纳米光电子技术的发展及应用
光电子技术的应用

光电子技术的应用随着科技的不断进步和发展,光电子技术已经成为日常生活中不可或缺的部分。
光电子技术是利用光子(光子是一种能量量子,是构成电磁波的最小单位)来实现信息传递和处理的技术。
本文将探讨光电子技术在各个领域的应用。
一、通信领域在通信领域中,光纤通信已经成为了主流,光电子技术是其不可或缺的一部分。
光纤通信是利用纤维传输光信号而不是电信号来传输数据的技术,因此它比传统的电缆传输更快、更可靠、更安全。
光电子技术的发展使得这种通信方式变得更加高效,例如利用微纳米加工技术将传输光纤中的微纤维缩小到纳米级别,进一步提高了通信的质量和速度。
二、医疗领域光电子技术在医疗领域中也有广泛的应用,特别是在医学成像方面。
例如X射线、CT、MRI等成像技术,这些技术都是利用电磁辐射来获得图像信息的。
而光电子技术所使用的非线性光学成像技术则可以更好地获得细胞的、组织的、器官的等高分辨率的图像信息,并且不会对人体造成不良影响。
三、汽车领域光电子技术在汽车领域中的应用主要是驾驶辅助和安全系统,例如车道偏离警告、碰撞警告、盲区监控等。
其中,利用红外线和激光雷达等技术来探测路面的情况和障碍物的位置并将信息传输到车辆的系统中,使驾驶者可以更好地掌控车辆,避免交通事故的发生。
四、太阳能领域光电池是光电子技术在太阳能领域中的主要应用之一。
光电池可以将太阳能直接转化为电能,因此被广泛地应用于太阳能电池板、家庭太阳能发电和光伏发电等领域。
而且,光电池的功率密度高,使用寿命长,并且材料成本也不高,所以有着广阔的应用前景。
五、安防领域安防领域中的监控系统也是光电子技术的一个应用方向。
例如,在公共场所、重要场所、小区门口等地通过安装光电子监控设备来保障安全。
并且,利用光电子技术与人工智能、大数据等技术结合,可以实现高效智能的安防系统。
结语:光电子技术在各行各业中都有着不可或缺的地位,随着科技的不断进步,它将不断地推进着领域的发展和进步。
同时,我们也要加强光电子技术的研究和应用,提高技术的水平,并为人类的发展贡献更多智慧和力量。
光电子技术的重大进展及未来前景

光电子技术的重大进展及未来前景光电子技术是指利用光子与电子相互作用的原理进行信息传输、控制、处理和谱学分析等领域的研究。
它是光学、电子学、数据处理和通讯技术的综合应用。
在过去的几十年中,光电子技术一直处于快速发展的过程中,不断地带来许多新的创新和突破,推进了我国社会经济的发展,也深刻地影响了人们的生活方式和思考方式。
今天,我们将一起探讨光电子技术的重大进展及未来前景。
一、光电子技术的重大进展在过去的几十年中,光电子技术一直处于不断的研究和发展之中,也带来了许多的重大进展。
下面,我们就来看看光电子技术的重大进展有哪些。
1、激光技术的发展激光技术是光电子技术中的一个重要分支领域,它的发展也得到了广泛的应用。
例如,激光器可以用于制造半导体芯片、显示屏、光纤通信和医学等方面,可以说激光技术是研究和运用光电子技术的核心。
2、光通信的发展光通信是当前世界最重要的交流技术之一,其技术特点是利用光信号代替电信号进行信息传输。
光纤通信技术可以实现长距离传输,高速率传输和大容量传输等优点,是信息技术领域中不可或缺的重要技术。
3、光电存储器的发展随着计算机系统的不断升级,光电存储器技术越来越显得重要,它可以提高计算机存储容量和运行速度,与传统的硬盘、内存和固态硬盘相比,光电存储器具有更高的数据存储容量、更快的读写速度和更长的使用寿命等优点。
4、光学测量技术的发展光学测量技术是一种利用光学原理进行测量的技术,早期主要应用于工业领域,如机械设备的精度检测、零部件的精度测量和生产流水线的质量控制等,现在已广泛应用于航空航天、建筑工程、医疗诊断、地质勘测和环境监测等。
二、光电子技术的未来前景随着人们对科技创新和新兴产业的追求,光电子技术将在未来取得更大的突破和发展,其未来前景也必将十分广泛且光明。
1、光电子技术在通信领域的应用未来,光电子技术将在通信领域发挥越来越重要的作用。
随着5G技术的不断完善和普及,同时光通信技术的提高,光电子技术将更好的应用在移动通信和物联网等领域,为人们的生活带来更高效、更舒适和更安全的体验。
光电子技术在生物医学领域的应用

光电子技术在生物医学领域的应用越来越广泛,无论是医学诊断还是治疗,都有着重要的作用。
在这方面,广义的光电子技术包括光学、电子、计算机和信息技术等多个学科,它们相互关联、相互渗透,推动着生物医学科学的进步。
一、光电子技术在医学诊断的应用1.激光扫描显微技术激光扫描显微技术是指通过采用激光束来获取生物样本的图像的一种技术。
