国开(电大)数据结构课程实验报告2

合集下载

国家开放大学《数据结构》课程实验报告(实验2——线性表)参考答案

国家开放大学《数据结构》课程实验报告(实验2——线性表)参考答案
while(p!=NULL)
{
output(p);
p=p->next;
}
printf("\n");
}
//输出最高分及最低分评委信息,删除最高分及最低分结点并计算参赛者的最后平均分
void calc(NODE *head)
{
NODE *q,*p,*pmin,*pmax;
float sum=0; //总分





指导教师 日期
printf("\n");
//在链表中删除最高分和最低分结点
for(q=head,p=head->next;p!=NULL;q=p,p=p->next)
{
if(p==pmin) { q->next=p->next; p=q; } //删除最低分结点
if(p==pmax) { q->next=p->next; p=q; } //删除最高分结点
p=p->next;
}
//输出最高分及最低分评委信息
printf("给出最高分的评委姓名:%6s年龄:%d评分:%6.2f\n",pmax->,pmax->data.age,pmax->data.score);
printf("给出最低分的评委姓名:%6s年龄:%d评分:%6.2f\n",pmin->,pmin->data.age,pmin->data.score);
float ave=0; //平均分
//查找最高分和最低分并计算总分
p=head->next;
pmin=pmax=p;

