2016届高考冲刺数学(文)得分题训练09(通用版)(解析版)
2016届浙江省高考冲刺卷 数学(理)09(浙江卷)(解析版)

2016届浙江省高考冲刺卷 数学(理)09(浙江卷)(解析版)一、选择题(本大题共8个小题,每小题5分,共40分.)1.设全集U=R ,A=}02|{2≤-x x x ,B=},cos |{R x x y y ∈=,则图中阴影部分表示的区间是( )A.[0,1]B.[-1,2]C.(,1)(2,)-∞-+∞UD.(,1][2,)-∞-+∞U【命题意图】本题主要考查集合的运算等基础知识,意在考查运算求解能力.2.已知,则p 是q 的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不充分也不必要条件【命题意图】本题主要考查充分必要条件与不等式的性质等基础知识,意在考查运算求解能力. 【答案】A【解析】通过解不等式求出命题p ,q 分别为真命题时对应的x 的范围;再判断p 成立是否能推出q 成立反之q 成立是否能推出p 成立. 解:若P 真即即即若q 真即即0<x <1因为p 成立则q 成立但若q 成立p 不一定成立 所以p 是q 的充分不必要条件.故选A3.正四面体ABC P -,M 为棱的中点,则PA 与CM 所成角的余弦值为( ) A .23 B .63 C .43 D .33 【命题意图】本题主要考查异面直线的夹角等基础知识,意在考查空间想象能力与运算求解能力. 【答案】B【解析】取PB 中点N ,连接CM 、CN 、MN ,CMN ∠是PA 与CM 所成角(或所成角的补角),设2=PA ,则,3,1,3===CN MN CM 由余弦定理得:63cos =∠CNM ,故选B. 4.设,,A B C 为圆O 上三点,且3,5AB AC ==,则AO BC ⋅=( )A .-8B .-1C .1D .8 【命题意图】本题主要考查平面向量数量积等基础知识,意在考查运算求解能力.5.若不等式220x ax a -+>,对x R ∈恒成立,则关于t 的不等式221231t tt a a ++-<<的解为( )A .12t <<B .21t -<<C .22t -<<D .32t -<< 【命题意图】本题主要考查一元二次不等式及指数函数等基础知识,意在考查运算求解能力. 【答案】A【解析】Q 不等式220x ax a -+>,对x R ∈恒成立,244001a a a ∴∆=-<⇔<<,那么:关于t 的不等式221231t tt aa ++-<<,等价于:221230t t t +>+->,即:224230t t t ⎧<⎨+->⎩,解得:12t <<,故选A.6.已知1F ,2F 分别是双曲线)0,0(1:2222>>=-b a by a x C 的左、右焦点,其离心率为e ,点B 的坐标为),0(b ,直线B F 1与双曲线C 的两条渐近线分别交于Q P ,两点,线段PQ 的垂直平分线与x 轴,直线B F 1的交点分别为R M ,,若1RMF ∆与2PQF ∆的面积之比为e ,则e 的值为( )A .26B .23C .2D .2【命题意图】本题主要考查双曲线的标准方程及其性质等基础知识,意在考查运算求解能力. 【答案】A7.若函数()22(0)f x x a x a =+-->没有零点,则a 的取值范围为( )A .()0,1B .()()0,12,+∞C .()()0,22,+∞ D .()()0,12,+∞【命题意图】本题主要考查函数的零点等基础知识,意在考查数形结合的数学思想与运算求解能力. 【答案】D【解析】函数()22(0)f x x a x a =+-->没有零点等价于22a x x -=-+没有零点,等价于函数2y a x =-与函数2y x =-+的图像没有交点.函数2y a x =-变形可得()22,0x y a y +=≥,图像为以()0,0为圆心a 为半径的圆的上半个圆(包含两个端点).函数2y x =-+和2y a x =-均为偶函数,图像均关于y 轴对称.不妨只讨论0x ≥,由数形集合分析可得()()222202a +<<或2a >,即01a <<或2a >.故D 正确.8.在Rt ABC △中,已知D 是斜边AB 上任意一点(如图①),沿直线CD 将ABC △折成直二面角B CD A--(如图②)。
2016年高考数学(文)冲刺卷(新课标Ⅱ卷) 01(解析版) 含解析

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,1M =-,{}240N x x =-<,则下列结论正确的是( )A .N M ⊆B .NM =∅ C .M N ⊆ D .MN =R【命题意图】本题主要考查集合运算及不等式的解法。
【答案】C 【解析】∵24022x x -<⇔-<<,∴()2,2N =-, 又∵{1,1}M =-,∴M N ⊆,故选C.2。
若复数z 满足()1i 1i i z -=-+,则z 的实部为( ) A .212- B.21- C.1 D.212+ 【命题意图】本题主要考查复数的有关概念及复数的运算,属基础题。
【答案】A3.若()(),,,A a b B c d 是()ln f x x =图象上不同两点,则下列各点一定在()f x 图象上的是( )A 。
(),a c b d ++B 。
(),a c bd +C 。
(),ac b d +D 。
(),ac bd【命题意图】本题主要考查对数的运算法则及分析问题解决问题的能力。
【答案】C【解析】因为()(),,,A a b B c d 在()ln f x x =图象上,所以ln b a = ,ln ,d c = 所以ln ln ln b d a c ac +=+=,因此(),ac b d +在()ln f x x =图象上,故选C .4。
“牟合方盖"是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )【命题意图】本题将三视图与我国古代数学成就有机结合在一起,主要考查三视图的画法及空间想象能力。
2016年高考数学(文)冲刺卷03(山东卷)解析版含解析

第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21z i=+(i 是虚数单位)在复平面内对应的点是( ) A. (1.1) B. (1,1)- C. (1,1)- D. (1,1)-- 【命题意图】本题考查复数的除法运算、复数的概念及复数的几何意义,意在考查学生的基本计算能力. 【答案】B【试题解析】所以z 的对应点为(1,1)-. 故答案为B.2. 已知集合{}{}2|20,|02M x x x N x x =+-<=<<,则M N = ( )A .(2,1)-B .(1,2)-C .(0,1)D .(1,2)【命题意图】本题考查一元二次不等式的解法和集合的交集运算,意在考查学生的基本计算能力和逻辑思维能力. 【答案】C3. 已知等比数列{}n a 的公比为正数,且237424,2a a a a ==,则1a =( )A .1 C .2 D .2【命题意图】本题考查等比数列的性质及其通项公式等知识,意在考查学生的归纳推理的能力和基本计算能力. 【答案】B【试题解析】222237454444,02a a a a a q q q =⇒=⇒=>∴= ,因此21 1.a a q ==选B.4. 执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .4D .7【命题意图】本题考查程序框图的应用,意在考查学生的逻辑思维能力. 【答案】C5. 已知函数()2ln x f x x x=-,则函数()y f x =的大致图像为( )【命题意图】本题主要考查了学生的识图能力以及运用数形结合的思想方法,属于中档题.解答这类问题通常用排除法,也就是通过图象的区别逐个选项排除,主要的技巧是先观察各图象的区别,确定应研究函数的奇偶性、单调性等,再利用解析式加以解决. 【答案】A 【试题解析】通过函数解析式,可以判断函数不具备奇偶性,图象既不关于原点对称,也不关于y 轴对称,排除B ,C ,而221ln1110e f e e e e e⎛⎫-=-=-< ⎪⎝⎭-,排除D ,故选A.6. “4a >”是“方程20x ax a ++=有两个负实数根”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【命题意图】本题考查充分条件和必要条件的判定等知识,意在考查学生的逻辑思维能力和基本计算能力. 【答案】A 【试题解析】7. 