高职高考数学试卷

合集下载

2023年广东高职高考数学试卷

2023年广东高职高考数学试卷

2023年广东高职高考数学试卷一、选择题(本大题共15小题,每小题5分,共75分)1. 设集合A = {1, 2, 3},B = {2, 3, 4},则A∩B =()A. {1, 2, 3, 4}B. {2, 3}C. {1}D. {4}2. 函数y = sin(x + π/2)的图象关于()对称A. x轴B. y轴C. 原点D. 直线y = x3. 若a > 0,b > 0,且a + b = 1,则ab的最大值为()A. 1/2B. 1/4C. 1/8D. 1/164. 等差数列{an}中,a1 = 1,d = 2,则a5 =()A. 9B. 10C. 11D. 125. 在平面直角坐标系中,点P( - 1,2)到直线2x - y + 3 = 0的距离为()A. √5/5B. 2√5/5C. 3√5/5D. 4√5/56. 二次函数y = x² - 2x - 3的顶点坐标是()A. (1,-4)B. (-1,-4)C. (1,4)D. (-1,4)7. 已知向量a=(1,2),b=( - 2,3),则a + b =()A. (-1,5)B. (3,-1)C. (-3,1)D. (1,-5)8. 若log2x = 3,则x =()A. 6B. 8C. 9D. 109. 圆x² + y² = 4的半径为()A. 1B. 2C. 3D. 410. 某班有男生30人,女生20人,从中抽取10人进行调查,则抽取男生的人数为()A. 4C. 6D. 711. 函数y = 1/x在区间(1,2)上的单调性是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增12. 在△ABC中,若A = 60°,a = √3,b = 1,则B =()A. 30°B. 45°C. 60°13. 若不等式x² - 2x - 3 < 0的解集为A,不等式x² + x - 6>0的解集为B,则A∩B =()A. (-1,2)B. (2,3)C. (-3,-1)D. (-∞,-3)∪(2,+∞)14. 已知双曲线x²/a² - y²/b² = 1(a>0,b>0)的渐近线方程为y = ±2x,则双曲线的离心率为()A. √5B. √3C. 2D. 515. 一个几何体的三视图如图所示(此处假设你能想象出简单的三视图,比如一个长方体之类的常见几何体的三视图),则这个几何体是()A. 正方体B. 长方体C. 圆柱D. 圆锥二、填空题(本大题共5小题,每小题5分,共25分)16. 计算:lim(x→1)(x² - 1)/(x - 1)= 。

2024职高高考数学试卷

2024职高高考数学试卷

2024职高高考数学试卷一、选择题(本大题共10小题,每小题5分,共50分)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. B⊂neqq AD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (0,1]D. (0,+∞)3. 已知向量→a=(1,2),→b=( - 1,1),则→a+→b等于()A. (0,3)B. (2,1)C. (1,3)D. (2,3)4. 若sinα=(1)/(3),且α是第一象限角,则cosα等于()A. (2√(2))/(3)B. -(2√(2))/(3)C. (√(2))/(3)D. -(√(2))/(3)5. 等比数列{a_n}中,a_1 = 1,公比q = 2,则a_3等于()A. 1.B. 2.C. 4.D. 8.6. 过点(1,2)且斜率为3的直线方程是()A. y - 2=3(x - 1)B. y+2 = 3(x+1)C. y - 1=3(x - 2)D. y+1=3(x + 2)7. 函数y = sin(2x+(π)/(3))的最小正周期是()A. πB. 2πC. (π)/(2)D. (2π)/(3)8. 已知二次函数y=ax^2+bx + c(a≠0)的图象开口向上,对称轴为x = 1,则下列结论正确的是()A. f(-1)B. f(1)C. f(1)D. f(2)9. 在ABC中,a = 3,b = 4,c = 5,则cos B等于()A. (3)/(5)B. (4)/(5)C. (1)/(2)D. (√(3))/(2)10. 若log_a2<1(a>0且a≠1),则a的取值范围是()A. (0,1)B. (1,2)C. (0,1)∪(2,+∞)D. (2,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11. 计算limlimits_x→1(x^2 - 1)/(x - 1)=_2。