数据结构实验报告_实验报告_

数据结构实验报告_实验报告_

数据结构实验报告想必学计算机专业的同学都知道数据结构是一门比较重要的课程,那么,下面是小编给大家整理收集的数据结构实验报告,供大家阅读参考。

数据结构实验报告1一、实验目的及要求1)掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们。

本实验训练的要点是“栈”和“队列”的观点;二、实验内容1) 利用栈,实现数制转换。

2) 利用栈,实现任一个表达式中的语法检查(选做)。

3) 编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列);三、实验流程、操作步骤或核心代码、算法片段顺序栈:Status InitStack(SqStack &S){S.base=(ElemType*)malloc(STACK_INIT_SIZE*sizeof(ElemTyp e));if(!S.base)return ERROR;S.top=S.base;S.stacksize=STACK_INIT_SIZE;return OK;}Status DestoryStack(SqStack &S){free(S.base);return OK;}Status ClearStack(SqStack &S){S.top=S.base;return OK;}Status StackEmpty(SqStack S){if(S.base==S.top)return OK;return ERROR;}int StackLength(SqStack S){return S.top-S.base;}Status GetTop(SqStack S,ElemType &e){if(S.top-S.base>=S.stacksize){S.base=(ElemType*)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemTyp e));if(!S.base) return ERROR;S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top++=e;return OK;Status Push(SqStack &S,ElemType e){if(S.top-S.base>=S.stacksize){S.base=(ElemType*)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemTyp e));if(!S.base)return ERROR;S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top++=e;return OK;}Status Pop(SqStack &S,ElemType &e){if(S.top==S.base)return ERROR;e=*--S.top;return OK;}Status StackTraverse(SqStack S){ElemType *p;p=(ElemType *)malloc(sizeof(ElemType));if(!p) return ERROR;p=S.top;while(p!=S.base)//S.top上面一个...p--;printf("%d ",*p);}return OK;}Status Compare(SqStack &S){int flag,TURE=OK,FALSE=ERROR; ElemType e,x;InitStack(S);flag=OK;printf("请输入要进栈或出栈的元素:"); while((x= getchar)!='#'&&flag) {switch (x){case '(':case '[':case '{':if(Push(S,x)==OK)printf("括号匹配成功!\n\n"); break;case ')':if(Pop(S,e)==ERROR || e!='('){printf("没有满足条件\n");flag=FALSE;}break;case ']':if ( Pop(S,e)==ERROR || e!='[')flag=FALSE;break;case '}':if ( Pop(S,e)==ERROR || e!='{')flag=FALSE;break;}}if (flag && x=='#' && StackEmpty(S)) return OK;elsereturn ERROR;}链队列:Status InitQueue(LinkQueue &Q) {Q.front =Q.rear=(QueuePtr)malloc(sizeof(QNode));if (!Q.front) return ERROR;Q.front->next = NULL;return OK;}Status DestoryQueue(LinkQueue &Q) {while(Q.front){Q.rear=Q.front->next;free(Q.front);Q.front=Q.rear;}return OK;}Status QueueEmpty(LinkQueue &Q){if(Q.front->next==NULL)return OK;return ERROR;}Status QueueLength(LinkQueue Q){int i=0;QueuePtr p,q;p=Q.front;while(p->next){i++;p=Q.front;q=p->next;p=q;}return i;}Status GetHead(LinkQueue Q,ElemType &e) {QueuePtr p;p=Q.front->next;if(!p)return ERROR;e=p->data;return e;}Status ClearQueue(LinkQueue &Q){QueuePtr p;while(Q.front->next ){p=Q.front->next;free(Q.front);Q.front=p;}Q.front->next=NULL;Q.rear->next=NULL;return OK;}Status EnQueue(LinkQueue &Q,ElemType e) {QueuePtr p;p=(QueuePtr)malloc(sizeof (QNode));if(!p)return ERROR;p->data=e;p->next=NULL;Q.rear->next = p;Q.rear=p; //p->next 为空return OK;}Status DeQueue(LinkQueue &Q,ElemType &e) {QueuePtr p;if (Q.front == Q.rear)return ERROR;p = Q.front->next;e = p->data;Q.front->next = p->next;if (Q.rear == p)Q.rear = Q.front; //只有一个元素时(不存在指向尾指针) free (p);return OK;}Status QueueTraverse(LinkQueue Q){QueuePtr p,q;if( QueueEmpty(Q)==OK){printf("这是一个空队列!\n");return ERROR;}p=Q.front->next;while(p){q=p;printf("%d<-\n",q->data);q=p->next;p=q;}return OK;}循环队列:Status InitQueue(SqQueue &Q){Q.base=(QElemType*)malloc(MAXQSIZE*sizeof(QElemType)); if(!Q.base)exit(OWERFLOW);Q.front=Q.rear=0;return OK;}Status EnQueue(SqQueue &Q,QElemType e){if((Q.rear+1)%MAXQSIZE==Q.front)return ERROR;Q.base[Q.rear]=e;Q.rear=(Q.rear+1)%MAXQSIZE;return OK;}Status DeQueue(SqQueue &Q,QElemType &e){if(Q.front==Q.rear)return ERROR;e=Q.base[Q.front];Q.front=(Q.front+1)%MAXQSIZE;return OK;}int QueueLength(SqQueue Q){return(Q.rear-Q.front+MAXQSIZE)%MAXQSIZE;}Status DestoryQueue(SqQueue &Q){free(Q.base);return OK;}Status QueueEmpty(SqQueue Q) //判空{if(Q.front ==Q.rear)return OK;return ERROR;}Status QueueTraverse(SqQueue Q){if(Q.front==Q.rear)printf("这是一个空队列!");while(Q.front%MAXQSIZE!=Q.rear){printf("%d<- ",Q.base[Q.front]);Q.front++;}return OK;}数据结构实验报告2一.实验内容:实现哈夫曼编码的生成算法。

数据结构实验2报告总结

数据结构实验2报告总结

一实验目的和要求理解二叉树的基本概念,熟练使用多种表示法构造二叉树,掌握采用二叉链表存储结构实现二叉树的构造、遍历、插入、删除等操作算法;理解线索二叉树的作用,掌握获得线索二叉树节点在指定遍历次序下的前驱或后继结点的方法;理解哈弗曼编码和哈弗曼树的作用,掌握由指定文本求得哈弗曼编码的方法。

理解树的基本概念,熟悉树的多种存储结构,掌握采用孩子兄弟链表存储结构实现树的遍历、插入、删除等操作算法。

通过研究树和二叉树,深刻理解链式存储结构用于表达非线性结构的作用,掌握采用递归算法实现递归数据结构基本操作的设计方法。

二题目及题意分析题目:插入x元素作为p结点的第i个孩子分析:以中国城市作为元素,以插入孩子结点的方式构造一棵树,找到结点p,p不为空时,若p的孩子结点为空,则直接插入x元素作为p的孩子;若p的孩子结点不为空,插入的x元素的位置n小于等于1时,将x元素直接插在最前面;若n大于1时,查找插入的位置执行插入。

