了38、475%,说明美国研究纳米技术在医学上应用得水平站在世界得顶端,其次就就是中国,说明中国在这方面得研究也比较先进。从另一方面来说,纳米技术在医学上得应用将会被广泛得应用,我们得健康水平也能相应得提高。 4、合成路线 ①With tetrabutylammomium bromide, dihydrogen peroxide, bromine in water, Time= 8h, T=65°C, 92% ②With copper(1) iodide, potassium iodide, Time= 5h, T= 200°C , Inert atmosphere, Finkelstein reaction, 100%、 ③With potassium fluoride, Pd(3wt)/C in N, N-dimethyl-formamide, Time=7h, T=130°C, p= 1500> 15Torr, Inert atmosphere, Hiyama Coupling, 92%、 ?With hydrogen bromide, tri-n-butylhexadecylphosphonium bromide, Time二0、2h, T=115°C, 93%> &r P t Cr

纳米技术医学运用前景

纳米技术医学运用前景 一、在诊断技术方面的应用 扫描探针显微镜,其探针可以沿样品表面逐点扫描,针尖能随样品的高低起伏作上下运动,用光学方法测量针尖的运动,就可以得到分子的图像。目前已经用于人体多种正常组织和细胞的超微形态学观察,而且可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常结 构改变,以解决肿瘤诊断的难题。另一种新型的纳米影像学诊断工具———光学相干层析术(OCT)已研制成功,OCT的分辨率可达纳米级,较CT 和核磁共振的精密度高出上千倍。它不会像X线、CT、磁共振那样杀 死活细胞。通过应用纳米技术,在DNA检测时,可免去传统的PCR扩增 步骤,快速、准确。美国NASAAmesCen-terforNanotechnology与中南 大学卫生部纳米生物技术重点实验室合作,将碳纳米管用于基因芯片, 可以在单位面积上连接更多的更高,样本需要量低于1000个NDA分子(传统DNA检测的样本需要量超过106个DNA分子);需要的样品量更少,可以免去传统的PCR扩增步骤;结果可靠,重复性好;操作简单,易实现 检测自动化。其基本原理是:连接在碳纳米管上的DNA探针通过杂交 捕获特异性的靶DNA或RNA,靶DNA或RNA中的尿嘧啶将电荷转到碳纳米管电极,电荷的转移通过金属离子媒介的氧化作用变成信号并放大。国外在80年代末开始着手研究超顺磁性氧化铁超微颗粒的研究,90年代把这种造影剂应用于临床。 其技术要点是:制备出高顺磁性氧化铁纳米颗粒,在其表面耦连肝癌 组织靶向性物质(如肝肿瘤特异性单克隆抗体、肝肿瘤细胞表面特异性受体的配体)制成特异性的MRI造影剂。我国科学家也成功开发了应用超顺磁氧化铁脂质体纳米粒进行肝癌诊断的技术,可以发现直径3mm以下的肝肿瘤,还能发现更小的肝转移癌病灶。目前不加造影剂的磁共振检查能发现直径1.0cm的肝癌病灶,因此该成果大大提升了肝癌早期诊断的敏感性。国家863资助课题“纳米复合包裹生物微系统制备、超 声造影和控制释药”,研制了纳米包膜微米微泡超声造影剂与包裹药物和气体的微球,造影后对比效果明显增强,有利于疾病的早期诊断和鉴

纳 米 技 术 专 题

纳米技术专题——综述 一门前途无量的新兴技术-纳米技术 前言 提到从九十年代初起,纳米技术(Nanotechnology)得到迅速发展,显示出勃勃生机。它是信息技术、生命科学技术和许多其它技术能够进一步发展的共同基础,将对人类未来产生深远的影响,并且孕育着巨大的商机。 提到本文将根据收集到的国内外资料,对纳米技术进行介绍,以飧读者。 一、纳米技术的由来和发展 提到提到纳米技术,首先要了解纳米这一长度单位。一纳米是十亿分之一米,或千分之一微米。直观上讲,人的头发直径一般为20-50微米,单个细菌用显微镜测出直径为5微米,而1纳米大体上相当于4个原子的直径。传统的特性理论和设备操作的模型和材料是基于临界范围普遍大于100纳米的假设,当材料的颗粒缩小到只有几纳米到几十纳米时,材料的性质发生了意想不到的变化。由于组成纳米材料的超微粒尺度,其界面原子数量比例极大,一般占总原子数的40%-50%左右,使材料本身具有宏观量子隧道、表面和界面等效应,从而具有许多与传统材料不同的物理、化学性质,这些性质不能被传统的模式和理论所解释。 提到纳米技术就是研究结构尺寸在0.1至100纳米(有些资料为1至100纳米)范围内材料的性质和应用。它的本质是一种可以在分子水平上,一个原子、一个原子地来创造具有全新分子形态的结构的手段,使人类能在原子和分子水平上操纵物质;它的目标是通过在原子、分子水平上控制结构来发现这些特性,学会有效的生产和运用相应的工具,合成这些纳米结构,最终直接以原子和分子来构造具有特定功能的产品。 提到因而,各个不同学科的科学家潜心研制和分析纳米结构,试图发现单个分子、原子在纳米级范围内不能被传统的模式和理论所解释的现象以及众多分子下这些现象的发展,他们的工作奠定了纳米技术的基础,推动了纳米技术的发展。 提到让我们简单回顾一下它的历史: 提到1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。这一预言被科学界视为纳米材料萌芽的标志。 提到1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。 提到1982年,研究纳米的重要工具-扫描隧道显微镜被发明。

