掺铒光纤放大器

合集下载

掺铒光纤放大器

掺铒光纤放大器
一般地,在热平衡条件下,受激辐射所占比 率很小,主要是自发辐射。
共五十七页
三能级 、四能级 系统 (néngjí)
(néngjí)
共五十七页
放大(fàngdà)的自发辐射(ASE)
Amplified Spontaneous Emission
ASE是一种由自发辐射诱发的受激辐射占主导的过程,没
有正反馈的光振荡(无谐振腔), 属相干辐射。其特性介于激光
共五十七页
自发辐射(zì fā fú shè)
自发辐射:高能级的原子自发地从高能级E2向低能级E1跃迁,
同时(tóngshí)放出能量为
h E2 的 光E1子。
自发辐射
共五十七页
自发辐射 的 (zì fā fú shè) 特点
处于高能级的粒子都是自发地、独立的进行( jìnxíng)跃迁;
在1525-1565nm为较宽的发射峰。
可同时放大(fàngdà)多个波长即信道,在WDM系统中,可作为放大
(fàngdà)器使用。
共五十七页
工作 原理 EDFA
(gōngzuò)
980 nm
N3~0 τ~1μs
4I11 / 2 激发态
N2 τ ~10 ms
4I13 / 2 亚稳态
1480 nm
信号光
掺铒光纤放大器
共五十七页
主要 内容: (zhǔyào)
掺铒光纤放大器(EDFA)概述
光放大原理(yuánlǐ)概述
掺铒光纤放大器的工作特性
掺铒光纤放大器中的关键技术
共五十七页
掺铒光纤放大器概述(ɡài shù)
共五十七页
光放大器的类型(lèixíng)
半导体光放大器(SOA)
稀土掺杂光纤放大器(掺铒 EDFA、 掺镨 PDFA、掺铥 TDFA)

简述光放大器的分类

简述光放大器的分类

简述光放大器的分类光放大器是一种能将输入的光信号放大的器件,常用于光通信、光传感和光储存等领域。

根据工作原理和材料特性的不同,光放大器可以分为几类。

一、掺铒光纤放大器掺铒光纤放大器(Erbium-Doped Fiber Amplifier,简称EDFA)是一种广泛应用于光通信系统的光放大器。

它是利用掺铒光纤中的铒离子实现光信号的放大。

当外界光信号通过掺铒光纤时,铒离子会吸收光信号的能量并将其转化为铒离子的激发态能级。

然后,光信号经过受激辐射的过程,产生与输入信号频率相同的放大信号。

掺铒光纤放大器具有较宽的放大带宽和较高的增益,适用于长距离、高速、大容量的光通信系统。

二、掺铒光纤拉曼放大器掺铒光纤拉曼放大器(Erbium-Doped Fiber Raman Amplifier,简称EDFRA)是一种利用拉曼散射效应实现光信号放大的器件。

它通过将输入的光信号与掺铒光纤中的光子相互作用,产生拉曼散射效应,从而实现光信号的放大。

掺铒光纤拉曼放大器具有宽波长范围和较低的噪声指数,适用于光通信系统中的波分复用和波分多址技术。

三、掺铥光纤放大器掺铥光纤放大器(Thulium-Doped Fiber Amplifier,简称TDFA)是一种利用掺铥光纤中的铥离子实现光信号放大的器件。

掺铥光纤放大器工作于1.45μm至1.6μm波长范围,适用于光通信系统的长距离传输和中远距离无线信号传输。

四、掺镱光纤放大器掺镱光纤放大器(Ytterbium-Doped Fiber Amplifier,简称YDFA)是一种利用掺镱光纤中的镱离子实现光信号放大的器件。

掺镱光纤放大器工作于1μm波长范围,具有高增益、高饱和输出功率和高效率的特点,适用于光通信系统中的光纤放大和激光器的增益模式锁定。

五、半导体光放大器半导体光放大器(Semiconductor Optical Amplifier,简称SOA)是一种利用半导体材料中的激子效应实现光信号放大的器件。

