年高考全国卷3文科数学

合集下载

2020年全国卷(3)文科数学

2020年全国卷(3)文科数学

2020年全国卷(3)文科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:1.已知集合 $A=\{1,2,3,5,7,11\}$,$B=\{x|3<x<15\}$,则$A \cap B$ 中元素的个数为 A。

2 B。

3 C。

4 D。

52.复数 $z\cdot(1+i)=1-i$,则 $z=$ A。

$1-i$ B。

$1+i$ C。

$-i$ D。

$i$3.设一组样本数据 $x_1,x_2,\dots,x_n$ 的方差为 0.01,则数据 $10x_1,10x_2,\dots,10x_n$ 的方差为 A。

0.01 B。

1 C。

100 D。

4.Logistic 模型是常用数学模型之一,可应用于流行病学领域。

有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 $I(t)$($t$ 的单位:天)的 Logistic 模型$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中 $K$ 为最大确诊病例数。

当 $I(t^*)=0.95K$ 时,标志着已初步遏制疫情,则$t^*$ 约为($\ln 19 \approx 3$) A。

60 B。

63 C。

66 D。

695.若 $\sin\theta+\sin(\theta+\frac{\pi}{3})=1$,则$\sin(\theta+\frac{\pi}{3})=$ A。

$\frac{3}{4}$ B。

$\frac{1}{4}$ C。

$-\frac{1}{4}$ D。

$-\frac{3}{4}$6.在平面内,$A,B$ 是两个定点,$C$ 是动点,$AC\cdot BC=1$,则点 $C$ 的轨迹是 A。

圆 B。

椭圆 C。

抛物线 D。

直线7.设 $O$ 为坐标原点,直线 $x=2$ 与抛物线$C:y^2=2px(p>0)$ 交于 $D,E$ 两点,若 $OD\perp OE$,则$C$ 的焦点坐标为 A。

2020年全国3卷 文科数学附答案

2020年全国3卷 文科数学附答案

2020年高考真题文科数学(全国III卷)1. 已知集合,,则中元素的个数为A2B3C4D52. 若,则ABCD3.设一组样本数据的方差为0.01,则数据的方差为A0.01B0.1C1D104. Logistic模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为(In193)A60B63C66D695.已知,则ABCD6.在平面内,是两个定点,是动点,若,则点的轨迹为A圆B椭圆C抛物线D直线7.设为坐标原点,直线与抛物线交于两点,若,则的焦点坐标为ABD8.点到直线距离的最大值为A1BCD29.右图为某几何体的三视图,则该几何体的表面积是ABD10.设,,,则ABCD11. 在中,,,则AB2C4D812. 已知函数,则A的最小值为2B的图像关于轴对称C的图像关于直线对称D的图像关于直线对称13. 若x,y满足约束条件,则z=3x+2y的最大值为_____.14.设双曲线的一条渐近线为,则的离心率为______.15. 设函数,若,则a=____.16. 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表体积三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:供60分。

(1)求的通项公式;18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);19.(12分)如图,在长方体中,在,分别在棱,上,且,,证明:20.(12分)已知函数.21.(12分)已知椭圆的离心率为分别为的左、右顶点.(二)选考题:共10分,请考生在第22、23题中任选一题作答。