函数()()sin 0,0f x A x A ωω=>>的部分图象如图所示,()()()()1232015f f f f +++⋅⋅⋅+的值为( )A .0 B...【命题意图】本题考查三角函数的图象与性质、函数图象的平移变换等基础知识,意在考查基本运算能力. ω由周期T 确定,即由2T πω=求出.常用的确定T 值的方法有:(1)曲线与x 轴的相邻两个交点之间的距离为2T ;(2)最高点和与其相邻的最低点横坐标之间的距离为2T ;(3)相邻的两个最低点(最高点)之间的距离为T ;(4)有时还可以从图中读出4T 或34T 的长度来确定ω.【答案】A 【试题解析】8. 某几何体的三视图如图所示,则该几何体的体积是( )A.3B. 2πD. π 【命题意图】本题考查空间几何体的三视图识别及圆锥体的体积计算等知识,意在考查学生的空间想象能力、逻辑思维能力和基本计算能力. 【答案】A【试题解析】该几何体是半个圆锥,故故答案为A.9. 已知,A B 分别为双曲线C :()222210,0x y a b a b-=>>的左,右顶点,P 是C 上一点,且直线,AP BP 的斜率之积为2,则C 的离心率为( )A 【命题意图】本题考查双曲线的标准方程及其几何性质、直线的斜率等知识,意在考查学生的数学逻辑思维能力、计算能力和解决问题的综合能力. 【答案】B 【试题解析】10. 已知函数)(x f 定义在R 上的奇函数,当0<x 时,()(1)x f x e x =+,给出下列命题:①当0>x 时,()(1)xf x e x =-②函数)(x f 有2个零点③0)(>x f 的解集为),1()0,1(+∞- ④R x x ∈∀21,,都有2)()(21<-x f x f , 其中正确的命题是( )A .①③B .②③C .③④D .②④【命题意图】本题考查函数的单调性、函数的奇偶性、导数的应用及不等式的性质.意在考查学生的数学逻辑思维能力、计算能力和解决问题的综合能力. 【答案】C 【试题解析】① 函数()f x 在R 上的奇函数,∴()()f x f x =--,令()0,x ∈+∞,则(),0x -∈-∞,()()(1)(1)x x f x f x e x e x --=--=--=-,故①错;②当0<x 时,()(1)0x f x e x =+=,0x e > ,∴1x =-是函数的一个零点,同理可以求出当0>x ,1x =是函数的一个零点,函数()f x 是奇函数,∴()00f =,综上所述函数()f x 有3个零点,故②错;由①可知函数()(1)000(1)0x xe x xf x x e x x -⎧+<⎪⎪=⎨⎪->⎪⎩,0)(>x f 的解集为),1()0,1(+∞- ,故③正确;④当0<x 时,()()(1)2xxxf x e x e ex '=++=+,当()2,0x ∈-时,()0f x '>,()f x 单增;当(),2x ∈-∞-时,()0f x '<,()f x 单减;∴在0<x ,函数有最小值()()2min 2f x f e -=-=-.同理在0x >时,函数有最大值()()2max 2f x f e -==.∴R x x ∈∀21,,都有()()212ma x min ()()2f x f x f x f x e --<-=, 201e -<<,∴222e -<,故④正确.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11. 设向量a 与b 的夹角为θ,且(3,3),(1,2)a b ==,则cos θ=________.【命题意图】本题考查平面向量的数量积、夹角及向量的坐标运算,意在考查学生的计算能力..【答案】1012. 若x ,y 满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是 .【命题意图】本题考查线性规划问题,意在考查学生的数形结合思想的应用. 【答案】3-【解析】作出不等式组02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域及直线0x y -=,如下图:平移直线0x y -=,由图可知当直线经过点03C (,)时min 3z =-.13. 采用系统抽样方法从600人中抽取50人做问卷调查,为此将他们随机编号为001,002,....,600,分组后在第一组采用简单随机抽样的方法抽得的号码为003,抽到的50人中,编号落入区间[001,300]的人做问卷A ,编号落入区间[301,495]的人做问卷B ,编号落入区间[496,600]的人做问卷C ,则抽到的人中,做问卷C 的人数为_________.【命题意图】本题考查系统抽样方法,意在考查学生的应用意识及计算能力. 【答案】8【试题解析】分段间隔为抽到的第一个号码为003,所以抽到的第n 个号码为:因为所以第43至50个人做问卷C ,即共50428-=人,故答案为8.14. 若直线1:l y x a =+和直线2:l y x b =+将圆22(1)(2)8x y -+-=分成长度相等的四段弧,则22a b += .【命题意图】本题考查圆的标准方程、直线与圆的位置关系等知识,意在考查学生的逻辑思维能力、数形结合思想的应用及基本计算能力. 【答案】18 【试题解析】15. 已知定义的R 上的函数()f x 满足(1)(1)f x f x +=-且在[1,)+∞上是增函数,不等式(2)(1)f ax f x +≤-对任意1[,1]2x ∈恒成立,则实数a 的取值范围是 .【命题意图】本题主要考查的是函数的对称性、单调性及利用函数性质解决恒成立问题,涉及含参绝对值不等式的恒成立问题,最值问题,意在考查逻辑思维能力和基本计算能力. 【答案】[2,0]-【试题解析】由(1)(1)f x f x +=-知,函数的对称轴为1x =,又()f x 在[1,)+∞上是增函数,所以在(,1)-∞上是减函数,因为(2)(1)f ax f x +≤-对任意1[,1]2x ∈恒成立,所以211(1)2ax x x +-≤--=-对任意1[,1]2x ∈恒成立,即12ax x +≤-对任意1[,1]2x ∈恒成立,所以212x ax x -≤+≤-,因为1[,1]2x ∈,所以3111a x x-≤≤-,由函数增减性知,当1x =时,max 3(1)2x -=-,min 1(1)0x -=,所以20a -≤≤,故答案为[2,0]-.三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足()()cos 2cos b A c a B π=+-.(1)求角B 的大小;(2)若4b =,ABC ∆a c +的值.【命题意图】本题考查两角和与差的三角函数公式、正弦定理和余弦定理的应用,意在考查学生分析问题、解决问题的能力和基本的计算能力.【答案】(1)23B π=;(2)a c += 【试题解析】17.(本小题满分12分)等差数列{}n a 中,74a =,1992a a =. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 【命题意图】本题考查等差数列的通项公式及其性质、裂项相消法求和等知识,意在考查学生的逻辑思维能力和较高的计算能力. 【答案】(1)12n n a +=,(2)2.1n nS n =+ 【试题解析】18. (本小题满分12分)某高校从2015年招收的大一新生中,随机抽取60名学生,将他们的2015年高考数学成绩(满分150分,成绩均不低于90分的整数)分成六段[)[)[)90,100,100,110140,150 ,后得到如图所示的频率分布直方图.(1)求图中实数a 的值;(2)若该校2015年招收的大一新生共有960人,试估计该校招收的大一新生2015年高考数学成绩不低于120分的人数;(3)若用分层抽样的方法从数学成绩在[)90,100与[]140,150两个分数段内的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至少有1人在分数段[)90,100内的概率.【命题意图】本题考查古典概型的概率、分层抽样、样本的频率分布直方图,意在考查学生的数学知识的应用能力和基本计算能力.【答案】10.0326243();();()35. 【试题解析】(1)(0.0050.0120.020.025)101a +⨯+++⨯=,∴0.03a =………………3分 (2)(0.030.0250.01)10960624++⨯⨯=(人) ………………6分19. (本小题满分12分)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.【命题意图】本题考查空间平面与平面垂直的判定、直线与平面平行的判定等知识;意在考查学生的空间想象能力与逻辑推理论证能力.