实验掺铒光纤放大器EDFA的性能测试

实验掺铒光纤放大器EDFA的性能测试
● 目的:了解EDFA的性能指标,为实际应用提供参考依据
● 实验步骤: a. 调整输入光功率,使其逐渐增大并记录EDFA的输出光功率 b. 当EDFA出现明显非线性 失真时,记录此时的输入光功率作为最大输入光功率 c. 减小输入光功率,直到EDFA无输出,记录此 时的输入光功率作为最小输入光功率
● a. 调整输入光功率,使其逐渐增大并记录EDFA的输出光功率 ● b. 当EDFA出现明显非线性失真时,记录此时的输入光功率作为最大输入光功率 ● c. 减小输入光功率,直到EDFA无输出,记录此时的输入光功率作为最小输入光功率
实验掺铒光纤放大器 EDFA的性能测试
汇报人:XX
目录
实验目的 实验设备 实验步骤
01 实验结果分析 04
02 结论总结 05
03
实验目的
了解EDFA的工作原理
实验目的:探究掺铒光纤放大器EDFA的工作原理 实验原理:利用掺铒光纤中的三能级系统实现光信号的放大 实验步骤:搭建实验装置,调整参数,进行测试 实验结果:通过测试数据,分析EDFA的性能指标
加强EDFA与其它光器件的集成与模块化研究,实现光通信系统的紧凑化与高效化
拓展EDFA在光传感、光医疗等领域的应用研究,挖掘其在物联网、智能制造等新兴产业中 的潜力
感谢您的观看
汇报人:XX
测试EDFA的增益性能
实验目的:测试掺铒光纤放大器(EDFA)的增益性能
实验原理:利用EDFA对光信号进行放大,通过调节泵浦功率和信号波长,测量EDFA的增 益特性
实验步骤:搭建EDFA测试系统,设置泵浦功率和信号波长,启动测试并记录数据
实验结果:分析测试数据,得出EDFA的增益性能曲线和最佳工作条件
结论:实验结果表明,掺铒光纤放大器具有较低的噪声系数,能够有效地放大信号并降低背景噪声 干扰

光电技术实验-掺铒光纤放大器

光电技术实验-掺铒光纤放大器

光电技术实验-掺铒光纤放⼤器掺铒光纤放⼤器(EDFA)特性参数测量⼀、实验⽬的1.了解掺铒光纤放⼤器的⼯作原理及相关特性;2.掌握掺铒光纤放⼤器性能参数的测量⽅法;⼆、实验原理掺铒光纤放⼤器(Er Droped Fiber Amplifier,EDFA)的出现是光纤通信发展史上⼀个重要⾥程碑。

1986年英国南安普敦⼤学制作出了最初的掺铒光纤放⼤器。

在此之前,由于不能直接放⼤光信号,所有的光纤通信系统都只能采⽤光-电-光中继⽅式。

光纤放⼤器可直接放⼤光信号,这就可使光-电-光中继变为全光中继。

这是⼀次极为重要的飞跃,把光通信推向了⼀个新的阶段,其意义可与当年⽤晶体管代替电⼦管相提并论。

当作为掺铒光纤放⼤器泵浦源的0.98um和1.48um的⼤功率半导体激光器研制成功后,掺铒光纤放⼤器趋于成熟,进⼊了实⽤化阶段。

掺铒光纤放⼤器的意义不仅在于可进⾏全光中继,它还在多⽅⾯推动了光纤通信的发展,引起了光纤通信的⾰命性变⾰。

其中最突出的是在波分复⽤(WDM)光纤通信系统中的应⽤。

波分复⽤是在⼀根光纤上传输多个光信道,从⽽充分利⽤光纤带宽,有效扩展通信容量的光纤通信⽅式。

由于掺铒光纤放⼤器具有约40nm的极宽带宽,可覆盖整个波分复⽤信号的频带,因⽽⽤⼀只掺铒光纤放⼤器就可取代与信道数相应的光⼀电⼀光中继器,实现全光中继。

这极⼤地降低了设备成本,提⾼了传输质量。

这⼀优越性推动了波分复⽤技术的发展。

现在EDFA+WDM已成为⾼速光纤通信⽹发展的主流,代表新⼀代的光纤通信技术。

(1)EDFA的⼯作原理铒(Er)是⼀种稀⼟元素(属于镧系元素),原⼦序数是68,原⼦量为167.3。

EDFA利⽤了镧系元素的4f能级,图1是Er+3的能级图。

在掺铒光纤中.由于⽯英基质的作⽤,4f的每⼀个能级分裂成⼀个能带。

图中4I15/2能带称为基态;4I能带称为亚稳态,在亚稳态上粒⼦的平均寿命时间达到10ms。

4I11/2能带为13/2泵浦态,粒⼦在泵浦态上的平均寿命为1us。

掺铒光纤放大器

掺铒光纤放大器
增益平坦度是在额定波长范围内,某一输入光功率下, EDFA最大增益与最小增益之差。
增益不平坦的成因
掺铒光纤的增益谱不平坦是造成EDFA增益不平坦的根本 原因。纤长L的掺铒光纤放大器增益为: G=exp{[g*n2-a(1-n2)]L} 其中n2是离子反转度,g是铒纤的增益系数,a是铒纤的 吸收系数。由于增益系数和吸收系数是波长的函数,因此 对不同波长的输入光,信号增益是不同的。
Timeline of milestones in optical amplifier development – 2
• 1970 Mass production of quality optical fiber perfected by Corning • 1987 Erbium-doped fibers simultaneously developed at University of Southampton and AT&T • 1989 First EDFA product introduced by Oki Electric • 1989 First SOA product introduced by BT&D Technologies (now Agilent) • 1999 First EDWAs products introduced by MOEC and Teem Photonics • 2001 Raman amplifiers begin wider application
EDFA-BA系列 EDFA-LA系列 EDFA-PA系列 EDFA-TV系列 EDFA-MW系列
通道数 EDFA 控制 形式 波长范围
EDFA-MD系列
EDFA-GW系列 EDFA-GC系列 EDFA-MC系列