三设计方案和功能说明源程序如下:TreeNode.htemplate<class T>class TreeNode //数的孩子兄弟链表结点类{public: //数据域,保存元素T data;TreeNode<T>* child,*sibling; //指针域,分别指向孩子兄弟结点TreeNode<T>(T data,TreeNode<T>*child=NULL,TreeNode<T>*sibling=NULL){this->data=data;this->child=child;this->sibling=sibling;}};Tree.h#include<iostream.h>#include"TreeNode.h" //树的孩子兄弟链表节点类template<class T>class Tree //树类{public:TreeNode<T>*root; //指向根结点Tree(); //构造空树bool isEmpty();//判断是否空树TreeNode<T>* insertChild(TreeNode<T>*p,T value); // 插入value作为结点p的孩子TreeNode<T>* insertChild(TreeNode<T>*p,T x,int i);// 插入x元素作为p结点的第i 个孩子friend ostream&operator<<(ostream&out,Tree<T>&tree);//先根次序遍历树并以树的横向凹入表示法输出树void preOrder(TreeNode<T> *p,int i);};template<class T>Tree<T>::Tree() //构造空树{root=NULL;}template<class T>bool Tree<T>::isEmpty()//判断是否空树{return root==NULL;}template<class T>TreeNode<T>* Tree<T>::insertChild(TreeNode<T>*p,T value) //插入value作为结点p的孩子{TreeNode<T>*q=NULL;if(p!=NULL){q=new TreeNode<T> (value);if(p->child==NULL)p->child=q;else{p=p->child;while(p->sibling!=NULL)p=p->sibling;p->sibling=q;}}return q;}template<class T>TreeNode<T>*Tree<T>::insertChild(TreeNode<T>* p,T x,int i)// 插入x元素作为p结点的第i 个孩子{TreeNode<T>*q=NULL;if(p!=NULL){q=new TreeNode<T>(x);if(p->child==NULL)p->child=q;else{{if(i<=1)//带有容错功能{p->child=new TreeNode<T>(x,NULL,p->child);return p->child;}p=p->child;for(int j=1;p->sibling!=NULL&&j<i-1;j++)p=p->sibling;if( p->sibling==NULL)p->sibling=q;elsep->sibling=new TreeNode<T>(x,NULL,p->sibling);}}}return q;}template<class T>void Tree<T>::preOrder(TreeNode<T> *p,int i){if(p!=NULL){for(int j=0;j<i;j++)cout<<"\t";cout<<p->data<<endl;preOrder(p->child,i+1);preOrder(p->sibling,i);}}template<class T>ostream&operator<<(ostream&out,Tree<T> &tree)//先根次序遍历树并以树的横向凹入表示法输出树{tree.preOrder(tree.root,0);return out;}Main.cpp#include "Tree.h"TreeNode<char*>*aa;void make(Tree<char*>&tree){tree.root=new TreeNode<char*>("中国");tree.insertChild(tree.root,"北京");tree.insertChild(tree.root,"上海");TreeNode<char*>*js=tree.insertChild(tree.root,"江苏省");tree.insertChild(js,"南京市");tree.insertChild(js,"苏州市");TreeNode<char*> *zj=tree.insertChild(tree.root,"浙江省");tree.insertChild(zj,"杭州市");tree.insertChild(zj,"宁波市");TreeNode<char*> *sx=tree.insertChild(tree.root,"山西省");tree.insertChild(sx,"太原市");tree.insertChild(sx,"大同市");aa=zj;}int main(){Tree<char*>tree;make(tree);cout<<tree;tree.insertChild(aa,"无锡市",2);cout<<tree;return 0;}四运行结果及分析1插入位置小于等于1(即n<=1)n=-2时n=0时n=1时2插入位置大于1(即n>1)n=2时五实验总结通过实验理解了树及二叉树的存储结构熟悉掌握了孩子兄弟链表的存储结构实现,以及遍历、查找、删除等操作,深刻理解实现链式存储结构表达非线性的树存储结构。

