小学数学思维训练的八种类型

合集下载

小学数学思维训练的八种类型

小学数学思维训练的八种类型

小学数学思维训练的八种类型1.论证思维训练:通过分析问题,提出合理的论证和证明方法,帮助学生培养逻辑思维和推理能力。

例如,让学生证明数列的前n项和公式。

2.推理思维训练:通过观察和分析,找出规律,进行推理,解决问题。

例如,让学生推理填数题,找出满足条件的数字。

3.综合思维训练:通过综合运用多种解题方法和知识点,解决复杂的问题。

例如,让学生在解决长方体体积问题时,综合运用立方体体积公式和图形变换。

4.问题解决思维训练:通过提出有挑战性的问题,培养学生解决实际问题的能力。

例如,让学生计算购物所需金额,找零问题。

5.模型构建思维训练:通过将实际问题转化为数学模型,解决问题。

例如,让学生使用比例或百分数模型解决实际情境问题。

6.空间思维训练:通过观察和分析图形,培养学生的空间想象力和图形推理能力。

例如,让学生判断图形的对称性、平移和旋转关系。

7.抽象思维训练:通过引导学生进行抽象思维,找到问题本质,解决问题。

例如,让学生通过例子和模式发现数学规律,解决连等方程的问题。

8.创造性思维训练:通过启发学生的创造力,进行开放性的问题探究和解决。

例如,让学生设计一个数学游戏,激发学生的兴趣和想象力。

这些思维训练类型各有侧重点,通过指导学生进行不同类型的训练,可以全面提高学生的数学思维能力,培养学生的创新精神和解决问题的能力。

在实际教学中,教师可以根据不同年级和学生的实际情况,选择适合的类型进行训练,使学生更好地掌握数学知识并运用于实际。

同时,也要注重培养学生的数学思维习惯和方法,提高他们解决问题的自信心。

以上是对小学数学思维训练的八种类型的简要介绍,希望能对您有所帮助。

小学数学思维训练的八种类型

小学数学思维训练的八种类型

小学数学思维训练的八种类型1.求异型这是在同一来源中产生各种各样的为数众多的输出的分析性的思维形式,而教师可以引导学生从不同的方面探索问题的多种答案。

如16—10,可以启发学生用不同的叙述方式表述这道算式。

如①16减去10 等于几?②16减去10 还剩多少?③16与10 的差是多少?④10与什么数的和是16?⑤16比10 多多少?⑥10比16 少多少?⑦16减去什么数等于10?⑧10加上什么数等于16?这样,既使学生透彻理解了数量关系,又训练了口头表达能力,更重要的是锻炼了学生的思维能力。

其它如“一题多解”、“一题多变”等就不赘述了。

2.求同型这是一种进行综合、概括的思维形式。

如上例,教师亦可以用几种不同的叙述方法提出几个问题,让学生归纳出16—10 的算式来。

此外,还可以通过一些异中有同的习题来训练学生的抽象概括思维能力。

如:①甲乙两人接到加工54 只零件任务,甲每天加工10 只,乙每天加工8只,几天后完成任务?②一件工程,甲独做10 天完成,乙独做15 天完成,两人合作几天完成?像这些形异质同的问题,要引导学生自己总结出:工作总量÷工作效率=工作时间。