2020年全国卷3文科数学试题及参考答案

2020年全国卷3文科数学试题及参考答案

绝密★启用前试题类型:新课标in 2018年普通高等学校招生全国统一考试文科数学参考答案注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦下净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {xlx-l>0}, B = {0, 1, 2},则AC|B = ( )A. {0}B. {1}C. {1, 2}D. {0, 1, 2}【答案】c【解析】A:x>l , W{1, 2}【考点】交集2- (1 + /)(2-/)=()A. -3-iB. -3 + /C. 3-iD. 3 + j【答案】D【解析】(l + 0(2-f) = 2+r-i2=3 + <【考点】复数的运算3•中国古建筑借助樺卯将木构件连接起来,构件的凸出部分叫做樺头,凹进部分叫做卯眼,图中的木构件右边的小长方体是樺头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )俯视方向【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B答案能看见小长方体的上面和左面,C答案至少能看见小长方体的左面和前面,D答案本身就不对”外围轮廊不可能有缺失【考点】三视图4.若sina = |»则cosZz = ( )A. |B. 1C. -1D.9 9 9 9【答案】B7【解析】cos 2a = 1 -2sin‘ a =-【考点】余弦的二倍角公式5•某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的槪率为0.15,则不用现金支付的概率为( )A. 0・3 B・ 04 C・ 06 D. 0・7【答案】B【解析】1一0・45-0・15 = 0・4【考点】互斥事件的概率6•函数f (x)= tan\的最小正周期为()l + tan~x【答案】C【考点】切化弦、二倍角、三角函数周期7.下列函数中,其图像与函数v = lnx的图像关于直线x = l对称的是A. y = ln(l-A-)B. y = ln(2-x)C. y = ln(l+ x)D. y = ln(2 + x)【答案】B【解析】采用特殊值法,在取一点A(3, ln3),则A点关于直线x = l的对称点为川(7 ln3)应该在所求函数上,排除A , C , D【考点】函数关于直线对称8.直线x + y + 2 = 0分别与x轴、V轴交于点A, B两点,点在圆(A-2)2+/=2±,则WP而积的取值范围是( )A. [2, 6]B. [4, 8]C. [x/2, 3血]D.3血]【答案】A【解析】人(一2, 0), B(0, -2) , :.\AB\ = 2y/2 ,可设P(2 +血cos*. >/2sin^),贝!JB.壬C. ”D. 2龙T = ^- = 7T(走义域并没有影响到周期)S'lBP = 2 1^1' dP-AB =匝dp_AR e[2, 6]【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数)9・y = F + 2的图像大致为()【答案】D【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势.单调性(导数)的顺序来考虑)2 210.已知双曲线的c :二一・ = l (d>0, b>0)的离心率为返,则点(4, 0)到C 的渐近线的距离为A ・B ・2C ・上返D ・2>/22【答案】D【解析】e = ~ = + —r = >/2=> a = h••渐近线为— y = 0【解析】 /(1) = 2 ■排除 A 、B; y = Mx 3+2x = 2x(l-2x 2),故函数在 0,【考点】双曲线的离心率、渐近线之间的互相转化11A4BC 的内角4 S C 的对边分别为亿/人c.若AABC 的而积为川+[_广,则4 C =() A.【答案】C【解析】S MBC =穆 d"sin C ="一 十[一—,而 cosC= “_;:力一"一【考点】三角形面积公式、余弦定理12.设A, B 、C, D 是同一个半径为4的球的球而上四点,AA3C 为等边三角形且英而积为 9x/3,则三棱锥D-ABC 的体积最大值为( ) A. 12>/3 B. 18^3 C. 24书D. 54炉【答案】B【解析】如图,0为球心,F 为等边A43C 的重心, 易知OF 丄底面ABC ,当。

高考文科数学全国3卷试题及答案(Word版)(20200618130547)

高考文科数学全国3卷试题及答案(Word版)(20200618130547)

( C)三月和十一月的平均最高气温基本相同
( D)平均最高气温高于 20℃的月份有 5 个
( 5)小敏打开计算机时 , 忘记了开机密码的前两位 , 只记得第一位是 M, I,N 中的一个字
母 , 第二位是 1,2,3,4,5 中的一个数字 , 则小敏输入一次密码能够成功开机的概率是
8
1
1
1
( A) 15 ( B) 8 ( C) 15 ( D) 30
.
所以预测 2016 年我国生活垃圾无害化处理量将约 1.82 亿吨 . .........12 分
19 、(Ⅰ) 由已知得
, 学 .科网取 的中点 , 连接
,由 为
中点知
,
. ......3 分

, 故 平行且等于
, 四边形
为平行四边形 , 于是
.
因为
平面
,
平面
, 所以
平面
. ........6 分
(II )证明当 x (1, ) 时 , 1 x 1 x ; ln x
(III )设 c
1 , 证明当 x
(0,1)时 , 1 (c 1)x
x
c.
请考生在 22、23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分 , (22)(本小题满分 10 分)选修 4— 1:几何证明选讲
如图 , ⊙ O 中 的中点为 P, 弦 PC, PD 分别交 AB 于 E, F 两点。 (Ⅰ)若∠ PFB =2∠ PCD, 求∠ PCD 的大小; (Ⅱ)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G, 证明 OG ⊥ CD 。 (23)(本小题满分 10 分)选修 4— 4:坐标系与参数方程 在直线坐标系 xoy 中 , 曲线 C1的参数方程为 错误 ! 未找到引用源。 ( 错误 ! 未找到引用源。 为参数) 。以坐标原点为极点 , x 轴正半轴为极轴 , 建立极 坐标系 , 曲线 C2 的极坐标方程为 ρsin (错误 ! 未找到引用源。 ) =错误 !未找到引用源。 . (I )写出 C1 的普通方程和 C2 的直角坐标方程; (II )设点 P 在 C1 上, 点 Q 在 C2 上 , 求∣ PQ ∣的最小值及此时 P 的直角坐标 . (24)(本小题满分 10 分) , 选修 4—5:不等式选讲 已知函数 f(x)=∣ 2x-a∣ +a. (I )当 a= 2 时 , 求不等式 f(x)≤6 的解集; (II )设函数 g(x)=∣ 2x-1∣ .当 x∈ R 时 , f( x)+g(x)≥ 3, 求 a 的取值范围。

