与圆有关的位置关系(讲义)
圆与圆有关的位置关系点与圆的位置关系课件

两圆内切
总结词:两圆之间的距离等于两圆的半径之差 两圆有且仅有一个公共点
两圆心之间的距离等于两圆的半径之差 两圆的圆心距离减去两圆的半径之差等于零
两圆外切
总结词:两圆之间的距离大于两圆的半径之和 两圆有且仅有一个公共点
两圆心之间的距离大于两圆的半径之和 两圆的圆心距离减去两圆的半径之和大于零
利用平面几何知识,如三角形中 位线、圆心角和弧长等,计算两 圆心之间的距离,从而、计算方法 圆的面积公式为S=πr²,其中π取3.14。
计算方法为将半径分为小段,每段小扇形的面积为πr²/4,再相加得到圆的面积。
圆的周长计算
总结词:公式、计算方法
圆的周长公式为C=2πr,其中π取3.14。
02
圆的定义与性质
圆的定义
平面内,一个动点到一个定点( 圆心)的距离等于定长(半径)的
运动轨迹形成的图形叫圆。
圆心决定圆的位置,半径决定 圆的大小。
圆是轴对称图形,任何一条直 径所在的直线都是它的对称轴
。
圆的性质
圆的任意两条直径必定相交于圆心。 圆内两条不平行弦的垂直平分线必定通过圆心。
圆的半径是直径的一半,且直径是半径的两倍。
在圆上,点与圆心的距离等于半径。
详细描述
当一个点在圆上时,它与圆心的距离等于该圆的半径。这意味着该点位于圆 的边缘,与圆相切,并且在该点的切线与圆相切。
点在圆外
总结词
在圆外,点与圆心的距离大于半径。
详细描述
当一个点在圆外时,它与圆心的距离大于该圆的半径。这意味着该点位于圆的外 部,与圆不相交、不切也不相离。
性质2
在同一直线上,任意三点确定一个圆
性质3
《圆与圆位置关系》课件

CONTENTS
• 圆与圆的位置关系概述 • 圆与圆的相切关系 • 圆与圆的相交关系 • 圆与圆的分离关系 • 圆与圆位置关系的性质和判定
01
圆与圆的位置关系概述
圆与圆的基本概念
圆心
圆的中心点,通常用大写 字母O表示。
圆
一个平面内,到定点的距 离等于定长的所有点组成 的图形。
平行。
相交关系的性质和判定
总结词
相交关系是圆与圆之间的一种常见位置关系 ,其性质和判定方法对于理解圆与圆的位置 关系同样重要。
详细描述
当两圆相交时,它们的交点数取决于两圆的 相对位置。一般情况下,两圆相交于两个不 同的交点,但有时也可能只有一个交点或没 有交点。此外,相交关系还有对称相交和倾 斜相交两种特殊情况,对称相交时两圆心连 线与两圆的交点连线垂直,倾斜相交时两圆
7
7
04
内切关系在几何图形中常用于
7
构造旋转对称图形和等分图形
。
相切关系的判定
9字
判定两圆是否相切的方法有 多种,其中一种是利用圆心 距和两圆半径的关系进行判 定。
9字
另一种判定方法是利用两圆 在某点相切的性质进行判定 ,即如果两圆在某点相切, 则该点到两圆心的距离相等 。
9字
当两圆的圆心距等于两圆半 径之和时,两圆外切;当圆 心距等于较大圆的半径减去 较小圆的半径时,两圆内切 。
数学公式
d>r1+r2
04
圆与圆的分离关系
圆心距大于两圆半径之和
两圆外离 当两圆的圆心距大于两圆的半径之和时,两圆处于分离状态,没有交点。
圆心距等于两圆半径之和
两圆外切
当两圆的圆心距恰好等于两圆的半径之和时,两圆处于外切状态,仅有一个交点。
圆与圆有关的位置关系 讲义(教师版)