【答案】(1)见解析;(2)见解析【试题解析】证明:(1)连结AC,交BD于O,连结OE.因为ABCD是平行四边形,所以OA=OC.…(2分)因为E为侧棱PA的中点,所以OE∥PC.…(3分)因为PC 平面BDE,OE⊂平面BDE,所以PC∥平面BDE.…(5分)(2)因为E为PA中点,PD=AD,所以PA⊥DE.…(7分)因为PC⊥PA,OE∥PC,所以PA⊥OE.因为OE ⊂平面BDE ,DE ⊂平面BDE ,OE∩DE=E, 所以PA ⊥平面BDE .…(11分)因为PA ⊂平面PAB ,所以平面BDE ⊥平面PAB .…(12分)20.(本小题满分13分)已知函数()e ln 1xf x m x =--.(Ⅰ)当1m =时,求曲线()y f x =在点()()11f ,处的切线方程; (Ⅱ)当1m ≥时,证明:()1f x >.【命题意图】本题考查导数的几何意义、利用导数研究函数的单调性、证明不等式等知识,意在考查学生的逻辑思维能力和分析问题、解决问题的综合能力,以及基本运算能力. 【答案】(Ⅰ)()e 1y x =-. (Ⅱ)见解析.(Ⅱ)证法一:当1m ≥时,()e ln 1e ln 1x xf x m x x =--≥--.要证明()1f x >,只需证明e ln 20xx -->.……………………………………4分 以下给出三种思路证明e ln 20xx -->.思路1:设()e ln 2xg x x =--,则1()e x g x x'=-. 设1()e xh x x =-,则21()e 0xh x x'=+>,所以函数()h x =1()e xg x x'=-在0+∞(,)上单调递增.…………………………6分 因为121e 202g ⎛⎫'=-< ⎪⎝⎭,(1)e 10g '=->,所以函数1()e xg x x '=-在0+∞(,)上有唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭.…………8分 因为0()0g x '=时,所以01ex x =,即00ln x x =-.………………………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()000001()=e ln 220xg x g x x x x ≥--=+->.当01x <<时,()0p x '<,当1x >时,()0p x '>,所以当01x <<时,函数()p x 单调递减,当1x >时,函数()p x 单调递增.所以()()10p x p ≥=.所以ln 10x x --≥(当且仅当1x =时取等号).………………………………10分 由于取等号的条件不同, 所以e ln 20xx -->.综上可知,当1m ≥时,()1f x >.………………………………………………13分 (若考生先放缩ln x ,或e x、ln x 同时放缩,请参考此思路给分!) 思路3:先证明e ln 2xx ->.②设()ln g t t t =-()0t >,则()111t g t t t -'=-=.因为当01t <<时,()0g t '<;当1t >时,()0g t '>,所以当01t <<时,()ln g t t t =-单调递减;当1t >时,()ln g t t t =-单调递增. 所以()()11g t g ≥=.所以2d =≥所以)122AB d d =+>=⎭. 综上可知,当1m ≥时,()1f x >.………………………………………………13分综上可知,当1m ≥时,()1f x >.………………………………………………13分思路2:先证明e 1()x x x ≥+∈R ,且ln 1(0)x x x ≤+>.……………………5分21.(本小题满分14分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F 、2F ,离心率2e =P 为椭圆E 上的任意一点(不含长轴端点),且△12PF F 面积的最大值为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线:1(l x my m =+∈R )交椭圆E 于A 、B 两点,试探究:点(3,0)M 与以线段AB为直径的圆的位置关系,并证明你的结论.【命题意图】本题考查椭圆的标准方程、直线和椭圆的位置关系、平面向量的数量积、夹角公式、点与圆的位置关系等知识,意在考查学生的数形结合思想、化归与转化思想的应用及运算求解能力.【答案】(Ⅰ)22142x y +=;(Ⅱ)点(3,0)M 在以AB 为直径的圆外. 【试题解析】因此,点(3,0)M 在以线段AB 为直径的圆外.……14分 解法二:设点1122(,),(,)A x y B x y ,由22221,(2)23024x my m y my x y =+⎧⇒++-=⎨+=⎩,∴12222m y y m -+=+,12232y y m -=+,……8分∵11(3,)MA x y =- ,22(3,)MB x y =-, ∴1122(3,)(3,)MA MB x y x y ⋅=-⋅-2212122232(1)2()4(1)2422m m y y m y y m m m m --=+-++=+⋅-⋅+++225502m m +=>+,……12分∴cos ,)0MA MB <> ,又,MA MB不共线,∴AMB ∠为锐角,……13分因此,点(3,0)M 在以AB 为直径的圆外.……14分。
2016年高考冲刺卷(9)(新课标Ⅱ卷)文科数学(考试版)

绝密★启用前2016年高考冲刺卷(9)(新课标Ⅱ卷)文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数21iz i+=+(i 为虚数单位),则z 在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知:1,1,:2,1p x y q x y xy <<+<<,则p 是q 的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.已知向量,a b 满足2,1a b ==,且5()()2a b a b +⊥-,则a 与b 的夹角θ为 ( ) A. 6πB.错误!未找到引用源。
C.错误!未找到引用源。
D.56π4. 如图所示是高三某次考试中一班50位学生的数学成绩的频率分布直方图,其中成绩分组区间是:[80,90),[90,100),[100,110),[110,120), [120,130), [130,140],根据直方图估计这50名学 生的数学成绩的中位数大约是 ( ) A.115.5 B.115.6C.115.3D.115.85. 设0.2323,0.2,log (0.2)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( )A.a b c <<B.b a c <<C.c b a <<D.b c a <<6. 某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的表面积是 ( )A .8πB .C .16πD .12π7.若2()log f x x =,若在[1,4]上随机取一个实数0x ,则使得0()1f x ≥成立的概率为( ) A.错误!未找到引用源。
2016年高考数学(文)冲刺卷(新课标Ⅰ卷)03(解析版)含解析