高职高考数学试卷卷面分数

高职高考数学试卷卷面分数

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1答案:C2. 已知函数f(x)=x²-4x+4,则f(2)的值为()A. 0B. 2C. 4D. 6答案:A3. 已知等差数列{an}的公差为d,且a1+a3+a5=18,a2+a4+a6=24,则d的值为()A. 2B. 3C. 4D. 5答案:B4. 下列各方程中,无实数根的是()A. x²-2x+1=0B. x²+2x+1=0C. x²-4x+4=0D. x²+4x+4=0答案:B5. 下列各不等式中,正确的是()A. 2x+1>3B. 2x-1<3C. 2x+1<3D. 2x-1>3答案:D6. 已知函数f(x)=x²+2x+1,则f(-1)的值为()A. 0B. 1C. 2D. 3答案:A7. 下列各数中,是正数的是()A. -2B. 0C. 2D. -1答案:C8. 已知等比数列{an}的公比为q,且a1+a3+a5=18,a2+a4+a6=24,则q的值为()A. 2B. 3C. 4D. 5答案:A9. 下列各不等式中,正确的是()A. 2x+1>3B. 2x-1<3C. 2x+1<3D. 2x-1>3答案:D10. 已知函数f(x)=x²-2x+1,则f(1)的值为()A. 0B. 1C. 2D. 3答案:A二、填空题(每题5分,共50分)11. 若等差数列{an}的第一项为a1,公差为d,则第n项an=______。

答案:a1+(n-1)d12. 若等比数列{an}的第一项为a1,公比为q,则第n项an=______。

答案:a1q^(n-1)13. 已知函数f(x)=x²-2x+1,则f(x)的对称轴为______。

答案:x=114. 已知数列{an}的前n项和为Sn,若an=2n-1,则S10=______。

2023年广东高职高考数学试卷

2023年广东高职高考数学试卷

1、设集合A = {x | x是小于8的正整数},B = {x | x是3的倍数},则A ∩B =
A. {3, 6, 9}
B. {3, 6}
C. {1, 2, 3, 4, 5, 6, 7}
D. {3}(答案:B)
2、已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为
A. 8
B. 11
C. 13
D. 11或13(答案:D)
3、下列四个数中,是正数的是
A. -(-5)的相反数
B. |-5|的相反数
C. -(+5)
D. -|-5|的相反数(答案:D)
4、若a > b,则下列不等式正确的是
A. a - 3 < b - 3
B. 3a < 3b
C. -3a > -3b
D. a/3 > b/3(答案:D)
5、已知直线l上有A,B,C三点,线段AB = 6cm,且AB = (1/2)AC,则BC =
A. 3cm
B. 6cm
C. 9cm
D. 6cm或9cm(答案:D)
6、下列计算正确的是
A. 7a - a = 6
B. a2 * a3 = a6
C. a6 ÷a2 = a3
D. (2a)2 = 4a2(答案:D)
7、一个长方形的周长是20厘米,长是a厘米,则宽是
A. (20 - a)厘米
B. (20 - 2a)厘米
C. (10 - a)厘米
D. 10 - a厘米(答案:C)
8、下列命题中,真命题是
A. 相等的角是对顶角
B. 同旁内角互补
C. 平行于同一条直线的两条直线互相平行
D. 垂直于同一条直线的两条直线互相垂直(答案:C)。

专科高职高考数学试卷

专科高职高考数学试卷

考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 3.14D. √-12. 已知 a、b 是方程x² - 3x + 2 = 0 的两个根,则 a + b 的值是()A. 2B. 3C. 4D. 53. 下列函数中,定义域为实数集 R 的是()A. y = √xB. y = |x|C. y = x²D. y = 1/x4. 下列各式中,正确的是()A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. a² - b² = (a + b)(a - b)5. 已知函数 y = kx + b(k ≠ 0),当 x = 1 时,y = 2;当 x = 2 时,y = 3。

则该函数的解析式为()A. y = 2x - 1B. y = x + 1C. y = 2x + 1D. y = x - 16. 下列各数中,无理数是()A. √4B. √9C. √16D. √-47. 已知 a、b 是方程x² - 5x + 6 = 0 的两个根,则 ab 的值是()A. 5B. 6C. 7D. 88. 下列函数中,奇函数是()A. y = x²B. y = |x|C. y = x³D. y = 1/x9. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²10. 已知函数 y = kx + b(k ≠ 0),当 x = 0 时,y = 3;当 x = 1 时,y = 4。