这种技术可以用于活细胞的三维成像,还能够在非常高的空间和时间精度下进行成像。
此外,激光扫描显微技术还可以通过不同的激光波长来提高图像的分辨率,从而进行更加复杂的生物结构的分析。
2.光学相干断层扫描技术光学相干断层扫描技术是通过向生物组织中发射一束光线,观察光线返回的反射光信号来进行成像。
这种技术可以对生物组织进行光学切片,获得其在不同深度的纹理信息,得到非常精确的生物组织图像。
同时,利用光学相干断层扫描技术还可以分析不同类型的组织和细胞在三维空间中的分布情况。
3.红外光谱成像技术红外光谱成像技术是通过红外辐射来观察物质吸收光谱,从而获取组织的光谱信息。
采用该技术能够实现对患者的组织样本的快速检测和定量分析,同时还能够用于癌细胞的光学识别和鉴定。
在生物体内,该技术还能够对药物和物质的热扩散进行跟踪,为化学疗法以及药物代谢研究提供重要信息。
二、光电子技术在医学治疗的应用1.光热疗法光热疗法是一种通过光的热效应来治疗肿瘤的方法。
通过利用金属纳米粒子吸收的光热转换产生的能量,可以杀死癌细胞。
这种技术无需开刀,不会留下任何剩余物,在治疗中的具有很高的安全性和疗效。
2.近红外光照射治疗近红外光照射治疗是一类新型的光疗法,它可以促进细胞新陈代谢,增加细胞对氧的吸收能力,从而增强免疫系统的活力。
同时,该技术的特点是治疗时间短、无创、无痛,在接受治疗的情况下能够保持正常的工作和日常生活。
3.光动力疗法光动力疗法是一种通过光敏剂与光源的相互作用,从而杀死癌细胞、细菌和其他有害物质。
除了治疗癌症外,该技术还可用于治疗疱疹、口腔疾病、青光眼和其他疾病。
纳米光电子学的研究和应用

纳米光电子学的研究和应用纳米光电子学是研究纳米尺度的光电子器件和系统的领域,它已成为现代科技中的一个重要组成部分。
这一领域的发展为人类的科技创新提供了新的思路和手段,有望在信息处理、太阳能、医疗和生物监测等领域发挥巨大的作用。
一、纳米光电子技术的基础纳米光电子技术是运用光子学、半导体技术、纳米加工和量子现象等新颖研究方法,制备小尺寸的纳米级光电子器件和系统。
其制造工艺主要使用了微电子加工工艺和原子层沉积技术,制备出的器件尺寸可达到纳米级别。
二、纳米光电子技术的优势纳米光电子技术因其具有较高的功率、速度、带宽和能量效率,广泛应用于数据存储、信号处理、光子计算和通信等方面。
随着人类对数据的需求不断增长,发展纳米光电子技术的势头也在不断加快。
三、纳米光电子学的应用1.数据存储研究人员已经通过设计和制造纳米结构,将数据存储的密度增加了数倍。
纳米光电子技术的高密度存储能力,使得磁盘、闪存等设备的存储量大幅提升,极大地方便了人们的生活。
2.太阳能纳米光电子技术在太阳能方面同样也表现出其独特的优势。
纳米级的材料可以使得光能被更好的吸收,提高了太阳能电池的光电转换效率。
同时,还可以更好的抵抗风化和光腐蚀,提高太阳能电池寿命,实现可持续发展。
3.医疗纳米光电子技术对医疗领域也有着不小的研究与应用。
以治疗癌症为例,纳米级的磁性材料可以在磁力场的作用下直接将治疗物质输送到病灶部位,减少了对健康组织的侵害。
同时,也可以用纳米光电子器件对病毒进行检测和跟踪等。
4.生物监测纳米光电子技术还在生物监测领域表现出了广阔前景。
利用特殊的纳米技术,制造出用于监测血压、心率、血糖等参数的微型传感器,这些传感器具有更精确、更连续的检测能力和监测范围。
同时,这些传感器的小型化也能够让其更容易被患者所接受。
四、总结纳米光电子技术通过制造小尺寸的纳米级光电子器件和系统,具有高密度存储、高效太阳能电池、癌症治疗、生物监测等领域的广泛应用。
因此,这一技术将在未来发挥着越来越重要的作用。
浅谈纳米技术应用与研究进展

浅谈纳米技术应用与研究进展纳米技术是一种新兴的领域,在许多领域引起了广泛的兴趣和应用。
它是一种制造、设计和操纵重要的物质的方式,这些物质尺寸在纳米尺度(1-100nm)范围内。
纳米技术应用已经在诸如材料、生物医学、能源、环境和信息技术等领域取得了显著的成果,并进一步发展逐渐呈现出更多的新应用和发展趋势。
在材料方面,纳米技术应用带来了许多新的机会,可以制造出纳米尺度下具有独特性质和功能的材料,如纳米颗粒、纳米纤维和纳米片材。
这些材料可以应用于航空航天、电子、医疗、信息科技、环保领域等,在机械强度、电磁性、光学性能等方面表现出优异的性能,因此被广泛应用。
在生物医学领域,纳米技术应用已经取得了很大进展,如纳米药物、纳米诊断、纳米免疫学等。
因为纳米颗粒尺寸相对较小,具有独特的化学、物理性质和表面电荷,因此可以用于保护药物,延长药物的寿命,并增强药物的稳定性和药效。
在生物医学应用中,纳米技术还可以用于疾病的诊断和治疗,以及细胞生物学研究等方面。