2020年全国3卷 文科数学真题(pdf版含解析)

2020年全国3卷 文科数学真题(pdf版含解析)

2020年全国3卷文科数学真题(解析版)一、选择题:(每小题5分,共60分)1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A.2B.3C.4D.5【答案】B 【详解】由题得,{5,7,11}A B ⋂=,所以A ∩B 中元素的个数为3.故选:B考点:集合的运算2.若()11+=-z i i ,则z =()A.1–iB.1+iC.–iD.i【答案】D 【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i =.故选:D 考点:复数的运算3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.1C.1D.10【答案】C【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C考点:方差的性质4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60B.63C.66D.69【答案】C 【详解】()()0.23531t KI t e--=+ ,所以()()0.23530.951t KI t K e**--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈.故选:C.考点:对数的运算5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A.12B.33C.23D.22【答案】B【详解】由题意可得:13sin sin cos 122θθθ++=,则:3sin 122θθ+=,1sin cos 223θθ+=,从而有:sin coscos sin 663ππθθ+=,即3sin 63πθ⎛⎫+= ⎪⎝⎭.故选:B.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆 B.椭圆C.抛物线D.直线【答案】A【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB 为半径的圆.故选:A.考点:轨迹方程7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.考点:抛物线8.点(0,﹣1)到直线()1y k x =+距离的最大值为()A.1B.C.D.2【答案】B【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.考点:直线的定点与点线距9.下图为某几何体的三视图,则该几何体的表面积是()A.6+4B.C.D.4+2【答案】C【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△由勾股定理得:AB AD DB ===∴ADB △是等边三角形∴211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴表面积:632=⨯++.故选:C.考点:三棱锥表面积计算10.设a =log 32,b =log 53,c =23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b【答案】A 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<.故选:A考点:对数大小比较11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()A.B.C.D.【答案】C【详解】设,,AB c BC a CA b===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 299a cb B B B ac +-==∴==∴=故选:C考点:余弦定理与解三角形12.已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图像关于y 轴对称C.f (x )的图像关于直线x π=对称D.f (x )的图像关于直线2x π=对称【答案】D【详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称;11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对故选:D考点:函数的对称性二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.【答案】7【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=.故答案为:7.考点:线性规划14.设双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.【答案】3【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y =,所以2b a =,2213c b e a a==+=.3考点:双曲线的渐近线与离心率15.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+,整理可得:2210a a -+=,解得:1a =.故答案为:1.考点:导数的运算16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O,由于AM ==122S =⨯⨯=△ABC ,设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r =,其体积:3433V r π==.故答案为:3.考点:圆锥的内切球三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等比数列{a n }满足124a a +=,318a a -=.(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m .【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =,18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bc K a b c d a c b d -=++++,P (K 2≥k )0.0500.0100.001k3.8416.63510.828【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好3337空气质量好228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥因为11,BB BD B BB BD =⊂I 、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴因此1C 在平面AEF 内20.已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x <<令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增.(2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<,当4027k <<>,且20f k =>,所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<,所以()f x在(1,k --上有唯一一个零点,又()f x在(上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范围为4(0,27.21.已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【详解】(1) 222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2) 点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()2265205AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+=+,根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=,综上所述,APQ 面积为:52.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==;(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.[选修4-5:不等式选讲]23.设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .2020年全国3卷文科数学真题(原卷版)一、选择题:(每小题5分,共60分)1已知集合A ={1,2,3,5,7,11},B ={x|3<x<15},则A ∩B 中元素的个数为()A.2B.3C.4D.52.若(1)1z i i +=-,则z =()A.1-iB.1+iC.-iD.i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.lC.1D.104.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:()0.23(53)1t K I t e--=+,其中K 为最大确诊病例数。