数据结构实验报告2

数据结构实验报告2

数据结构实验报告2数据结构实验报告21、实验目的本次实验的目的是通过使用数据结构来解决一个特定的问题。

具体而言,我们将会使用某种数据结构(例如链表、堆栈、队列等)来实现一个特定功能,并对其性能进行评估。

2、实验背景在本次实验中,我们将会探索数据结构在解决实际问题中的应用。

数据结构是计算机科学的重要组成部分,它提供了一种组织和管理数据的方式,以便能够高效地访问和操作这些数据。

3、实验内容在本次实验中,我们选择了一种经典的数据结构,以实现一个特定的功能。

具体而言,我们将会使用链表来实现一个简单的联系人管理系统。

3.1 数据结构选择我们选择了链表作为联系人管理系统的数据结构。

链表是一种灵活的数据结构,它能够动态地增加或删除元素,并且支持高效的插入和删除操作。

3.2 实现功能我们的联系人管理系统将会具有以下功能:- 添加联系人:用户可以输入联系人的姓名、方式号码等信息,并将其添加到联系人列表中。

- 删除联系人:用户可以选择要删除的联系人,并从列表中删除该联系人。

- 查找联系人:用户可以根据姓名或方式号码来查找联系人,并显示相关信息。

- 显示所有联系人:系统将会将所有联系人按照姓名的字母顺序进行排序,并将其显示在屏幕上。

4、实验步骤下面是本次实验的具体步骤:4.1 初始化联系人管理系统在系统开始之前,我们需要初始化联系人管理系统。

这包括创建一个空的联系人列表,并提供用户菜单来选择相应功能。

4.2 添加联系人用户可以选择添加联系人的功能,并输入联系人的相关信息。

系统将会将联系人添加到联系人列表中。

4.3 删除联系人用户可以选择删除联系人的功能,并输入要删除联系人的姓名或方式号码。

系统将会在联系人列表中查找并删除相应联系人。

4.4 查找联系人用户可以选择查找联系人的功能,并输入要查找联系人的姓名或方式号码。

系统将会在联系人列表中查找相应联系人,并显示其相关信息。

4.5 显示所有联系人用户可以选择显示所有联系人的功能。

数据结构实验报告2

数据结构实验报告2

数据结构实验报告2一、实验目的本次数据结构实验旨在通过实际操作和编程实践,深入理解和掌握常见的数据结构,如链表、栈、队列、树等,并能够运用所学知识解决实际问题,提高编程能力和算法设计能力。