只有这样,学生才能以不变应万变,解一题会多题,可以起到减轻学生负担的作用。

3.递进型这是一种属于逻辑判断、推理的思维形式。

例如,教师在讲授“已知一个数的百分之几是多少,求这个数。

”一类题时,叮以引导学生用已掌握的“已知一个数几倍是多少,求这个数”的解题规律去进行逻辑推理,让学生自己发现新出现的百分数应用题的解题规律。

教师不要越俎代疱,否则吃力不讨好,反而妨碍了学生思维能力的提高。

4.逆反型这是一种敢于和善于突破习惯性思维束缚的反向思维形式。

在数学教学中,可供训练的材料比比皆是,如加减、乘除、通分约分、正反比例等,问题是教师如何善于运用它。

如教验算时,16-10=6,学生习惯地用16-6=10来验算,这时教师可启发学生用6+10=16 来验算。

小学数学的八大思维方法

小学数学的八大思维方法

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。

逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。

逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。

正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。

如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。

二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。

对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

例1 小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。

在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础。

小学数学八大思维方法

小学数学八大思维方法

小学数学八大思维方法1.分类思维:将问题中的对象、概念、现象按照其中一种特征或规则进行归类,进而发现问题的本质,找到问题的解题方法。

2.比较思维:将两个或多个对象或概念相互比较,找出其相同点和不同点,从中发现问题的规律和特点。

3.推理思维:根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

4.分析思维:将问题分解为几个小问题,逐步进行分析和解决。

通过分析每个小问题的解决过程,最终得出整个问题的解答。

5.逆向思维:从问题的结果出发,逆向推导出解决问题的方法和过程。

逆向思维常常能够突破传统思维的局限,找出解决问题的新途径。

6.归纳思维:从具体的事物、现象中归纳出一般的规律或结论。

通过对具体事物的观察和总结,总结出普遍规律,应用于解决类似的问题。

7.演绎思维:根据已有的规律或定理,运用逻辑关系进行推导和演绎。

从已知条件出发,通过演绎得出结论,运用于解决问题。

8.反证思维:采用假设反向地证明问题。

假设问题不成立,然后推导出矛盾的结论,从而得出问题的正向解答。

这八大思维方法在小学数学教学中都有着重要的应用和意义。

帮助学生培养和提高逻辑思维能力,激发对数学的兴趣,同时也促进他们解决实际问题的能力和创新能力的发展。

分类思维是指将问题中的对象、概念、现象按照其中一种特征或规则进行整合和归类。

通过将问题进行分组和分类,可以更加清晰地看到问题的本质和规律。

例如,当学生遇到类似于求面积或体积的问题时,可以根据几何形状的不同将问题按照圆、矩形、三角形等进行分类,然后应用相应的公式进行求解。

比较思维是将两个或多个对象或概念进行对比,找出其相同点和不同点。

通过比较,可以更好地理解问题的特点和规律。

例如,当学生学习数字大小比较时,可以通过比较数字的大小顺序,找出其中规律和特点。

推理思维是根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

通过推理,可以从已有的信息中推导出新的信息,进而解答问题。

小学数学的八大思维方法

小学数学的八大思维方法

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。

逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。

逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。

正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。

如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。

二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。

对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

例1 小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。

在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础。

小学数学八大思维方法

小学数学八大思维方法

合用标准小学数学八大思想方法目录一、逆向思想方法二、对应思想方法三、假设思想方法四、转变思想方法五、消元思想方法六、发散思想方法七、联想思想方法八、量不变思想方法一、逆向思想方法小学教材中的题目,多数是依照条件出现的先后序次进行顺向思想的。

逆向思想是不依照题目内条件出现的先后序次,而是从反方向(或从结果)出发而进行逆转推理的一种思想方式。

逆向思想与顺向思想是训练的最主要形式,也是思想形式上的一对矛盾,正确地进行逆向思想,对开拓应用题的解题思路,促进思想的灵便性,都会收到积极的收效,解:这是一道典型的“还原法”问题,若是用顺向思想的方法,将难以解答。

正确的解题思路就是用逆向思想的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

列式计算为:此题若是依照顺向思想来考虑,要依照归一的思路,先找出磨 1 吨面粉序是一致的。

若是从逆向思想的角度来解析,能够形成别的两种解法:①不着眼于先求 1 吨面粉需要多少吨小麦,而着眼于 1 吨小麦可磨多少列式计算为:由此,可得出以下算式:答:(同上)掌握逆向思想的方法,遇到问题能够进行正、反两个方面的思虑,在开拓思路的同时,也促进了逻辑思想能力的发展。

二、对应思想方法对应思想是一种重要的数学思想,也是现代数学思想的主要内容之一。

对应思想包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

例 1 小红有 7 个三角,小明有 5 个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5 个三角,而没有虚线的2 个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必定先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。