高职高考数学试卷月考

高职高考数学试卷月考

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. -√3C. πD. 0.1010010001…2. 已知等差数列 {an} 的前n项和为 Sn,若 S3=9,S6=36,则第4项 a4 等于()A. 6B. 7C. 8D. 93. 函数 y=2x-1 的图象上,x 的取值范围是()A. x≤0B. x≥0C. x≠0D. x>04. 下列命题中,正确的是()A. 若 a^2=b^2,则 a=bB. 若 a^2=b^2,则a=±bC. 若 a^2=b^2,则 |a|=|b|D. 若 a^2=b^2,则 ab=05. 在△ABC中,∠A=45°,∠B=60°,则∠C的大小为()A. 30°B. 45°C. 60°D. 75°6. 已知函数 y=3x^2+2x-1,若 x=2,则 y 的值为()A. 11B. 9C. 7D. 57. 下列不等式中,正确的是()A. 2x+3<5B. 2x+3>5C. 2x+3≤5D. 2x+3≥58. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 下列各式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2+2ab-b^2D. (a-b)^2=a^2-2ab-b^210. 下列函数中,为一次函数的是()A. y=2x^2-3x+1B. y=x^3-2x+1C. y=3x+5D. y=2/x二、填空题(每题5分,共50分)1. 等差数列 {an} 的公差为d,首项为a1,第n项 an 等于__________。

2. 若 a、b、c 成等比数列,则 b^2=__________。

3. 函数y=√(x^2-1) 的定义域为__________。

职高数学高考试题及答案

职高数学高考试题及答案

职高数学高考试题及答案题目一:选择题(每题4分,共25题)1. 已知函数$f(x) = 2x^2 + 3x - 4$,则$f(-1)$的值等于()。

A. -8B. -7C. -6D. -52. 在等差数列$\{a_n\}$中,已知$a_1 = 5$,$d = 2$,若$a_{10} = 23$,则$a_2$的值等于()。

A. 9B. 10C. 11D. 123. 函数$f(x) = a^x$($a > 0$)的定义域为全体实数,当$a > 1$时,$f(x)$是()函数。

A. 增函数B. 减函数C. 常数函数D. 正值函数4. 若方程$x^3 - mx^2 + (m - 4)x - 4 = 0$的一个实根是4,则$m$的值等于()。

A. 2B. 4C. 6D. 85. 在等差数列$\{a_n\}$中,已知$a_5 - a_3 = 8$,若$a_2 = 7$,则$d$的值等于()。

A. 1B. 2C. 3D. 46. 抛物线$y = ax^2 + bx + c$的图象关于直线$x = 1$对称,则$a + b + c$的值等于()。

A. -1B. 0C. 1D. 27. 在等差数列$\{a_n\}$中,已知$a_1 = 3$,$a_n = 17$,$S_n = 85$,则$n$的值等于()。

A. 5B. 6C. 7D. 88. 若$\log_2{x} = \log_{\frac{1}{2}}{y}$,则$x$与$y$的关系是()。

A. $x = \frac{1}{y}$B. $x = y$C. $xy = 1$D. $x + y = 0$9. 在等差数列$\{a_n\}$中,$a_1 = 3$,$a_2 = 5$,若$a_1 + a_2 +\ldots + a_n = 2n^2 + n$,则$n$的值等于()。

A. 3B. 4C. 5D. 610. 在平面直角坐标系中,点$A(1, 2)$到直线$2x - y + 3 = 0$的距离等于()。

2023高职高考数学试卷

2023高职高考数学试卷

2023高职高考数学试卷【第一部分:选择题】1. 下列四个数中,最接近√2的是A. 1.2B. 1.4C. 1.6D. 1.82. 若函数f(x)满足f(2x)=2f(x)+5,且f(1)=3,则f(3)的值为A. 13B. 14C. 15D. 163. 设等差数列{an}的通项公式为an=3n-1,若an=8,则n的值为A. 3B. 4C. 5D. 64. 已知函数f(x)=2x^2-3x+1,g(x)=3x+1,h(x)=4-x^2,则f(g(2)-h(1))的值为A. -4B. -3C. -2D. -15. 若a,b,c均为正数,且a+b+c=6,则abc的最大值为A. 4B. 6C. 8D. 9【第二部分:计算题】1. 已知数列{an}的通项公式为an=n^2+3n,求前5项的和。