第Ⅰ卷(共 60 分)一、选择题(本大题共 12 个小题,每题 5 分,共 60 分. 在每题给出的四个选 项中,只有一项为哪一项切合题目要求的 . )1.已知会合x lg x 10 ,x 1 x 3 ,则()A . 1,3B. 1,2C. 1,3D. 1,2【答案】 D【分析】∵ 0 x 1 1 1 x 2 ,∴1,2 ,∴ 1,2 ,应选 D .2. 等差数列a n 的前 n 项和为 S n ,若 S 532,则 a 3()A .32B. 2C. 4 2D.5532【答案】 A【分析】∵ S 5 5 a 1a 55 2a 35a 332 ,应选 A.2232,∴ a 353. 复数 z 知足 1 i z3 i ,则 z()A . 1+iB. 1iC. 1 iD. 1+i【答案】 A4. 已知点2,0 到双曲线x 2y 2 1( a0 , b 0 )的一条渐近线的距离为5,则a 2b 25该双曲线的离心率为()5 B.2C.10 5 1A.D.23【答案】 C【分析】由题意得:2b 5,∴a29b2,∴a2b25e c c21b21110,应选 C.a a2a2935.已知函数 f x log 1x, x04的值为()2,则 f f3x , x0A.1B. 9C.1D. 999【答案】 C【分析】 f 4log 1 4 2 ,∴f f4f 2 3 21,应选 C.296.已知向量 a ,b的夹角为,且 a 2 ,b 1 ,则向量 a 与向量a 2b的夹角等于()A.53B.2C.D.636【答案】 D7.已知函数 f x sin x( x R ),下边结论错误的选项是()2A f x的最小正周期为2B.函数f x在区间0,上是增函.函数2数C.函数f x 的图象对于直线x 0 对称D.函数 f x 是奇函数【答案】 D【分析】 f x sin x sin x cos x ,∴函数f x 的最小正周期为222, A21正确;∵ ycos x在0,上是减函数,∴ f x cosx 在0,上是增函数, B 正确;22由图象知f x cosx 的图象对于直线x 0 对称,C正确;f x cosx 是偶函数,D错误.故选 D.8.如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为()A.三棱台B.三棱柱C.四棱柱D.四棱锥【答案】 B【分析】由三视图得几何体的直观图以下图,∴这个几何体是一个三棱柱,应选 B.9.若履行以下图的程序框图,输出S 的值为()A.2log23B.log27C.3D.2【答案】 C10.已知抛物线y24x 的焦点为F,、为抛物线上两点,若 F 3F,为坐标原点,则的面积为()A.3B. 8 3C. 4 3D. 2 3 3333【答案】 C(解法二)以下图,设F m ,则 AD AF 3m, AG 3m,又2AD AG 2 OF2,∴ m 483,又 CD BE,33∴S AOB 1CD43,应选 C.OF32x y5011. 已知向量a x, y ,若实数 x ,y知足x y0,则 a 的最大值是()x3A.73B. 5 2C .43D.3 22【答案】 A12. 已知函数 fxsin 2 x 1,x 0 ( a 0 且 a 1 ) 的图象上对于 y 轴对称的点起码有log a x, x 03 对,则实数a 的取值范围是()A .0,5B.5,1C.3,1553D .0,33【答案】 A【分析】若 x0 ,则 x0 ,∵ x0 时, f xsinx 1,2∴ fx sinx 1sinx 1 ,若 f x sin x 1( x 0 )的图象对于 y 轴222 对称,则 fxsinx 1 f x ,即 ynsix1 ,x 0 ,设 g xnsi x 1,222x0 ,作出函数 g x 的图象,要使 ysinx 1, x 0 与 f xlog a x , x 0 的图2象起码有 3 个交点,则 0 a 1且知足 g 5 f 5 ,即 2log a 5 ,即 log a 5 log a a 2 ,1 ,解得 0 a5则 52,应选 A .a5第Ⅱ卷(共 90 分)二、填空题(本大题共 4 小题,每题 5 分,满分 20 分.)13. 函数 f ( x) x 2 2x 3,x[ 4,4] ,任取一点 x 0[ 4,4] ,则 f (x 0 )0 的概率为.【答案】12【分析】由 x 22x 3 0 得1 x 3 ,因此使 f x 00 建立的概率是 31 1 .44 214. 已知14 1 ,且 a 0 , b 0 ,则 a b 的最小值为 .ab【答案】 915. 正项等比数列a n 中, a 1 , a 4031 是函数 f x1 x 3 4x 26x 3 的极值点,则3log 6a2016.【答案】 1【分析】 fxx 28x 6 ,∵ a , a 是函数 f x1 x 3 4x2 6x3 的极值点,∴140313a 1a40316 ,又∵正项等比数列 a n ,∴ a21 a a6 ,∴ log6a2016log6 6 1 .6102130416.正四棱锥CD 的体积为3 2,底面边长为 3 ,则正四棱锥CD 的内切2球的表面积是.【答案】47【分析】正四棱锥斜高为3223221334 3的内切球的表面积为113232 CD 的体积 V Sh 3 3 h,∴ h,∴3322221,设正四棱锥CD 的内切球的半径为r ,则2121 3 22713r,∴ r4,∴正四棱锥CD 2224r 247.三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12 分)在 C 中,三个内角,, C 的对边分别为a, b ,c,cos10 ,10a sinb sinc sinC 2 5asin.5( 1)求的值;( 2)设b10 ,求C 【答案】( 1);(2)604的面积 S..∴0C,3∴C.4∴C.,,,,,,,8 分418.(本小题满分12 分)为考察某种疫苗预防疾病的成效,进行动物实验,获得统计数据以下:未发病发病共计未注射疫苗20x A注射疫苗30y B共计5050100现从全部试验动物中任取一只,取到“注射疫苗”动物的概率为 2 .5( 1)求2 2 列联表中的数据x ,y,A,B的值;( 2)绘制发病率的条形统计图,并判断疫苗能否有效?( 3)可以有多大掌握以为疫苗有效?n ad 2附:2bca b c d a c b d20.050.010.0050.0010 3.841 6.6357.87910.828【答案】( 1)x40 , y10 ,60 ,40 ;(2)条形统计图看法析,疫苗有效;(3)有 99.9 %的掌握以为疫苗有效.19. (本小题满分12 分)如图,直三棱柱ABC A 1B1C1中,AB AC ,,F分别为 1 ,1C1的中点 .( 1)求证:F// 平面1 C ;(2)若AB AC AA 1 1 ,求点到平面1 C 的距离.【答案】( 1)证明看法析;( 2)3.6【分析】20. (本小题满分12 分)已知椭圆C :x2y21( a b0 ), e1,此中 F是椭圆的右a2b22焦点,焦距为2 ,直线 l 与椭圆 C 交于点、,点,的中点横坐标为1,且F F (此中1).4(1)求椭圆C的标准方程;(2)务实数的值.【答案】( 1)x2y21;(2)3 5 .43221. (本小题满分 12 分)已知函数f ( x) ln x bx c , f ( x) 在点 (1, f (1)) 处的切线方程为x y 4 0 .( 1)求 f ( x) 的分析式;( 2)求 f ( x) 的单一区间;( 3)若在区间1,5 内,恒有 f ( x)x 2 ln x kx 建立,求 k 的取值范围.2【答案】( 1)f xln x 2x 3;( 2)f x 的单一增区间为0, 1,单一减区间为 1 ,;2 2( 3),17 .2【分析】( 1) f1b ,f 11 bxx又切线斜率为1,故 1 b 1,进而 b 2 ,,,,,,,2 分将 (1, f (1)) 代入方程 x y4 0 得: 1 f (1) 4 0 ,进而 f (1) 5f (1) b c 5,将 b 2代入得 c 3,故 f (x)ln x 2x 3,,,,,,,4 分( 2)依题意知 x0 , f (x)12x令 f ( x)0,得: 0x1( x) 01,再令 f,得: x22故 f ( x) 的单一增区间为(0, 1) ,单一减区间为 ( 1,) ,,,,,,,6 分22请考生在第 22、23、24 三题中任选一题作答, 假如多做,则按所做的第一题记分 .解答时请写清题号 .22. (此题满分 10 分) 选修 4 1:几何证明选讲如图,过圆 O 外一点 P 的作圆 O 的切线 PM ,M 为切点,过 PM 的中点 N 的直线交圆O 于A 、B 两点,连结 PA 并延伸交圆 O 于点 C ,连结 PB 交圆 O 于点 D ,若 MC BC .( 1)求证: APM ∽ ABP ;( 2)求证:四边形 PMCD 是平行四边形 .【答案】( 1)证明看法析; ( 2)证明看法析 .23. (此题满分 10 分) 选修 4- 4:坐标系与参数方程 点 是曲线2 ( 0)上的动点,2,0 ,的中点为 Q .( 1)求点 Q 的轨迹 C 的直角坐标方程;(2)若 C 上点处的切线斜率的取值范围是3,3 ,求点 横坐标的取值范围 .3【答案】( 1)223 23 .x 1y1 y 0;()2 2【分析】试题分析:( 1)由 2 0,得 x 2 y 2 4 y0 设 P x 1 , y 1 , Q x, y , 则 xx 1 2 , yy 1,即 x 1 2x 2, y 1 2 y ,代入 x 12y 12 4 y0 ,22得 2x222y 2x 2y 2 1 y0 ; ,,,,,,,5 分4 ,∴ 1(Ⅱ)轨迹 C 是一个以 1,0 为圆心, 1半径的半圆,以下图,设 M 1 cos ,sin,设点 M 处切线 l 的倾斜角为由 l 斜率范围3,3,可得25,336而,∴,∴31cos232,2632因此,点 M 横坐标的取值范围是3,23.,,,,,,,10 分2 224.(此题满分 10 分)选修 4- 5:不等式选讲已知函数 f x x1.( 1)解不等式f x f x48 ;( 2)若a 1,b1,且a0 ,求证: f ab a f b .a【答案】( 1)x x5或 x3;(2)证明看法析.( 2)f ab a f b,即 ab 1 a b .a由于 a 1 , b1,因此 ab222ab 1a22ab b2a2 1 b2 1 0 ,1 a b a2b2因此 ab 1 a b ,故所证不等式建立.,,,,,,,10 分。