数学的八大思维方法

数学的八大思维方法

数学的八大思维方法1.抽象思维:抽象思维是数学思维中最基本的方法之一、它通过提取问题中的关键信息,忽略不重要的细节,从而将问题简化为更易解决的形式。

抽象思维能够帮助我们更好地理解问题的本质和结构,从而找到解决问题的途径。

2.归纳思维:归纳思维是从个别案例中发现普遍规律的一种方法。

通过观察和分析不同的案例,我们可以总结出普遍的模式和规律。

归纳思维可以帮助我们发现问题的内在规律,从而更好地解决问题。

3.演绎思维:演绎思维是由普遍规律推导出特殊结论的一种方法。

它通过逻辑推理和规则运算,从已知的真实前提得出新的结论。

演绎思维可以帮助我们分析和解决复杂的问题,推理出正确的结论。

4.反证思维:反证思维是通过假设问题的对立面,推导出与已知矛盾的结果,从而得出原命题的真实性的一种方法。

反证思维可以帮助我们证明数学命题的真实性和正确性。

5.直觉思维:直觉思维是基于个人经验和感觉,快速判断和解决问题的一种方法。

虽然直觉思维不一定完全准确,但在一些情况下,它可以帮助我们迅速找到问题的关键点和解决途径。

6.形象思维:形象思维是通过图像、图表和几何模型等直观感知的方式来理解和解决问题的一种方法。

形象思维可以帮助我们将抽象的数学概念和问题转化为具体可见的形式,从而更好地理解和解决问题。

7.系统思维:系统思维是从整体观察和分析问题的一种方法。

它强调问题的各个部分之间的相互关系和相互作用,通过分析整体系统的特征和规律,来理解和解决问题。

8.创新思维:创新思维是通过改变和突破传统思维模式,大胆提出新观点和新方法的一种方法。

创新思维可以帮助我们在解决问题中挖掘新的思路和思维方式,从而创造性地解决问题。

这八大思维方法相互之间存在交叉和互补关系。

在实际问题解决中,我们可以根据具体情况灵活运用这些思维方法,以便更好地理解和解决问题。

通过培养和运用这些思维方法,我们可以提高数学思维能力,培养创造性和解决问题的能力,并在数学学习和应用中取得更好的成绩和效果。

小学数学八大思维方法(课件)

小学数学八大思维方法(课件)

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。

逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。

...文档交流仅供参考...逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,...文档交流仅供参考...解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。

正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

...文档交流仅供参考...列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。

如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。

...文档交流仅供参考...二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。

对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

...文档交流仅供参考...例1小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学思维训练的八种类型
1.求异型
这是在同一来源中产生各种各样的为数众多的输出的分析性的思维形式,而教师可以引导学生从不同的方面探索问题的多种答案。

如16—10,可以启发学生用不同的叙述方式表述这道算式。

如①16减去10 等于几?②16减去10 还剩多少?③16与10 的差是多少?④10与什么数的和是16?⑤16比10 多多少?⑥10比16 少多少?⑦16减去什么数等于10?⑧10加上什么数等于16?这样,既使学生透彻理解了数量关系,又训练了口头表达能力,更重要的是锻炼了学生的思维能力。

其它如“一题多解”、“一题多变”等就不赘述了。

2.求同型
这是一种进行综合、概括的思维形式。

如上例,教师亦可以用几种不同的叙述方法提出几个问题,让学生归纳出16—10 的算式来。

此外,还可以通过一些异中有同的习题来训练学生的抽象概括思维能力。

如:
①甲乙两人接到加工54 只零件任务,甲每天加工10 只,乙每天加工8只,几天后完成任务?
②一件工程,甲独做10 天完成,乙独做15 天完成,两人合作几天完成?
像这些形异质同的问题,要引导学生自己总结出:工作总量÷工作效率=工作时间。

只有这样,学生才能以不变应万变,解一题会多题,可以起到减轻学生负担的作用。

3.递进型
这是一种属于逻辑判断、推理的思维形式。

例如,教师在讲授“已知一个数的百分之几是多少,求这个数。

”一类题时,叮以引导学生用已掌握的“已知一个数几倍是多少,求这个数”的解题规律去进行逻辑推理,让学生自己发现新出现的百分数应用题的解题规律。

教师不要越俎代疱,
否则吃力不讨好,反而妨碍了学生思维能力的提高。

4.逆反型
这是一种敢于和善于突破习惯性思维束缚的反向思维形式。

在数学教学中,可供训练的材料比比皆是,如加减、乘除、通分约分、正反比例等,问题是教师如何善于运用它。

如教验算时,16-10=6,学生习惯地用16-6=10来验算,这时教师可启发学生用6+10=16 来验算。

经过训练,学生便可知道用加法验算减法、用减法验算加法、用乘法验算除法、用除法验算乘法了。

5.激化型
这是一种跳跃性、活泼性、转移性很强的思维形式。

教师可通过速问速答来训练练学生。

如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15。

教师又问:3 个5 相乘是多少?学生答:5×5×5=125。

紧接着问:3 与5 相乘是多少?学上答:3×5=15,或5×3=15。

通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确。

6.类比型
这是一种对并列事物相似性的个同实质进行识别的思维形式。

这项训练可以培养学生思维的准确性。

如:
①金湖粮店运来大米6吨。

比运来的面粉少1/4吨、运来面粉多少吨?
②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?
以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。

通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。

7.转化型
这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。

在教学中,通过该项训练,可以大幅度地提高学生解题能力。

如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。

照这样卖法,4 人买了后,筐中鱼
尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。

即使基础较好的学生也只能复杂的方程。

但经过转化思维训练后,学生就变得聪明起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。

8.系统型
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。

在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。

如:
1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。

象这道题就牵涉到系统思维的训练。

教师可引导学生把10 个数看成一个系统,从不同的层次去考虑、第一层次:找100 的最接近数,即89 比100 仅少11。

第二个层次:找11 的最接近数,很明显是前面的12。

第三个层次:解决多l 的问题。

整个程序如下:12+3+4+5-6-7+89=100
经过像这样的训练,学生就会触类旁通,碰到难题就能产生新的思路和设想。

以上思维训练的八种类型,在使用时,可因人而异,因时而异。

教师不必拘泥于每一节课都面面俱到,可以因教学对象、教学内容的不同而灵活运用。

相关文档
最新文档