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

C.
D.




时,标志着已初步遏 ,






故选:B.
6.在平面内, , 是两个定点, 是动点,若
A. 圆
B. 椭圆
C. 抛物线
【答案】A
【解析】在平面内, , 是两个定点, 是动点,
不妨设

,设

因为

,则点 的轨迹为( ) D. 直线
所以

解得

所以点 的轨迹为圆.
故选:A.
7.设 为坐标原点,直线 与抛物线 :


故选:C.
12.已知函数
,则( )
A.
的最小值为
B.
的图象关于 轴对称
C.
的图象关于直线 对称
D.
的图象关于直线
对称
【答案】D 【解析】由
可得函数的定义域为
,故定义域关于原点对称;

,则

,由双勾函数的图象和性质得,

,故 A 错误;
又有
,故
义域关于原点对称,故图象关于原点中心对称;故 B 错误;
所以
平面


平面

. 是长方体,
所以

因为
是长方体,且

所以
是正方形,
所以



所以 平面

又因为点 , 分别在棱 , 上,
所以
平面

所以

(2)点 在平面 内.
【答案】见解析
【解析】取 上靠近 的三等分点 ,连接 , , .

2020年高考数学全国卷3-文科(附详解)

2020年高考数学全国卷3-文科(附详解)

三!解答题"共6&分$解答应写出文字说明!证明过程或演算步
骤 第$ "6##"题为必考题#每个试题考生都必须作答$第
##!#*题为选考题#考生根据要求作答$
&一'必考题"共%&分$
分 "6$&"# '
设等比数列 满足 $+.% +"0+#(+#+*)+"(;$
&"'求$+.%的通项公式+
记 为数列 的前 项和 若 &#' 9.
% &故选 # !
""
"
,!
7!,问!题'"命考题查立等意价(转本化题思重想点的考运查用点"到属直于线中的档题距"离难转度化中"等点!点距离
由 可知直线过定点 设 解题思路 '
( .-1%#0#&
当直线 与 垂直时 点 到直线 .#&"
.-1%#0#& $)
)%.#""&" $%""
"$
.-1%#0
其中A 为最大确诊病例数 当$ @&7< '(&>:$A 时#标志着已
初步遏制疫情 则 约为 # 7< &45"::*'&!!'$
,'%&
-'%*
.'%%
/'%:
已知 & ' 则 & ' $$ 915#0915#0*" ("# 915#0%" (&!!'$

2020年全国卷Ⅲ高考文科数学试题及答案

2020年全国卷Ⅲ高考文科数学试题及答案

2020年全国卷Ⅲ高考文科数学试题及答案注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A ∩B 中元素的个数为 {}1235711A =,,,,,{}315|B x x =<<A .2 B .3 C .4 D .52.若,则z = )(1i 1i z +=-A .1–iB .1+iC .–iD .i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:,其中K 为最大确诊病0.23(53)()=1e t I K t --+例数.当I ()=0.95K 时,标志着已初步遏制疫情,则约为(ln19≈3) *t *t A .60B .63C .66D .695.已知,则 πsin sin=3θθ++()1πsin =6θ+()A .B .C .D .123323226.在平面内,A ,B 是两个定点,C 是动点,若,则点C 的轨迹为 =1AC BC ⋅A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标()220y px p =>为 A .(,0) B .(,0) C .(1,0) D .(2,0)14128.点到直线距离的最大值为 (0)1-,()1y k x =+C.6+2D.4+23,则C.b<c<a D.,BC=3,则tan B=C.4D.517.(12分)设等比数列{a n }满足,. 124a a +=138a a -=(1)求{a n }的通项公式;(2)记为数列{log 3a n }的前n 项和.若,求m . n S 13m m m S S S +++=18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优) 2 16 25 2(良) 5 10 12 3(轻度污染) 6 7 8 4(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表); (3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好 空气质量不好附:,22()()()()()n ad bc K a b c d a c b d -=++++P (K 2≥k )0.050 0.010 0.001 k3.841 6.635 10.82819.(12分)如图,在长方体中,点,分别在棱,上,且,1111ABCD A B C D -E F 1DD 1BB 12DE ED =12BF FB =.证明:的取值范围.参考答案选择题答案 一、选择题 1.B 2.D 3.C 4.C 5.B 6.A 7.B 8.B 9.C10.A11.C12.D非选择题答案 二、填空题 13.7 14.15.116.323π三、解答题17.解:(1)设的公比为,则.由已知得{}n a q 11n n a a q -=, 1121148a a q a q a +=⎧⎪⎨-=⎪⎩解得.11,3a q ==所以的通项公式为. {}n a 1=3n n a -(2)由(1)知故 3log 1.n a n =-(1).2n n n S -=由得,即. 13m m m S S S +++=(1)(1)(3)(2)m m m m m m -++=++2560m m --=解得(舍去),.1m =-6m =18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级 1 2 3 4 概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为. 1(100203003550045)350100⨯+⨯+⨯=(3)根据所给数据,可得列联表:22⨯人次≤400人次>400 空气质量好3337。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前
试题类型:
2016年普通高等学校招生全国统一考试
文科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
ﻩ3.全部答案在答题卡上完成,答在本试题上无效.
ﻩ4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目
要求的.
(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =
(A){48},ﻩ (B){026},
, (C ){02610},,,ﻩ (D){0246810},,,,, (2)若43i z =+,则
||z z = (A)1ﻩﻩﻩ(B )1-ﻩ
(C)43+i 55ﻩﻩ(D)43i 55-
(3)已知向量BA →=(12,2
),BC →=(2,12),则∠AB C= (A )30°(B)45°
(C )60°(D )120°
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是
(A)各月的平均最低气温都在0℃以上
(B)七月的平均温差比一月的平均温差大
(C)三月和十一月的平均最高气温基本相同
(D)平均最高气温高于20℃的月份有5个
(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是
(A)
8
15(B)
1
8(C)
1
15
(D)
1
30
(6)若tanθ=
1
3,则cos2θ=
(A)
4
5
-
(B)
1
5
-
(C)
1
5(D)
4
5
(7)已知
421
333
2,3,25
a b c
===
,则
(A)b<a<cﻩ(B) a<b<cﻩﻩ (C)b<c<a (D)c<a<b (8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=
(A)3(B)4(C)5(D)6
(9)在ABC中,B=
1
,,sin 4
3
BC BC A
π
=
边上的高等于则
(A)
3
10(B)
10
(C)
5
(D)
310
(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表
面积为
(A)18365
+
(B)54185
+
(C)90
(D)81
(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是
(A)4π(B)