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

生物医学中纳米材料的作用

生物医学中纳米材料的作用 1用于生物医学的纳米材料 1·1细胞分离用纳米材料 病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,所以利用 纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中实行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子 已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判 断出胎儿细胞中是否带有遗传缺陷。 1·2纳米材料用于细胞内部染色 利用不同抗体对细胞内各种器官和骨骼组织的敏感水准和亲和力的显 著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体 混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各 种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下表现某 种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组 合“贴上”了不同颜色的标签,因而为提升细胞内组织的分辨率提供了 一种急需的染色技术。 1·3纳米药物控释材料 纳米粒子不但具有能穿过组织间隙并被细胞吸收、可通过人体最小的 毛细血管、甚至可通过血脑屏障等特性,而且还具有靶向、缓释、高效、低毒且可实现口服、静脉注射及敷贴等多种给药途径等很多优点,因而 使其在药物输送方面具有广阔的应用前景。德国科学家将铁氧体纳米 粒子用葡萄糖分子包覆,在水中溶解后注入肿瘤部位,使癌细胞和磁性 纳米粒子浓缩在一起,通电加热至47℃,可有效杀死肿瘤细胞而周围正 常组织不受影响;挪威工科大学的研究人员,利用纳米磁性粒子成功地 实行了人体骨骼液中肿瘤细胞的分离,由此来实行冶疗;SharmaP等1用聚乙烯吡咯烷酮包覆紫松醇制得的纳米粒子抗癌新药,体内实验以荷瘤

纳米材料的应用及发展前景

纳米材料的应用及发展前景 摘要 纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。本文概要的论述了纳米材料的发现发展过程,并简述了纳米材料在各方面的应用及其在涂料和力学性能材料方面的发展前景。 关键词:纳米材料、纳米技术、应用、发展前景 一、前言 从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1 纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展

纳米生物材料

纳米生物医用材料 摘要:纳米生物材料的理论和实验研究正成为现代生物和医用材料的研究热点。随着纳米技术和材料科学、生命科学的不断交叉, 纳米生物医用材料已在新型医用植入材料和介入医用材料、组织工程和再生医学材料、新型药物和基因控释载体及高效生物诊断材料领域取得较大进展。本文主要介绍了纳米技术在止血材料、骨科移植材料、血管支架材料等领域上的应用, 并探讨纳米生物医用材料的发展前景。 关键词:纳米生物材料;应用;发展; 1 引言 生物医用纳米材料是用于和生物系统结合、治疗和替换生物机体中的组织、器官或增进其功能的材料[1]。“纳米生物材料”是生物技术器件的基础, 可以简单地分为两类, 一类是适合于生物体内应用的纳米材料, 它本身即可以是具有生物活性的, 也可以不具有生物活性。它不仅易于被生物体接受,而且不引起不良反应。另一类是利用生物分子的特性而发展的新型纳米材料, 它被用于其它纳米人工器件的制造。比如已经发展的有代表性的人工组织器官替代纳米材料(如人工骨骼、人工牙齿) , 以及用于分离生物分子的功能膜和各种特性化生物分子材料等。 1.1纳米材料的基本效应 因为纳米材料整体尺寸较小, 电子运动受到很大限制, 而且电子平均的自由程较短, 其局域性以及相干性得到增强。纳米材料整体尺度不断下降, 这让纳米体系当中的原子数量降低很多, 致使其宏观固定的连续性逐渐消失[2]。同时使得纳米材料表现出分离能级, 并且量子尺寸这一效应非常显著, 这让纳米体系具有的磁、电、热、光这些物理性质和常规材料有所不同, 其表现出不少新奇特性, 例如热学性能、磁学性能、催化效应以及化学方面的反应能等。

相关文档
最新文档