(整理版)高考数学小题狂做冲刺训练(详细解析)

高考数学小题狂做冲刺训练〔详细解析〕、选择题〔本大题共10小题,每题5分,共50分。
在每题给出的四个选项中,只有一个选项是符合题目要求的〕 1.点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.[0,2π]B.[0,2π〕∪[43π,π) C.[43π,π) D.(2π,43π]解析:∵y′=3x 2-1,故导函数的值域为[-1,+∞). ∴切线的斜率的取值范围为[-1,+∞〕. 设倾斜角为α,那么tanα≥-1. ∵α∈[0,π),∴α∈[0,2π)∪[43π,π).答案:B2.假设方程x 2+ax+b =0有不小于2的实根,那么a 2+b 2的最小值为( )A.3B.516 C.517 D.518 解析:将方程x 2+ax+b =0看作以(a,b)为动点的直线l:xa+b+x 2=0的方程,那么a 2+b 2的几何意义为l 上的点(a,b)到原点O(0,0)的距离的平方,由点到直线的距离d 的最小性知a 2+b 2≥d 2=211)1(1)100(2224222-+++=+=+++x x x x x x (x ≥2), 令u =x 2+1,易知21)(-+=u u u f (u ≥5)在[5,+∞)上单调递增,那么f(u)≥f(5)=516, ∴a 2+b 2的最小值为516.应选B. 答案:B3.国际上通常用恩格尔系数来衡量一个国家或地区人民生活水平的状况,它的计算公式为yxn =(x:人均食品支出总额,y:人均个人消费支出总额),且y =2x+475.各种类型家庭情相同的情况下人均少支出75元,那么该家庭属于( )解析:设1998年人均食品消费x 元,那么人均食品支出:x(1-7.5%)=92.5%x,人均消费支出:2×92.5%x+475,由题意,有2×92.5%x+475+75=2x+475,∴x=500. 此时,14005.462475%5.922%5.92=+⨯=x x x ≈0.3304=33.04%,应选D.答案:D4.(海南、宁夏高考,文4)设f(x)=xlnx,假设f′(x 0)=2,那么x 0等于( )2B.eC.22ln 解析:f′(x)=lnx+1,令f′(x 0)=2, ∴lnx 0+1=2.∴lnx 0=1.∴x 0=e. 答案:B5.n =log n+1 (n+2)(n∈N *).定义使a 1·a 2·a 3·…·a k 为整数的实数k 为奥运桔祥数,那么在区间[1,2 008]内的所有奥运桔祥数之和为( )A.1 004B.2 026C.4 072D.2 044解析:a n =log n+1 (n+2)=)1lg()2lg(++n n ,a 1·a 2·a 3·…·a k =2lg )2lg()1lg()2lg(4lg 5lg 3lg 4lg 2lg 3lg +=++••k k k . 由题意知k+2=22,23,…,210,∴k=22-2,23-2,…,210-2.∴S=(22+23+…+210)-2×9=20261821)21(49=---. 答案:B6.从2 004名学生中选取50名组成参观团,假设采用下面的方法选取,先用简单随机抽样法从2 004人中剔除4人,剩下的 2 000人再按系统抽样的方法进行,那么每人入选的概率〔 〕A .不全相等B .均不相等C .都相等且为002125D .都相等且为401解析:抽样的原那么是每个个体被抽到的概率都相等,所以每人入选的概率为002125. 答案:C7.将数字1,2,3,4,5,6拼成一列,记第i 个数为a i 〔i =1,2,…,6〕,假设a 1≠1,a 3≠3,5≠5,a 1<a 3<a 5,那么不同的排列方法种数为〔 〕A .18B .30C .36D .48 解析:∵a 1≠1且a 1<a 3<a 5,∴〔1〕当a 1=2时,a 3为4或5,a 5为6,此时有12种; 〔2〕当a 1=3时,a 3仍为4或5,a 5为6,此时有12种; 〔3〕当a 1=4时,a 3为5,a 5为6,此时有6种. ∴共30种. 答案:B8.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.假设从中任选3人,那么选出的火炬手的编号能组成以3为公差的等差数列的概率为〔 〕A .511 B .681 C .3061 D .4081 解析:属于古典概型问题,根本领件总数为318C =17×16×3,选出火炬手编号为a n =a 1+3〔n -1〕〔1≤n ≤6〕,a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法. 故所求概率68131617444444318=⨯⨯++=++=C P . 答案:B9.复数i 3(1+i)2等于( )A.2B.-2 C解析:i 3(1+i)2=-i(2i)=-2i 2=2. 答案:A 10.(全国高考卷Ⅱ,4)函数x xx f -=1)(的图象关于( ) A.y 轴对称 B.直线y =-x 对称 C.坐标原点对称 D.直线y =x 对称 解析: x xx f -=1)(是奇函数,所以图象关于原点对称. 答案:C、填空题〔本大题共5小题,每题5分,共25分〕11.垂直于直线2x-6y+1=0且与曲线y=x 3+3x 2-5相切的直线方程为___________________.解析:与直线2x-6y+1=0垂直的直线的斜率为k=-3,曲线y=x 3+3x 2-5的切线斜率为y ′=3x 2+6x.依题意,有y ′=-3,即3x 2+6x=-3,得x=-1.当x=-1时,y=(-1)3+3·(-1)2-5=-3.故所求直线过点(-1,-3),且斜率为-3,即直线方程为y+3=-3(x+1), 即3x+y+6=0. 答案:3x+y+6=0 12.函数13)(--=a axx f (a≠1).假设f(x)在区间(0,1]上是减函数,那么实数a 的取值范围是______________. 解析:由03)1(2)('<--=axa a x f ,⎪⎩⎪⎨⎧<->-②,0)1(2①,03a aax由①,得a <x3≤3. 由②,得a <0或a >1,∴当a =3时,f(x)在x∈(0,1)上恒大于0,且f(1)=0,有f(x)>f(1). ∴a 的取值范围是(-∞,0)∪(1,3]. 答案:(-∞,0)∪(1,3] 13.平面上三点A 、B 、C满足3||=AB ,5||=CA ,4||=BC ,那么AB CA CA BC BC AB •+•+•的值等于________________.解析:由于0=++CA BC AB ,∴)(2||||||)(2222AB CA CA BC BC AB CA BC AB CA BC AB •+•+•+++=++0)(225169=•+•+•+++=AB CA CA BC BC AB ,即可求值.答案:-2514.设一次试验成功的概率为p,进行100次独立重复试验,当p=_________________时,成功次数的标准差的值最大,其最大值为___________________________________.解析:4)2(2n q p n npq D =+≤=ξ,等号在21==q p 时成立,此时Dξ=25,σξ=5. 答案:215 15.设z 1是复数,112z i z z -=(其中1z 表示z 1的共轭复数),z 2的实部是-1,那么z 2的虚部为___________________.解析:设z 1=x+yi(x,y ∈R),那么yi x z -=1. ∴z 2=x+yi-i(x-yi)=x-y+(y-x)i. ∵x-y=-1, ∴y-x=1. 答案:1。
2016年高考数学(文)冲刺卷(新课标Ⅰ卷) 01(解析版) Wo