在能源和环境方面,纳米技术应用主要集中在光电转换、储能、节能、净化污染等领域。
例如,通过纳米技术,可以制造出高效光伏电池、太阳能电池和储能材料,可以大规模制造低成本、高效的能源转化和储存装置,进一步实现可持续发展。
另外,纳米技术还可以用于制造高效的纳米催化剂和高性能的生物传感器等,实现比传统技术更为快速、精准和可持续的环境净化。
在信息技术方面,纳米技术应用主要涵盖在新型芯片和存储设备、光电子技术和纳米生物电子方面。
例如,纳米技术可以制造出高速、高密度的集成电路和高性能的光电子元件,在提高计算机和通信网络处理能力、存储容量和传输速度方面有着巨大的潜力。
同时,纳米技术也可以实现基于生物和生物分子的计算和通信技术,解决生物学和计算机科学领域的交叉问题。
目前,纳米技术应用已经取得了很多成果,然而仍然存在一些问题和难题阻碍着它的发展。
例如,需要进一步加强纳米材料的毒性和安全性研究、材料制备和表征技术、大规模生产和工艺控制的研究等。
纳米科技的发展前景

纳米科技的发展前景随着科技的不断进步,纳米科技作为一门前沿的科学技术,引起了广泛的关注和研究。
纳米科技涉及到物质的微观结构和纳米级别的制备,具有许多独特的性质和潜力。
在纳米材料、纳米器件和纳米生物技术等领域,纳米科技正为人类社会的发展带来巨大的变革和机遇。
一、纳米材料的应用前景纳米材料是纳米科技的核心内容之一,其应用广泛涉及到材料科学、化学、物理、生命科学等多个领域。
首先,在材料科学领域,纳米材料具有较大的比表面积和独特的物理化学性质,可以开发出更轻、更强、更耐腐蚀的材料,应用于航天航空、汽车、建筑等领域。
其次,在能源领域,纳米材料可以用于提高太阳能电池的转化效率、增强储能设备性能等方面,解决传统能源资源的短缺问题。
此外,纳米材料还可以在医疗、化妆品、环境治理等领域发挥重要作用。
因此,纳米材料的应用前景十分广阔。
二、纳米器件的发展潜力纳米器件是纳米科技中的重要组成部分,其具备了传统器件无法比拟的优势和潜力。
首先,纳米电子器件可以实现更小尺寸的集成电路,提高计算机的性能和存储容量,推动信息技术行业的发展。
其次,纳米机械器件可以制作出更精密的微机械系统,应用于微机器人、微流控芯片等领域,推动智能制造和医疗技术的进步。
此外,纳米光学器件、传感器等也具有广泛的应用前景,为光电子技术、生物医药等行业带来创新和突破。
三、纳米生物技术的挑战与机遇纳米生物技术是纳米科技与生命科学相结合的重要领域,其应用前景巨大但也面临一系列的挑战。
首先,纳米生物技术可以利用纳米材料和纳米器件来进行生物分析、药物传递、基因编辑等,为生命科学领域提供了新的工具和方法。
其次,纳米生物技术在疾病诊断和治疗、生物传感和检测等方面具有广泛的应用潜力。
然而,纳米生物技术的安全性、伦理道德等问题也需要重视和解决,确保其在应用过程中产生积极的影响。
综上所述,纳米科技作为一门前沿的科学技术,具有广阔的应用前景。
纳米材料的应用将带来材料科学、能源领域的突破;纳米器件的发展将推动信息技术、智能制造等领域的进步;纳米生物技术为生命科学领域提供了新的可能性。
光电子技术的发展及应用最新

光电子技术的发展及应用院系:电气信息工程学院专业:电子科学与技术0941姓名:郑义学号:200910711102日期:2012年12月10日光电子技术的发展与应用摘要:电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术,它是以红外、微光、激光等光电子器件为基础,由光学技术、电子技术、精密机械技术和计算机技术等密切结合而形成的一项综合技术。
主要包括激光技术、红外技术、光纤通讯技术、太阳能光伏技术、固体照明技术、集成光学技术、光计算技术、光学传感器和光电显示技术等。
引言:2008年北京奥运会上,“水立方”以其绚烂梦幻的视觉效果,令世人惊叹。
夜幕降临时,在“水立方”南侧立面周围的人们就会看到一幅如梦似幻的景观:一群群色彩艳丽的热带鱼在“水立方”的“水泡泡”里轻盈地游弋,时而又变成波涛汹涌的巨浪呼之欲出,时而又化为一团奥运圣火熊熊燃烧。
而这一切,正是由光电子技术为“水立方”量身打造的幔态LED才得以实现[1]。
当今全球范围内,已经公认光电子产业是本世纪的第一主导产业,是经济发展的制高点,光电子产业的战略地位是不言而喻的[2]。
鉴于此,光电子技术应用的开发被世界各国所关注,新的应用领域也在不断发现中。
本文主要分析了光电子技术的发展历程与在国防,生活中的应用。
关键词光电子技术、光电子材料、发展、应用1光电子技术的介绍光电子技术确切称为信息光电子技术。