2. 求函数f(x)=2x^3-5x^2+3x-1的对称轴方程式以及顶点坐标。

3. 解方程组:⎧ 2x-y+z=5⎨ x+3y+2z=11⎩ x-2y+4z=7【第三部分:应用题】一杯温度为80℃的咖啡放在室温25℃的房间中,经过1小时,温度下降到60℃,问再过多长时间,温度会降到40℃?提示:温度下降的速度与温差成正比,与时间成反比。

愿各位考生能够发挥出自己的最佳水平,取得优异的成绩!【第四部分:解析题】1. 问:函数y=log2(x-1)的定义域是多少?并画出其图像。

解析:对于对数函数y=loga(b),要使函数有定义,需要满足b>0 且b≠1。

根据此条件,我们可以得出x-1>0,即x>1。

因此,函数y=log2(x-1)的定义域为x>1。

下面是该函数的图像:(图像画出)2. 问:将抛物线y=x^2-2x+3沿x轴向右平移2个单位后的新函数是什么?解析:将函数y=x^2-2x+3沿x轴向右平移2个单位,相当于将x替换为x-2。

因此,新函数为y=(x-2)^2-2(x-2)+3,简化后为y=x^2-4x+7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高职高考数学试卷注意:本试卷共2页,第1页为选择题和填空题,第2页为答题卡,解答题在答题卡上,满分为150分,考试时间为120分钟。

所有答案必须写在答题卡上,否则不予计分。

一、选择题:共15小题,每小题5分,共75分;在每小题给出的四个选项中,只有一项是符合题目要求。

1.已知集合A={1,2,3},B={x ︱032=-x x },则=B A A.φ B.{3} C.{0,3} D.{0,1,2,3} 2.已知向量)5,2(),1,3(-==b a ,则=-b a 23A.(2,7)B.(13,-7)C.(2,-7)D.(13,13) 3.函数y =)43sin(2π+x 的最小正周期为A.πB.2πC.4πD.32π4.函数xx x f --=3)2(log )(3的定义域是A.)3,2(B.)3,(-∞C.]3,2(D.),3[∞+5.在等差数列{}n a 中,已知前11项之和等于44,则=++++108642a a a a a A.10 B.15 C.40 D.206.已知x x x f -+-=3)113(log )(2,则=)9(f A.10 B.14 C.2 D.-27.设}{n a 是等比数列,如果12,442==a a ,则=6a A.36 B.12 C.16 D.488.设函数13)(2++=x x x f ,则=+)1(x f A.232++x x B.532++x x C.552++x x D.632++x x9.已知三点A (-1,-1),B (4,-2),C (2,6),D 为线段BC 的中点,则=•BC ADA.4B.8C.16D.24 10.若直线m y x =+与圆m y x =+22)0(>m 相切,则m 等于 A.21B.2C.2D.2211.不等式01682≤+-x x 的解集是A.RB.{ x ︱x=4}C.φD.{ x ︱x ≠4} 12.经过点(1,﹣1)且与直线2x -y+5=0平行的直线方程是 A.012=++y x B.032=-+y x C.032=--y x D.062=+-y x13.直线3x -4y+12=0与圆 x 2+y 2+10x -6y -2=0的位置关系是A.相交B.相切C.相离D.相交且过圆心 14.若θ是第二象限角,则=-θ2sin 1A.θθcos sin --B.θθcos sin +C.θθcos sin -D.θθsin cos - 15.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为31,则椭圆的方程是 A.1442x +1282y =1B.362x +202y =1 C .322x +362y =1D .362x +322y =1 二、填空题:共5小题, 每小题5分,共25分.答案请写在答题卡上. 16.设向量a =(-1,2),b =(2,x),且a ⊥b ,则a +b = . 17.方程x x)31(334=-的解集是___________. 18.在△ABC 中,已知∠A=120o,c=3,a=7,则b=____________. 19.已知24παπ<<,若532sin =α,则α2cos 的值是 . 20.直线012=++y x 被圆14)1()2(22=-+-y x 所截得的线段长等于 .2012年高职高考数学试卷答题卡一、选择题:共15小题,每小题5分,共75分填涂样例: 正确填涂(注意:胡乱填涂或模糊不清不记分) 1 [A] [B] [C] [D] 6[A] [B] [C] [D] 11 [A] [B] [C] [D] 2 [A] [B] [C] [D]7 [A] [B] [C] [D] 12 [A] [B] [C] [D] 3 [A] [B] [C] [D]8 [A] [B] [C] [D] 13 [A] [B] [C] [D] 4[A ][B] [C] [D] 9 [A] [B] [C ][D] 14[A] [B] [C] [D] 5 [A] [B] [C] [D] 10 [A] [B] [C] [D]15 [A] [B] [C] [D]二、填空题:共5小题,每小题5分,共25分 16.17.18. 19. 20.三、解答题:共4小题,其中21题10分,22题12分,23、24题14分,共50分.解答应写出文字说明、证明过程或演算步骤. 21.已知2tan =α,求ααααsin cos cos sin -+的值. (10分)22.已知函数bax xx f +=)((a ,b 为常数,且a ≠0)满足1)2(=f ,且方程x x f =)(有唯一解,求:(1))(x f 的表达式;(2))]3([-f f 的值。