第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{}20x x P =≤,0.53m =,则下列关系中正确的是( )A .m ⊂P ≠B .m ∈PC .m ∉PD .m ⊆P 【答案】C【解析】{}{20=0x x x x P =≤≤≤,0.53m ==m ∉P ,故选C.2.向量()1,1a =-,()1,0b =,若()()2a b a b λ-⊥+,则λ=( )A .2B .2-C .3D .3- 【答案】C3.已知复数21z i i=+-,则z 的共轭复数是( )A .1i +B .12i +C .12i -D . 23i + 【答案】C 【解析】()()()212112111i z i i i i i i i i +=+=+=++=+--+,所以z 的共轭复数12z i =-,故选C.4.随机抛掷一枚质地均匀的骰子,记正面向上的点数为a ,则函数()222f x x ax =++有两个不同零点的概率为( ) A .13 B .12 C .23D .56【答案】D 【解析】试题分析:抛掷一枚质地均匀的骰子包含6个基本事件,因为函数()222f x x ax =++有两个不同零点,所以2480a ∆=->,解得a <a >因为a 为正整数,所以a 的取值有2,3,4,5,6,共5种结果,所以函数()222f x x ax =++有两个不同零点的概率为56,故选D. 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点与抛物线x y 202=的焦点重合,且其渐近线方程为x y 34±=,则双曲线C 的方程为( )A .221916x y -= B .221169x y -= C .2213664x y -= D .2216436x y -= 【答案】A6.某几何体的三视图如图所示,则该几何体的体积为( ) A .1312π+ B .112π+ C .134π+ D .14π+【答案】B【解析】由三视图知该几何体为14圆锥与直三棱柱的组合体,其中圆锥的高为1,底面为圆的14,圆半径为1;直三棱柱的高为1,底面为直角三角形,两条直角边长分别为1和2,所以该几何体的体积为211111+121134212ππ⨯⨯⨯⨯⨯⨯=+,故选B. 7.已知实数0a <,函数22,1(),1x a x f x x x ⎧+<=⎨-≥⎩ ,若(1)(1)f a f a -≥+,则实数a 的取值范围是( )A .(,2]-∞-B .[2,1]--C .[1,0)-D .(,0)-∞ 【答案】B【解析】当0a <时,11a ->,11a +<,所以(1)f a -(1)1a a =--=-,2(1)(1)2f a a a +=++,因为(1)(1)f a f a -≥+,所以()2112a a a -≥++,即2320a a ++≤,解得21a -≤≤-,所以实数a 的取值范围是[2,1]--,故选B .8.已知n S 是公差不为0的等差数列{}n a 的前n 项和,且1S ,2S ,4S 成等比数列,则231a a a +等于( )A .4B .6C .8D .10 【答案】C9.将函数sin 6y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标压缩为原来的12倍(纵坐标不变),所得函数在下面哪个区间单调递增( ) A .,36ππ⎛⎫-⎪⎝⎭ B .,22ππ⎛⎫- ⎪⎝⎭ C .,33ππ⎛⎫- ⎪⎝⎭D .2,63ππ⎛⎫-⎪⎝⎭【答案】A【解析】将函数sin 6y x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标压缩为原来的12倍(纵坐标不变)得到函数⎪⎭⎫⎝⎛+=62sin πx y 的图象,当222262k x k πππππ-≤+≤+(k ∈Z ),即36k x k ππππ-≤≤+(k ∈Z )时,函数⎪⎭⎫⎝⎛+=62sin πx y 单调递增,所以函数⎪⎭⎫ ⎝⎛+=62sin πx y 单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ),当0=k 时,函数⎪⎭⎫ ⎝⎛+=62sin πx y 在区间,36ππ⎛⎫- ⎪⎝⎭上单调递增,故选A.10.某程序框图如图所示,该程序运行后输出的S 的值是( )A .1007B .2015C .2016D .3024【答案】D【解析】由程序框图得()()()12342013201420152016012101S a a a a a a a a =++++⋅⋅⋅++++=++-+++()()()()()504410120141012016166665043024+++⋅⋅⋅+++-+++++=++⋅⋅⋅+=⨯=个,故选D.11.点A ,B ,C ,D 均在同一球面上,且AB ,C A ,D A 两两垂直,且1AB =,C 2A =,3AD =,则该球的表面积为( )A .7πB .14πC .72πD .3【答案】B12.已知函数22()()()()x f x x a e a a R =-+-∈,若存在0x R ∈,使得01()2f x ≤成立,则实数a 的值为 ( )A .13 B .2 C .4D .12【答案】D第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.若n S 是数列{}n a 的前n 项和,且267n S n n =-++,则数列{}n a 的最大项的值为 . 【答案】12【解析】当1n =时,211161712a S ==-+⨯+=,当2n ≥时,1n n n a S S -=-267n n =-++-2[(1)6(1)7]723n n n --+-+=-≤,当2n =时取等号,所以数列{}n a 的最大项的值为12. 14.若曲线2y x ax b =++在点()0,b 处的切线方程是10x y -+=,则a = .【答案】1【解析】a x y +='2,由题意得:201a ⨯+=,解得1=a .15.已知变量x ,y 满足约束条件20020x y x y y +-≥⎧⎪-≤⎨⎪-≤⎩,设2z x y =+,则z 的取值范围是 . 【答案】[]6,2【解析】作出可行域,如图所示,当目标函数z x y +-=2过点C 时取得最小值,220min =+=z ,当目标函数z x y +-=2过点()22,B 时取得最大值,6222max =+⨯=z ,所以z 的取值范围是[]6,2.16.椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,P 是椭圆C 上一点,O 为坐标原点.已知60POA ∠=,且OP AP ⊥,则椭圆C 的离心率为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)如图所示,在四边形ABCD 中, D ∠=2B ∠,且1AD =,3CD =,cos 3B =. (1)求CD ∆A 的面积;(2)若BC =AB 的长.【答案】(1(2)4.18.(本小题满分12分)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如下表:(1)求y 关于x 的线性回归方程ˆˆˆybx a =-; (2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z 取到最大值?(保留两位小数)【答案】(1)ˆ8.69 1.23y x =-;(2)2.72吨.【解析】解:(1)()11234535x =++++=,()17.0 6.5 5.5 3.8 2.255y =++++=…………………2分 5117.02 6.53 5.54 3.85 2.262.7i ii x y==⨯+⨯+⨯+⨯+⨯=∑19.(本小题满分12分)如图,在长方体1111CD C D AB -A B 中,1D 1A =AA =,2AB =,点E 是线段AB 中点.(1)求证:1D C E ⊥E ;(2)求A 点到平面1CD E 的距离.【答案】(1)证明见解析;(2)6【解析】(1)证明:1DD ⊥面CD AB ,C E ⊂面CD AB∴1DD C ⊥E ………………1分Rt D ∆AE 中,D 1A =,1AE =D E ==同理:C E =CD 2=,222CD C D =E +ED CE ⊥E ………………3分D CE E =E∴C E ⊥平面1D D E ………………4分又1D E ⊂平面1D C E∴1D C E ⊥E ………………5分(2)C 1B =,1AE =,C AE ⊥B∴C 111122S ∆A E =⨯⨯=………………6分又1D E C E =1D C E ⊥E∴CD 12S ∆E ==………………7分 设A 点到平面1CD E 的距离为d ,则11D C CD 111V 1V 323d -A E A-E =⨯⨯==………………10分解得:6d =………………11分即A 点到平面1CD E 的距离为612分 20.