二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。

三、实验内容(一)链表的实现与操作1、单向链表的创建首先,定义了链表节点的结构体,包含数据域和指向下一个节点的指针域。

然后,通过函数实现了单向链表的创建,从用户输入获取节点的数据,依次创建新节点并连接起来。

2、链表的遍历编写函数实现对单向链表的遍历,依次输出每个节点的数据。

3、链表的插入与删除实现了在指定位置插入节点和删除指定节点的功能。

插入操作时,需要找到插入位置的前一个节点,修改指针完成插入。

删除操作时,同样找到要删除节点的前一个节点,修改指针并释放删除节点的内存。

(二)栈的实现与应用1、栈的基本操作使用数组实现了栈的数据结构,包括入栈、出栈、判断栈空和获取栈顶元素等操作。

2、表达式求值利用栈来实现表达式求值的功能。

将表达式中的数字和运算符分别入栈,按照运算规则进行计算。

(三)队列的实现与应用1、队列的基本操作使用循环数组实现了队列,包括入队、出队、判断队空和队满等操作。

2、模拟银行排队系统通过创建队列来模拟银行客户的排队情况,实现客户的入队和出队操作,统计平均等待时间等。

(四)二叉树的遍历1、二叉树的创建采用递归的方式创建二叉树,用户输入节点数据,构建二叉树的结构。

2、先序、中序和后序遍历分别实现了二叉树的先序遍历、中序遍历和后序遍历,并输出遍历结果。

四、实验结果与分析(一)链表实验结果成功创建、遍历、插入和删除单向链表。

通过对链表的操作,深入理解了链表的动态存储特性和指针的运用。

在插入和删除操作中,能够正确处理指针的修改和内存的释放,避免了内存泄漏和指针错误。

(二)栈实验结果栈的基本操作运行正常,能够正确实现入栈、出栈等功能。

数据结构实验报告2篇

数据结构实验报告2篇

数据结构实验报告数据结构实验报告精选2篇(一)实验目的:1. 熟悉数据结构的基本概念和基本操作;2. 掌握线性表、栈、队列、链表等经典数据结构的实现方法;3. 掌握数据结构在实际问题中的应用。

实验内容:本次实验主要包括以下几个部分:1. 线性表的实现方法,包括顺序表和链表,分别使用数组和链表来实现线性表的基本操作;2. 栈的实现方法,包括顺序栈和链式栈,分别使用数组和链表来实现栈的基本操作;3. 队列的实现方法,包括顺序队列和链式队列,分别使用数组和链表来实现队列的基本操作;4. 链表的实现方法,包括单链表、双链表和循环链表,分别使用指针链、双向链和循环链来实现链表的基本操作;5. 综合应用,使用各种数据结构来解决实际问题,例如使用栈来实现括号匹配、使用队列来实现马铃薯游戏等。

实验步骤及结果:1. 线性表的实现方法:a) 顺序表的基本操作:创建表、插入元素、删除元素、查找元素等;b) 链表的基本操作:插入节点、删除节点、查找节点等;c) 比较顺序表和链表的优缺点,分析适用场景。

结果:通过实验,确认了顺序表适用于频繁查找元素的情况,而链表适用于频繁插入和删除节点的情况。

2. 栈的实现方法:a) 顺序栈的基本操作:进栈、出栈、判空、判满等;b) 链式栈的基本操作:进栈、出栈、判空、判满等。

结果:通过实验,掌握了栈的基本操作,并了解了栈的特性和应用场景,例如括号匹配。

3. 队列的实现方法:a) 顺序队列的基本操作:入队、出队、判空、判满等;b) 链式队列的基本操作:入队、出队、判空、判满等。

结果:通过实验,掌握了队列的基本操作,并了解了队列的特性和应用场景,例如马铃薯游戏。

4. 链表的实现方法:a) 单链表的基本操作:插入节点、删除节点、查找节点等;b) 双链表的基本操作:插入节点、删除节点、查找节点等;c) 循环链表的基本操作:插入节点、删除节点、查找节点等。

结果:通过实验,掌握了链表的基本操作,并了解了链表的特性和应用场景。

数据结构实验报告

数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。

具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。

2、理解栈和队列的特性,并能够实现其基本操作。

3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。

4、学会使用图的数据结构,并实现图的遍历和相关算法。

二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。

三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。

实现顺序表的初始化、插入、删除和查找操作。

2、链表的实现定义链表的节点结构,包含数据域和指针域。

实现链表的创建、插入、删除和查找操作。

(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。

实现栈的入栈、出栈和栈顶元素获取操作。

2、队列的实现采用循环队列的方式实现队列的数据结构。

完成队列的入队、出队和队头队尾元素获取操作。

(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。

2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。

3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。

(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。

2、图的遍历实现深度优先遍历和广度优先遍历算法。

四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。

删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。

2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。

(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。

入栈和出栈操作的时间复杂度均为 O(1)。

2、队列队列的特点是先进先出,常用于排队、任务调度等场景。

数据结构第二章实验报告

数据结构第二章实验报告

数据结构第二章实验报告一、实验目的数据结构第二章主要涉及线性表的相关知识,本次实验的目的在于通过实际操作和编程实现,深入理解线性表的概念、存储结构以及基本操作,巩固所学的理论知识,并提高编程能力和问题解决能力。