掺铒光纤放大器的工作原理

掺铒光纤放大器的工作原理

掺铒光纤放大器的工作原理掺铒光纤放大器是一种将输入信号进行放大的设备,它用掺有少量的铒离子的光纤作为放大介质,在光纤中的铒离子受到激光光子的激发后,会产生放大的荧光信号,在光纤中传播并放大输入信号。

掺铒光纤放大器具有增益大、噪声小、稳定性好等特点,是光通信和光传感领域中广泛使用的重要设备。

掺铒光纤放大器的工作原理主要涉及到掺铒光纤中的铒离子、基于激光器的光源和光纤耦合器等方面。

下面将从这些方面详细介绍掺铒光纤放大器的工作原理。

一、掺铒光纤中的铒离子掺铒光纤的制备过程中,在非常纯净的二氧化硅(SiO2)玻璃内加入了少量的铒离子(Er3+),通常铒离子的摩尔分数在0.1%至1.0%之间。

这些铒离子会在光纤中形成能级结构,以便通过激光器来激发它们。

当铒离子受到一个在适当波长范围内的激励光子时(通常在980至1480纳米之间),它们会吸收这些光子并将它们的原子能级提升到一个更高的激发态能级。

接着,铒离子会从高激发态能级中产生自发辐射荧光,并向下跃迁到一个较低的能级。

这种过程中所产生的荧光光子的波长通常在1500纳米左右,这种波长范围也称为雪崩区域。

二、基于激光器的光源掺铒光纤放大器需要用到激光器作为输入信号的光源,激光器通常是基于半导体技术的光源。

通常情况下,用于掺铒光纤放大器的激光器被称为泵浦光源,这是因为它们的主要作用是激励光纤中的铒离子产生放大荧光信号。

泵浦光源通常采用激光二极管(LD)或光纤激光器(FP)、DFB(调制反馈)激光器等器件,可选择的泵浦光源范围很广,包括735、980、1480等纳米波段。

三、光纤耦合器光纤耦合器是将光源的输出光束耦合到放大器光纤中的设备,它可以使光源的输出尽可能有效地耦合到光纤中,并且降低光纤的损耗。

在掺铒光纤放大器中,光纤耦合器将泵浦光源的输出光束耦合到掺铒光纤中,并激发铒离子进行光放大。

光纤耦合器一般有径向耦合器、光栅耦合器、双光纤耦合器和光纤连接器等类型。

径向耦合器将输入和输出光纤正对光学轴,通过一定的设备使局部光场光强变化,从而实现光束的耦合;光栅耦合器利用光栅的衍射效应,使光束在光栅衍射角处尽可能高的衍射效应,使输出光束尽量向光纤的中心传输,从而实现光束的耦合;双光纤耦合器则是利用两个光纤直接接触的方式来实现耦合。

掺铒光纤放大器EDF掺铒光纤放大器.PPT

掺铒光纤放大器EDF掺铒光纤放大器.PPT
•物理机制: A. 光纤拉曼散射效应(SRS) 一个入射光子(pump)的湮 灭,产生一个下移stokes 频率的光子和另一个具有 相当能量和动量的光学声 子 B. 与pump光子相差stokes 频率的信号光子,经受受 激散射过程,被放大
半导体光放大器(SOA)
四、应用
1、多信道放大中存在的问题 •噪声大(Fn~8dB) •信道串扰(交叉增益调制XGM、四波混频FWM) •增益饱和引起信号畸变
2、其他应用 A、光波长转换:
光波长转换器(Wavelength Converter)是一种实现将光信号从某一波 长的光载波转换至另一波长光载波的器件,是波分复用光通信系统向 光 网络演变的一个关键性器件。光波长转换器能使网络在不同节点处 重复 使用某一个波长,这种“波长再利用”无疑能提高波长的利用效 率,有 效地减少波分复用网络中所需波长的数量 机理:
掺铒光纤放大器(EDFA)
•多信道放大中存在的其它问题: 要求:增益平坦、增益钳制、高的输出功率
1、增益平坦
固有的增益不平坦 增益差随级联放大而积累增大
各信道的信噪比差别增大 各信道的接收灵敏度不同
1544
1569
典型的EDFA增益谱
光发射机 1 光发射机 2 光发射机 3
光发射机 N
掺铒光纤放大器(EDFA)
掺铒光纤放大器(EDFA)
2、增益钳制
•EDFA对信道的插入、分出或信道无光故障等因素引起的输入 光功率的变化(较低速变化)能产生响应--瞬态特性 •瞬态特性使得剩余信道获得过大的增益,并输出过大的功率, 而产生非线性,最终导致其传输性能的恶化--需进行自动增益 控制 •对于级联EDFA系统,瞬态响应时间可短至几~几十 s,要求 增益控制系统的响应时间相应为几~几十 s