(12分)23.已知f(x)是一次函数,f(8)=15,且f(2),f(5),f(4)(1)f(x)的解析式;(2)f(1)+f(2)+ f(3)+…+f(n)的值。

(14分)24.设椭圆中心在原点O ,焦点在y 轴上,离心率为33=e ,两准线间的距离为6, (1)求椭圆的方程;(2)若直线0:=+-n y x l 交椭圆于A 、B 两点,且OB OA ⊥,求实数n的值. (14分)2012年高职高考数学试卷参考答案一、选择题:共15小题,每小题5分,共75分 BBDAD AACCB BCACD二、填空题:共5小题,每小题5分,共25分 16.(1,3) 17.{2} 18.5 19.10120.6 三、解答题:共4小题,其中21题10分,22题12分,23、24题14分共50分.21.解:∵2cos sin tan ==ααα ……………………………2分 ∴ααcos 2sin = ……………………………5分 ∴ααααααααcos 2cos cos cos 2sin cos cos sin -+=-+ ……………………………7分 3cos cos 3-=-=αα……………………………10分22.解:(1)由122)2(=+⨯=ba f ⇒22=+b a …………………2分∵方程x x f =)(即x bax x=+有唯一解 …………………3分即方程0)1(2=-+x b ax 有唯一解 …………………4分而a ≠0,则004)1(2=⨯⨯--=∆a b ⇒1=b …………………6分 将1=b 代入22=+b a 得212=+a ⇒21=a …………………7分 ∴22121)(+=+=x xx x x f …………………8分 (2)由(1)知22)(+=x xx f ∴623)3(2)3(=+--⨯=-f …………………10分∴[]232662)6()3(=+⨯==-f f f …………………12分23. 解:(1)设b kx x f +=)((0≠k ),则 ……………………1分158)8(=+=b k f ① ……………………2分且b k f +=2)2(,b k f +=5)5(,b k f +=4)4( ……………………4分 ∵f(2),f(5),f(4)成等比数列 ∴)4()2()5(2f f f =⇒)4)(2()5(2b k b k b k ++=+ ……………………5分 ⇒04172=+kb k ……………………6分而0≠k ⇒0417=+b k ② ……………………7分 由①②解得:k=4,b=-17 ……………………8分 ∴174)(-=x x f ……………………9分 (2)由(1)知174)(-=x x f ,设174)(-==n n f a n ,则4]17)1(4[)174(1=----=--n n a a n n ……………………11分∴数列}{n a 是公比q=4的等差数列,且1317141-=-⨯=a ………………12分 ∴f(1)+f(2)+ f(3)+…+f(n)n a a a +++= 21 2)]174(13[-+-=n n ……………………13分n n 1522-= ……………………14分24.解:由题设知所求的椭圆方程是标准方程,且焦点在y 轴上,可设椭圆的标准方程为()0 12222>>=+b a b x a y ,则 ……………………1分 c a a c e 333=⇒==① ……………………2分c a ca 36222=⇒=⨯ ② ……………………3分 由①②解得:3=a ,1=c ……………………5分∴21)3(2222=-=-=c a b ……………………6分∴所求的椭圆方程为12322=+x y ……………………7分 (2)设交点为()()2211,,,y x B y x A ,则()()2211,,,y x OB y x OA == ∵OB OA ⊥∴02121=+=⋅y y x x OB OA ……………………8分又062451232222=-++⇒⎪⎩⎪⎨⎧=+=+-n nx x x y n y x ……………………9分∴562221-=n x x ……………………10分同理可得:0636522=-+-n ny y ……………………11分⇒563221-=n y y ……………………12分 ∴056356222=-+-n n ……………………13分 ∴5152±=n ……………………14分。

相关文档
最新文档