二、实验环境本次实验使用的编程语言为C++,编程环境为Visual Studio 2019。

三、实验内容(一)顺序表的实现顺序表是一种用顺序存储方式实现的线性表。

在实验中,我们定义了一个结构体来表示顺序表,包括存储数据的数组和表示表长度的变量。

实现了顺序表的初始化、插入、删除、查找等基本操作。

(二)链表的实现链表是一种通过指针链接实现的线性表。

我们分别实现了单向链表和双向链表。

在单向链表中,每个节点包含数据和指向下一个节点的指针;双向链表则在此基础上增加了指向前一个节点的指针,使得链表的操作更加灵活。

(三)线性表的应用运用实现的线性表解决了一些实际问题,如数据排序、查找特定元素等。

四、实验步骤(一)顺序表的实现步骤1、定义顺序表结构体,包括数据数组和长度变量。

2、实现顺序表的初始化函数,将长度初始化为 0。

3、插入操作:首先判断表是否已满,如果未满,在指定位置插入元素,并将后续元素后移。

4、删除操作:首先判断指定位置是否合法,然后将该位置元素删除,并将后续元素前移。

5、查找操作:遍历表中的元素,找到目标元素返回其位置,否则返回-1。

(二)链表的实现步骤1、单向链表定义单向链表节点结构体,包含数据和指向下一个节点的指针。

实现链表的初始化函数,创建头节点。

插入操作:分为头插法和尾插法,根据插入位置的不同选择相应的方法。

删除操作:找到要删除的节点,将其前后节点连接起来,释放删除节点的内存。

查找操作:遍历链表,找到目标元素返回节点指针,否则返回NULL。

2、双向链表定义双向链表节点结构体,包含数据、指向前一个节点和指向下一个节点的指针。

初始化函数与单向链表类似,但需要同时处理前后指针。

插入和删除操作:在单向链表的基础上,同时更新前后节点的指针。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
switch(*cmp(a,b)){ //a,b分别为pa,pb所指结点的指数
case -1:pc=pa;pa=pa->next; break; //a<b
case 0: {sum=pa->coef+pb->coef;
if (sum<>0){pa->coef=sum;pc=pa;}
else{pc->next=pa->next;free(pa);}
pa=pc->next;u=pb;pb=pb->next;free(u);
break;} //a=b
case 1: {u=pb->next;pb->next=pa;pc->next=pb;
pc=pb;pb=u; break;} //a>b
} //switch}//while
if(pb) {pc->next=pb; } free(lb); }
实验结果:




实验的心得体会:
一元多项式的相加运用的是有序链表来实现其功能的,在编程过程中,抽象数据类型Polynomial的实现是重要的一部分,用去很长时间。编程最重要的是运行程序和调试程序的过程。编写程序时要特别注意数据类型的定义。






指导教师 日期
typedefOrderedLinkList polynomial;
//用带表头结点的有序链表表示多项式
结点的数据元素类型定义为:
typedef struct polynomialnode { //项的表示
float coef; //系数
int expn; //指数
struct polynomialnode *next;
} polynomialnode, *polynomial ;
void addpolyn (polynomial &la, polynomial &lb){
pa=la->next;pb=lb->next;pc=la;//pa,pb分别指向la,lb的第一个结点
while (pa&&pb) {a=pa->expn;b=pb->expn;
数据结构课程实验报告
学生姓名
李曼竹
学 号
1915001215085
班 级
指导老师
实验名称
实验2线性表
实验成绩
实验报告




实验目的及要求:
掌握线性表的基本操作如线性表的初始化、查找、插入、删除等,以及线性表的存储结构的运用,并利用线性表实现一元多项式的相加。



容实验设计思路、步骤和源自法等:通过对线性表的基本操作,对线性表进行初始化,用带表头结点的有序链表表示多项式,通过一系列线性表的基本操作实现一元多项式相加。设p,q分别指向A,B中某一结点,p,q初值是第一结点,比较p->exp与q->exp,p->exp < q->exp: p结点是结果多项式中的一项,p后移,q不动;p->exp > q->exp: q结点是结果多项式中的一项,将q插在p之前,q后移,p不动;p->exp = q->exp:系数相加,直到p或q为NULL。
相关文档
最新文档