第7章掺铒光纤放大器

第7章掺铒光纤放大器

( P / s ) PP ,in G 1
例题: 一个在 980nm 泵浦的 EDFA ,其泵浦
功率为40mW,如果在1550nm处的增益是
22dB ,求 EDFA 的最大输入、输出光信号
功率。
体激光器已完全商用化,并且泵浦效率 高于其他波长,故得到了最广泛的应用。
在泵浦光的激励下,4I11/2能级上的粒 很快跃迁到亚稳态 4I13/2能级,从而实现了 粒子数反转。
子数不断增加,又由于其上的粒子不稳定,
当有 1.55μm 信号光通过已被激活的掺铒 光纤时,在信号光的感应下,亚稳态上的
粒子以受激辐射的方式跃迁到基态。对应
种结构具有较高的输出信号功率,但噪声特性较
差。
后向(反向)泵浦掺铒光纤放大器
掺铒光纤 光耦合器
光信号输入
光隔离器
光隔离器
光信号输出
泵浦LD
3、双向泵浦掺铒光纤放大器
双向泵浦掺铒光纤放大器,表示两个泵
浦光从两个相反方向进入掺铒光纤。这种结
构具有的输出信号功率最高,噪声特性也不
差。
双向泵浦掺铒光纤放大器
7.2.1 掺铒光纤 掺铒光纤是 EDFA 的核心元件,它以
石英光纤作基质材料,并在其纤芯中掺入
一定比例的稀土元素铒离子(Er),便形 成了掺铒光纤(EDF)。
掺入铒元素的目的是,促成被动的传 输光纤转变为具有放大能力的主动光纤。
掺杂浓度在百万分之几十至百万分之
几百。
除了所掺的铒以外,这种光纤的构
掺铒光纤 光耦合器 光耦合器
光信号输入 光隔离器
光隔离器
光信号输出
泵浦LD
泵浦LD
7.4 EDFA的最大输入、输出光信号功率 根据能量守恒原理,EDFA的输入、输 出光信号功率可以表示为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 掺铒光纤放大器
掺铒光纤放大器(EDFA)
基本原理:铒离子吸收泵浦光的能量,实现粒子数反转分布,受激辐射产生与入射光子完全一样的光子。

EDFA的特点
工作波长与光纤最小损耗波长窗口一致;
对掺铒光纤进行激励所需要的泵浦光功率较低; 增益高、噪声低、输出功率高。

连接损耗低。

长度为10m~100m左右的掺铒光纤,铒离子的掺杂浓度一般为25mg/kg左右
半导体激光器,输出功率为10~100mW,工作波长为0.98μm或1.48μm。

将信号光和泵浦光耦合在一起。

保证信号单向传输滤除噪声,提高信噪比EDFA 结构及工作原理
铒离子能级分布泵浦能带
快速非辐
射衰变
亚稳态能带
5
EDFA泵浦方式
EDFA的内部按泵浦方式分,有三种基本的结构:即同向泵浦、反向泵浦和双向泵浦。

同向泵浦
信号光与泵浦光以同一方向从掺铒光纤的输入端注入的结构,也称为前向泵浦。

反向泵浦
信号光与泵浦光从两个不同方向注入进掺铒光纤的结构,也称后向泵浦。

双向泵浦
同向泵浦和反向泵浦同时泵浦的结构。

不同泵浦方式性能差异(1)(2)(3)
8
EDFA性能参数
1.功率增益
2.输出功率特性
3.噪声特性
功率增益
功率增益:输出功率与输入功率之比。

12
输出功率
噪声
EDFA的主要噪声种类:
①信号光的散粒噪声;
②被放大的自发辐射光的散粒噪声;
③自发辐射光谱与信号光之间的差拍噪声;
④自发辐射光谱间的差拍噪声。

13
EDFA的应用
EDFA的基本应用:
(1)延长中继距离;(2)与波分复用技术结合。

(3)与光孤子技术结合。

(4)与CATV等技术结合。

14。

相关文档
最新文档