2
(C)6π(D)
32π
3
(12)已知O为坐标原点,F是椭圆C:
22
22
1(0)
x y
a b
a b
+=>>的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为
(A)13(B)12(C )23(D)34
第I I卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
(13)设x,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩
则z =2x+3y –5的最小值为______.
(14)函数y=sin x –cosx 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到.
(15)已知直线
l:60x -+=与圆x2+y 2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x轴交于C 、
D 两点,则|CD|= .
(16)已知f (x)为偶函数,当0x ≤时,1()x f x e
x --=-,则曲线y = f (x )在点(1,2)处的切线方程式_______
______________________.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.
(I)求23,a a ;
(II )求{}n a 的通项公式.
(18)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t的关系,请用相关系数加以说明;
(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:
参考数据:719.32i i y
==∑,7140.17i i i t y ==∑,721()0.55i
i y y =-=∑,≈2.646.
参考公式:12
2
11()()()(y y)n
i i
i n n i
i i i t t y y r t t ===--=--∑∑∑, 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:
12
1()()()n
i i
i n i
i t t y y b t t ==--=-∑∑,=.a y bt - (19)(本小题满分12分)
如图,四棱锥P-ABC D中,P A⊥地面ABCD,AD ∥BC ,AB=AD=AC=3,P A=B C=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.
(I)证明M N∥平面PA B;
(I I)求四面体N-B CM 的体积.
(20)(本小题满分12分)
已知抛物线C :y2
=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B两点,交C 的准线于P ,Q两点.
(Ⅰ)若F在线段AB 上,R是PQ 的中点,证明AR ∥FQ;
(Ⅱ)若△PQ F的面积是△ABF 的面积的两倍,求A B中点的轨迹方程.
(21)(本小题满分12分)
设函数()ln 1f x x x =-+.
(I)讨论()f x 的单调性;
(II)证明当(1,)x ∈+∞时,11ln x x x
-<<; (II I)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4—1:几何证明选讲
如图,⊙O中的中点为P ,弦P C,PD分别交AB 于E ,F 两点。

(Ⅰ)若∠PFB =2∠PCD ,求∠P CD 的大小;
(Ⅱ)若E C的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD 。

(23)(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xoy 中,曲线C1的参数方程为(为参数)。

以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ()=.
(I)写出C1的普通方程和C2的直角坐标方程;
(II)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标.(24)(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)=∣2x-a∣+a.
(I)当a=2时,求不等式f(x)≤6的解集;
(II)设函数g(x)=∣2x-1∣.当x∈R时,f(x)+g(x)≥3,求a的取值范围。

参考答案。

相关文档
最新文档