(本小题满分12分)已知圆E 过圆222430x y x y ++--=与直线y x =的交点,且圆上任意一点关于直线22y x =-的对称点仍在圆上. (1)求圆E 的标准方程;(2)若圆E 与y 轴正半轴的交点为A ,直线l 与圆E 交于,B C 两点,且点H 是ABC ∆的垂线(垂心是三角形三条高线的交点),求直线l 的方程.【答案】(1)22(1)4x y -+=;(2)1y x =-21.(本小题满分12分)设函数21()ln 2f x x m x =-,2()(1)g x x m x =-+,0m >. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.【答案】(1)函数()f x 的单调增区间是)+∞,单调减区间是;(2)1.【解析】(1)函数()f x 的定义域为(0,)+∞………………1分()f x '=2分当0x <<()0f x '<,函数()f x 的单调递减………………3分当x >()0f x '>,函数()f x 的单调递增………………4分综上,函数()f x 的单调增区间是)+∞,单调减区间是………………5分请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本题满分10分)选修41-:几何证明选讲如图所示,已知圆O 的半径长为4,两条弦,AC BD 相交于点E ,若BD =BE DE >,E 为AC的中点,AB =.(1)求证:AC 平分BCD ∠;(2)求ADB ∠的度数.【答案】(1)证明见解析;(2)030.(2)连接OA ,由点A 是BAD 的中点,则OA BD ⊥,设垂足为点F ,则点F 为弦BD 的中点,BF =连接OB ,则2OF ===,∴21cos 42OF AOB OB ∠===,060AOB ∠=. ∴01302ADB AOB ∠=∠=………………10分23.(本题满分10分)选修4-4:坐标系与参数方程已知直线52:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直坐标方程;(2)设点M的直角坐标为,直线l 与曲线C 的交点为A 、B ,求||||MA MB ⋅的值. 【答案】(1)22(1)1x y -+=;(2)18.【解析】(1)∵2cos ρθ=,∴22cos ρρθ=,∴222x y x +=,故它的直角坐标方程为22(1)1x y -+=.………………5分(2)直线5:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),普通方程为y x =在直线l 上, 过点M 作圆的切线,切点为T ,则22||(51)3118MT =-+-=,由切割线定理, 可得2||||||18MT MA MB =⋅=………………10分 24.(本题满分10分)选修4-5:不等式选讲 已知函数()()2log 12f x x x a =-++-. (1)当7a =时,求函数()f x 的定义域;(2)若关于x 的不等式()3f x ≥的解集是R ,求a 的取值范围.【答案】(1)()(),43,-∞-+∞;(2)(],5-∞-.。
2016届高考冲刺数学(文)得分题训练08(通用版)(解析版)

一、选择题(每题5分,共50分) 1.若集合}3121|{≤+≤-=x x A ,}02|{≤-=xx x B ,则=B A ( ) A .}01|{<≤-x x B .}10|{≤<x x C .}20|{≤≤x x D .}10|{≤≤x x 【答案】B 【解析】 试题分析:由题意得,{|1213}{|11}A x x x x =-≤+≤=-≤≤,2{|0}{|02}x B x x x x-=≤=<≤,所以=B A }10|{≤<x x ,故选B.2. ( )(A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限 【答案】A3.下列命题中,说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠” B.“102x <<”是“(12)0x x ->”的必要不充分条件 C .命题“0x ∃∈R ,使得20010x x ++<”的否定是:“x ∀∈R ,均有210x x ++>” D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题 【答案】D 【解析】试题分析:A 中否命题需将条件和结论分别否定,因此错误;B 中“102x <<”是“(12)0x x ->”的重要条件,C 中特称命题的否定为全称命题,并须将结论加以否定,因此命题错误;D 中原命题由A B >可得a b >,借助于正弦定理可得sin sin A B >,所以原命题与逆否命题都是真命题4.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为 A.32 B.94C.1D.2 【答案】D【解析】试题分析:设等比数列的首项为1a ,公比为q ,因为前4项的和为9,积为814,所以91)1(41=--qq a ,且48164132141==++q a q a ,即29321=q a ,则211)1(11)11(1111132141414321=⋅--=--=+++q a q q a qq a a a a a ;故选D .5. 在某次选拔比赛中,六位评委为B A ,两位选手打出分数的茎叶图如图所示(其中x 为数字0~9中的一个),分别去掉一个最高分和一个最低分,B A ,两位选手得分的平均数分别为b a ,,则一定有( )A .b a >B .b a <C .b a =D .b a ,的大小关系不能确定 【答案】B6.在△ABC-+AB =2, AC =1,E, F 为BC 的三等分点,则AE AF ⋅=( ) A .89 B .109 C .259 D .269【答案】B 【解析】-+AB AC ⊥,以AB AC ,所在直线分别为x 轴、y 轴建立平面直角坐标系,则()()()00,20,01A B C ,,,,于是4122,3333E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,4122,3333AE AF ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,,据此,8210999AE AF ⋅=+=,故选B .7.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )A .252 B .492C .12D .14 【答案】A8.执行如图所示的程序框图.若n=4,则输出S 的值是( )A .﹣23B .﹣5C .9D .11 【答案】D9.函数||cosxy ln x =的图象大致是( )【答案】C. 【解析】 试题分析:显然cos ln ||xy x =是偶函数,故排除A ,B ,又∵当01x <<时,cos 0x >,ln ||0x <, ∴0y <,故排除D ,故选C .10.P 为椭圆上任意一点,EF 为圆()22:14N x y -+=的任意一条直径,则PE PF ⋅的取值范围是( )(A )[]0,15 (B )[]5,15 (C )[]5,21 (D )()5,21 【答案】C二、填空题(每题5分,共20分)11.【解析】12.已知一个几何体的三视图如图所示,则该几何体的体积为.侧视图正视图【答案】7【解析】试题分析:由三视图可知该几何体是一个由棱长为2的正方体截去两个三棱锥1A A PQ-和11D PC D-后剩余的部分,如图所示,其中Q是棱11A B的中点,P是棱11A D的中点,所以该几何体的体积为1111811212273232V=-⨯⨯⨯⨯-⨯⨯⨯⨯=.BA1C1213. 已知直线2x+y+a=0与圆心为C的圆222450x y x y++--=相交于,A B两点,且AC BC⊥,则圆心的坐标为;实数a的值为.【答案】(-1,2);.14. 若函数)(xfy=满足bxafxaf2)()(=-++(其中,a b不同时为0),则称函数)(xfy=为“准奇函数”,称点),(ba为函数()f x的“中心点”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(每小题5分,共50分)1.