20世纪60年代激光问世以来,最初应用于激光测距等少数应用,光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。
1962年半导体激光器的诞生是近代科学技术史上一个重大事件。
经历十多年的初期探索,到70年代,由于有了室温下连续工作的半导体激光器和传输损耗很低的光纤,光电子技术才迅速发展起来。
现在全世界敷设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。
以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子产品。
纳米技术在材料科学中的应用及前景展望

纳米技术在材料科学中的应用及前景展望引言:纳米技术是近年来发展迅猛的科技领域之一,其对材料科学的应用带来了革命性的影响。
纳米技术通过控制和操纵物质的结构和性质,使材料具备了许多独特的优异性能,广泛应用于材料科学的各个领域。
本文将介绍纳米技术在材料科学中的应用,并展望其前景。
一、纳米技术在材料改性中的应用1.1 纳米粒子增强材料强度纳米粒子作为增强材料的一种方式,可以提高材料的强度和硬度。
由于纳米粒子的巨大表面积,能有效地抑制位错的移动,并导致晶粒的细化。
纳米粒子还可以在晶界上形成位错堆积,阻止晶格的滑移和压痕形成,从而提高材料的塑性和硬度。
因此,纳米颗粒增强的材料在航空航天、汽车、电子等领域中得到了广泛应用。
1.2 纳米涂层提高材料表面性能纳米技术还能通过制备纳米涂层来改善材料的表面性能。
纳米尺度的涂层能够提供材料更大的比表面积、优异的界面特性和化学稳定性。
例如,使用纳米涂层可以提高材料的耐磨性、耐腐蚀性和防护性能。
因此,纳米涂层在船舶、建筑、航空航天等行业中得到了广泛的应用。
二、纳米技术在材料先进制造中的应用2.1 纳米材料的3D打印纳米技术为3D打印技术的发展提供了新的可能性。
利用纳米材料,可以制备出具有复杂形状和高精度的微纳米结构。
纳米粒子的高比表面积和特殊的物理化学性质,使其成为一种理想的3D打印材料。
通过控制打印参数和纳米材料的组成,可以制备出具有特殊功能和性能的纳米材料。
2.2 纳米晶体的薄膜制备纳米晶薄膜是一种在表面上形成纳米尺度结构的材料。
利用纳米技术,可以制备出具有不同晶粒尺寸的纳米晶薄膜,并通过调控晶粒尺寸、形状和结构,来改善薄膜的光学、电学和磁学性能。
纳米晶薄膜在光电子技术、显示器件和传感器等领域中具有广阔的应用前景。
三、纳米技术在材料科学中的前景展望3.1 纳米技术与绿色材料的结合纳米技术与绿色材料的结合将成为未来材料科学的一个重要方向。
绿色材料是指具有低能耗、可再生和环境友好的特点的材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米光电子技术的发展及应用摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。
纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。
关键词:纳米技术纳米光电子技术纳米光电子器件应用一、前言纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。
而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。
[2 纳米技术的概念由已故美国著名物理学家理查德。
费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。
而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构二、纳米技术及其发展史1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。
由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。
纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。
纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。
其中纳米技术主要为以下四个方面1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。
这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。
2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。
有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料4、纳米电子学:包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等三、光电子技术介绍光电子技术指利用光子激发电子或电子跃迁产生光子的物理现象所能提供的手段和方法。
作为具有比电子更高频率和速度的信息载体以其不存在电磁串扰和路径延迟的优点,光电子技术在信息领域的应用无可替代。
本文首先对光电子技术的优越性做简单介绍,然后阐述了光电子技术在世界及中国的发展历程,接着叙述了光电子技术在纺织工业,数据的超速传输和获取图像信息方面等方面巨大的应用前景,表现了光电子技术在当今信息时代愈发占有重要的关键地位。
光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术,是由光学技术和电子学技术相结合而形成的。
1962年半导体激光器的诞生是近代科学技术史上一个重大事件。
经历十多年的初期探索,从70年代后期起,随着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。
可以说光电子学技术是电子学技术在光频波段的延伸与扩展,当代社会和经济发展中,信息的容量日益聚增,随着高容量和高速度的信息发展,电子学和微电子学遇到其局限性,而光作为更高频率和速度的信息载体,会使信息技术的发展产生突破,信息的探测,传输,存储,显示,运算和处理将由光子和电子共同参与来完成。
四、纳米光电子技术的发展光电子正向光电子集成,进而向纳米光电子集成的方向发展。
纳米光电子学是在纳米半导体材料的基础上发展起来的,是纳米电子学发展的方向。
纳米光电子学是研究纳米结构中电子与光子的相互作用及其器件的一门高技术学科。
光电子技术与纳米电子技术相结合而产生了纳米光电子技术,是在纳米半导体的基础上发展起来的, 是纳米光电子器件的基础, 且将成为纳米光通信技术发展的重要支柱。
纳米光电子学的发展模式光:学→光电子学→纳米光学→纳米电子学→纳米光电子学→纳米光电子技术→纳米光电工程→纳米光电子产业。
纳米光电子器件发展现状纳米光电子器件的概述随着纳米半导体材料的出现和纳米电子器件的蓬勃发展, 纳米光电子学应运而生。
纳米技术的问世具有划时代的意义,光电子技术与纳米技术相结合而产生的纳米光电子技术, 为光电子技术的发展开辟了一个全新的领域。
纳米光电子有四大关键技术: 纳米半导体发光材料技术、超高精度纳米光电子加工技术、纳米光电子器件制造技术和纳米微光电机械系统技术。
纳米光电子学的发展模式:光电子学-纳米电子学-纳米光电子学-纳米光电子技术-纳米广电子工程-纳米光电子产业五、纳米光电子技术的应用米光电子技术是一门新兴的技术,近年来越来越受到世界各国的重视,而随着该技术产生的纳米光电子器件更是成为了人们关注的焦点。
主要介绍了纳米光电子器件的发展现状。
1纳米导线激光器2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。
这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。
研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。
他们先是"培养"纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。
然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。
这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。
2紫外纳米激光器继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。
这种氧化锌纳米激光器在光激励下能发射线宽小于0.3nm、波长为385nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。
在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。
由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。
为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。