已知集合{}20152016A x x =-≤<,}1B =<,则A B =( )A .(2015,2016)B .(]2015,2016C .[)2015,2016D .(2016,2015)-- 【答案】A 【解析】 试题分析:∵{}{}02016120152016B x x x x =≤-<=<≤,∴{}20152016AB x x =<<,选A.2.复数10i12i=- A. 42i -+ B. 42i - C. 24i - D. 24i + 【答案】A 【解析】解:因为10i 12i =-10(12)2(12)425i i i i i +=+=-+,因此选择A 3.在一次跳高比赛前,甲、乙两名运动员各试跳了一次.设命题p 表示“甲的试跳成绩超过2米”, 命题q 表示“乙的试跳成绩超过2米”,则命题p q ∨表示( ) A .甲、乙恰有一人的试跳成绩没有超过2米 B .甲、乙至少有一人的试跳成绩没有超过2米 C .甲、乙两人的试跳成绩都没有超过2米 D .甲、乙至少有一人的试跳成绩超过2米 【答案】D4.下面命题中错误的是A. 如果平面⊥α平面β,那么平面α内一定存在直线平行于平面β;B. 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β;C. 如果平面⊥α平面γ,平面⊥β平面γ,l =βα ,那么⊥l 平面γ;D. 如果平面⊥α平面β,那么平面α内所有直线都垂直于平面β. 【答案】D 【解析】A. 如果平面⊥α平面β,那么平面α内一定存在直线平行于平面β;只要平行与交线,可以得到.成立B. 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β;反证法可得成立。
C. 如果平面⊥α平面γ,平面⊥β平面γ,l =βα ,那么⊥l 平面γ;比如直三棱柱可以证明。
D. 如果平面⊥α平面β,那么平面α内所有直线都垂直于平面β,只有垂直于交线的直线才可以垂直于平面。
错误5.按照如图的程序运行,已知输入x 的值为22log 3+, 则输出y 的值为( )A. 7B. 11C. 12D. 24 【答案】D6.为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象( )A.向左平移6π个长度单位 B.向右平移6π个长度单位C.向左平移65π个长度单位D.向右平移65π个长度单位 【答案】C 【解析】试题分析:x y sin =即cos()2y x π=-,所以将函数x y sin =的图象向左平移65π个长度单位得到5cos()cos()263y x x πππ=-+=+,故选C 。
7.方程01lg =-xx 的解所在的区间为 )1,0( B.()2,1 C.()3,2 D.()4,3【答案】C8.已知双曲线的方程为22221(0,0)x y a b a b =>>-,过左焦点1F 的直线交双曲线的右支于点P,且y 轴平分线段1F P ,则双曲线的离心率为( )(A (B 1+ (C (D )2【答案】A 【解析】试题分析:∵过左焦点1F 所作直线l ,∴21F PF ∠=030,设直线l 和y 轴的交点为点E ,则点E 为1PF 的中点,在21F PF ∆中,OE 是中位线,∴OE ∥2PF ,∴2PF ⊥x 轴,则)ab c P 2,(,在21F PF ∆中,ee ac a c ac b 21233230tan 22220-=-===,解得3=e ,选A.9.已知点()M a b ,在直线3415x y +=A .2B .3C .415D .5 【答案】B 【解析】试题分析:由题意可得,3415a b +=,∵2222242540525393b b a b b b +=-+⎛⎫⎪⎭= +⎝-,根据二次函数的性质可得,当125b =时有最小值93,故选B . 10.已知函数()2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则2a ba +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦ B .1,23⎡⎫-⎪⎢⎣⎭ C.2,3⎛⎤-∞ ⎥⎝⎦ D .2,23⎡⎤-⎢⎥⎣⎦【答案】A二.填空题(每小题5分,共20分)11.某校对全校男女学生共1 600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是_______人 【答案】76012.已知B A ,是单位圆上的两点,O 为圆心,且 120=∠AOB ,MN 是圆O 的一条直径,点C 在圆内,且满足)()1(R OB OA OC ∈-+=λλλ,则CN CM ⋅的最小值为_____【答案】43- 【解析】试题分析:因为)()1(R OB OA OC ∈-+=λλλ,所以C 在线段AB 上,则()()CM CN CO OM CO ON ⋅=+⋅+2()CO CO OM ON OM ON =+⋅++⋅21CO =-,又1OA OB ==,120AOB ∠=︒,所以CO 的最小值为1cos 602OA ︒=,所以CM CN ⋅的最小值为213()124-=-. 13.若某几何体的三视图如右,该几何体的体积为2,则俯视图中的_____x =.【答案】2【解析】试题分析:由三视图可知,该几何体为四棱锥,高为2,底面为直角梯形面积()2121x S +=,因此()2212123131=+⋅⋅==x sh V ,解得 2=x .14.求“方程34155x x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭的解”有如下解题思路:设34()55x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则f (x )在R 上单调递减,,且f (2)=1,所以方程有唯一解x=2.类比上述解法,方程623(2)2x x x x +=+++的解为 .【答案】2x =或1x =-,三.解答题(每小题12分,共36分)15.已知函数3cos 32cos sin 2)(2-+=x x x x f ,R ∈x . (1)求函数)(x f 的最小正周期和单调递增区间; (2)在锐角三角形ABC 中,若1)(=A f ,2=⋅AC AB ,求△ABC 的面积.【答案】(1)⎥⎦⎤⎢⎣⎡+-12,125ππππk k (Z ∈k );(2. 【解析】 试题解析:(1)⎪⎭⎫ ⎝⎛+=+=-+=32sin 22cos 32sin )1cos 2(3cos sin 2)(2πx x x x x x x x f , (2分)所以,函数)(x f 的最小正周期为π. (1分)由223222πππππ+≤+≤-k x k (Z ∈k ), (2分)得12125ππππ+≤≤-k x k (Z ∈k ), (2分)所以,函数)(x f 的单调递增区间是⎥⎦⎤⎢⎣⎡+-12,125ππππk k (Z ∈k ). (1分) (2)由已知,132sin 2)(=⎪⎭⎫⎝⎛+=πA A f ,所以2132sin =⎪⎭⎫ ⎝⎛+πA , (1分)因为20π<<A ,所以34323πππ<+<A ,所以6532ππ=+A ,从而4π=A . (2分) 又2cos ||||=⋅⋅=⋅A AC AB AC AB ,,所以,2||||=⋅AC AB , (1分) 所以,△ABC 的面积2222221sin ||||21=⨯⨯=⋅⋅⋅=A AC AB S . (2分) 16.如图,在三棱柱111ABC A B C -中,已知11AB BB C C ⊥侧面,1AB BC ==,12BB =,13BCC π∠=.(1)求证:1C B ABC ⊥平面; (2)求点1B 到平面11ACC A 的距离.【答案】(1)详见解析;.(2)点1B 转化为点B ,1C ABC V -=………………8分1ACC S ∆=………………10分 又111C ABC B ACC V V --=所以点1B 到平面11ACC A ………………12分 17.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.【答案】(1)乙班平均身高高于甲班;(2)57.2;(3)25.(3)设身高为176 cm的同学被抽中的事件为A,从乙班10名同学中抽中两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173)共10个基本事件,而事件A含有4个基本事件,∴P(A)=421054′。