这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。
研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。
3量子阱激光器2010年前后,蚀刻在半导体片上的线路宽度将达到100nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。
为了解决这一问题,量子阱激光器就诞生了。
在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。
而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。
目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。
3.1 量子线激光器近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。
这种激光器可以提高音频、视频、因特网及其他采用光纤网络的通信方式的速度,它是由来自耶鲁大学、位于新泽西洲的朗讯科技公司贝尔实验室及德国德累斯顿马克斯·普朗克物理研究所的科学家们共同研制的。
这些较高功率的激光器会减少对昂贵的中继器的要求,因为这些中继器在通信线路中每隔80km(50mile)安装一个,再次产生激光脉冲,脉冲在光纤中传播时强度会减弱(中继器)。
3.2 量子点激光器由直径小于20nm的一堆物质构成或者相当于60个硅原子排成一串的长度的量子点,可以控制非常小的电子群的运动而不与量子效应冲突。
科学家们希望用量子点代替量子线获得更大的收获,但是,研究人员已制成的量子点激光器却不尽人意。
原因是多方面的,包括制造一些大小几乎完全相同的电子群有困难。
大多数量子装置要在极低的温度条件下工作,甚至微小的热量也会使电子变得难以控制,并且陷入量子效应的困境。
但是,通过改变材料使量子点能够更牢地约束电子,日本电子技术实验室的松本和斯坦福大学的詹姆斯和哈里斯等少数几位工程师最近已制成可在室温下工作的单电子晶体管。
六、总结纳米电子技术和纳米光电子技术是21世纪的主要信息技术之一,而纳米电子器件和纳米光电子器件的研制水平和应用程度更是进入纳米电子和纳米光电子时代的重要标志。
根据我国纳米技术发展的现状,必须大力倡导纳米器件尤其是纳米电子器件和纳米光电子器件的研究、开发和应用研究。
因为纳米电子器件和纳米光电子器件的研究是纳米技术和信息技术的支点,对经济和科学技术将起着至关重要的作用。
参考文献[1]梁瑞丽.路明,引导光电子产业[J].东方企业文化.2009,V4:42[2]王希军,陈丹.中日美光电子技术产业的发展趋势与对策分析[J].工业技术经济.2006,V25(11):118-121[3]:干福熹. 光电子技术和产业的发展[J].中国科学院院报.1996,V5:366-367[4]徐小田.“十五”期间中国光电子技术产业发展战略[J].电子质量.142-143[5]何文瑶.光电子技术发展态势分析[J].科技进步与对策.2008,V25(9):194[6]刘华.英特尔实现硅光电子学重大技术突破[J].中国数字医学.2008,23[7]牛憨笨.图像信息获取中的光电子技术[J].深圳大学学报(理工版).2001,V18(3):75-86[8]程开富纳米光电子器件的最新进展及发展趋势[ J]光子技术, 2003. 9( 1):4- 10[9]程开富, 纳米光通信技术的核心 [J]纳米光电子器件47-54[10]朱长纯贺永宁, 纳米电子材料与器件[M ], 国防工业出版社, 2006. 5( 1) : 175[11]陈维德李秀琼, 硅基发光材料和器件研究的进展[ J] , 光电子技术与信息, 2000. 4( 2): 13- 19[12] Tsybeskov L, Duttagupta S P et a.l Thin So lid F ilm s, 1997: 297[13]H irschm an K D, Tsybeskov L et a.l Na ture, 1996: 384[14]顾宁付德刚张海黔等纳米技术与应用[M ], 人民邮电出版社, 2002. 4( 1) : 107[15]朱长纯贺永宁, 纳米电子材料与器件[ J] , 国防工业出版社,2006. 5( 1) : 198[16]朱长纯贺永宁, 纳米电子材料与器件[M ], 国防工业出版社, 2006. 5( 1) : 210[17]周立新, 纳米发光材料及器件的研究发展[ J], 电子器件,2001. 12( 4): 407。