与圆有关的位置关系1.能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系;2.能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系;3.能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系.1.点与圆的位置关系的判定;2.直线与圆的位置关系的判定.点与圆的位置关系1.点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP = d,则有:点P在圆内⇔d<r点P在圆上⇔d=r点P在圆外⇔d>r【注意】点与圆的位置关系是由点P到圆心的距离d和圆的半径r的数量关系决定的,在运用这一性质时应注意“形”与“数”之间的转化.2.确定圆的条件:不在同一条直线上的三点确定一个圆.【注意】可以让学生通过作图进行归纳总结“不在同一条直线上的三点确定一个圆”,熟练掌握其方法,经过一点或经过两点作圆,因为圆心不能唯一确定,半径也就不能确定.所以作出的圆都有无限多个.“不在同一直线上的三点确定一个圆”,这个“确定”的含义是“有且只有”.3.外接圆与外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,三角形的外心到三角形的三个顶点的距离相等.【注意】要注意的是,锐角三角形的外心在三角形的内部;直角三角形的外心是三角形斜边中点;钝角三角形的外心在三角形的外部,反之成立.例1.矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P 是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内【答案】解:连接PD、PC,⊙AB=8,点P 在边AB 上,且BP=3AP ,⊙AP=2,BP=6 在Rt APD ∆中,7PD ====,⊙⊙P 的半径r=7, 在Rt BPC ∆中,9PC ===⊙PB=6<r ,PC=9>r⊙点B 在圆P 内、点C 在圆P 外.故选C .【解析】此题主要考查判断点与圆的位置关系.需要比较点到圆心的距离与半径的大小关系,根据BP=3AP 和AB=8求得AP 的长,然后利用勾股定理求得圆P 的半径PD 的长,根据点B 、C 到P 点的距离判断点P 与圆的位置关系即可.练习1.如图,在Rt⊙ABC 中⊙ACB=90°,AC=6,AB=10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( )A.点P 在⊙O 内B.点P 在⊙O 上C.点P 在⊙O 外D.无法确定 【答案】A【解析】解:⊙AC=6,AB=10,CD 是斜边AB 上的中线, ⊙AD=5,OP=2.5,OC=OA=3, ⊙OP <OA ,⊙点P 在⊙O 内,故选A .练习2.如图,在平面直角坐标系中,⊙O 的半径为1, 点A坐标为12⎛ ⎝⎭,则点A 与⊙O的位置关系是( )ABA.点A 在⊙O 外B.点A 在⊙O 上C.点A 在⊙O 内D.无法判断【答案】解:⊙点A 坐标为12⎛ ⎝⎭,⊙OA = ⊙点A 在⊙O 上,故选B .【解析】本题考查点与圆的三种位置关系:点在圆内,点在圆上,点在圆外.根据点与圆的位置关系比较点到圆心的距离与1的大小关系,然后再确定点在圆上、内、外. 练习3.点P 到⊙O 的圆心O 的距离为d ,⊙O 的半径为r ,d 与r 的值是一元二次方程的两个根,则点P 与⊙O 的位置关系为( )A.点P 在⊙O 内B.点P 在⊙O 外C.点P 在⊙O 上D.点P 不在⊙O 上 【答案】解:解方程2320x x -+=得:x=1或x=2, ⊙d≠r ,⊙点P 不在⊙O 上, 故选D .【解析】本题考查了点与圆的位置关系及用因式分解法解一元二次方程的知识,解题的关键是正确地解方程.解方程求得方程的两个根即可得到d 与r 的值,然后做出判断.点与圆心之间的距离d 和该圆的半径r 有三种不同的大小关系,则点与圆也有三种不同的位置关系,所以在判断点与圆的位置关系时,只需要判断点到圆心的距离与半径的大小即可.例2.如图所示,一圆弧过方格的格点A 、B 、C ,试在方格中建立平面直角坐标系,使点A 的坐标为(-2,4),则该圆弧所在圆的圆心坐标是( )0232=+-xxA.(-1,2)B.(1,-1)C.(-1,1)D.(2,1)【答案】C【解析】解:如图所示,⊙AW=1,WH=3,=⊙BQ=3,QH=1,=⊙AH=BH同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.则该圆弧所在圆的圆心坐标是(-1,1).故选C.练习1.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点PB.点QC.点RD.点M【答案】B【解析】根据垂径定理的推论,则作弦AB和BC的垂直平分线,交点Q即为圆心.故选B.练习2.如图,小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第⊙块B.第⊙块C.第⊙块D.第⊙块【答案】B【解析】解:第⊙块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于圆心,进而可得到半径的长.故选B.三角形外接圆的圆心是三角形三条边垂直平分线的交点,圆上任意两弦的垂直平分线的交点即为该圆的圆心.例3.下列说法中,正确的有()①三点可以确定一个圆;⊙ 三角形的外心是三角形三边中线的交点;⊙ 锐角三角形的外心在三角形外;⊙ 三角形的外心到三角形各顶点的距离相等.A.1个B.2个C.3个D.4个【答案】A【解析】解:⊙不在同一直线上三点才可以作一个圆,⊙⊙错误;⊙三角形的外心是三角形三边垂直平分线的交点,⊙⊙错误;⊙锐角三角形的外心在三角形的内部,⊙⊙错误;⊙三角形的外心是三角形三边垂直平分线的交点,⊙根据垂直平分线性质得出三角形外心到三角形三个顶点的距离相等,⊙⊙正确;故选A.练习1.有如下结论:⊙一个圆只有一个内接三角形;⊙一个三角形只有一个外接圆;⊙直角三角形的外心是它斜边的中点;⊙等边三角形的外心是它角平分线的交点.A.1个B.2个C.3个D.4个【答案】C【解析】解:一个圆有无数个内接三角形,⊙⊙错误;三角形只有一个外接圆,⊙⊙正确;直角三角形斜边的中点到直角三角形三个顶点的距离相等,是直角三角形的外心,⊙⊙正确;等边三角形具有等腰三角形的三线合一的性质,等边三角形的外心是三边垂直平分线的交点,也是三条角平分线的交点,⊙⊙正确;故选C.练习2.正三角形的外接圆的半径和高的比为( )A.1⊙2B.2⊙3C.3⊙4D.1⊙3【答案】B【解析】连接OB,AO,延长AO交BC于D,⊙⊙O是等边三角形ABC的外接圆,⊙AD⊙BC,⊙OBC=12⊙ABC =12×60°=30°,⊙⊙ADB=90°,⊙OBC=30°,⊙12 OD OB⊙AD=OA+OD,⊙AD=OB+12OB =32OB,即OB:AD =2:3.故选B.练习3.已知:如图,⊙O是⊙ABC的外接圆,D为CB延长线上一点,⊙AOC=130°,则⊙ABD 的度数为()A.40°B.50°C.65°D.100°【答案】C【解析】解:在优弧AC上任意找一点E,连接AE、CE,根据圆周角定理得⊙E=65°;⊙四边形ABCE内接于⊙O,⊙⊙ABD=⊙E=65°.故选C不在同一直线上三点才可以作一个圆,在同一直线上三点不能作一个圆,三角形的外心是三角形三边垂直平分线的交点,锐角三角形的外心在三角形的内部.直线与圆的位置关系1.直线与圆的三种位置关系:【注意】判断直线与圆的位置关系时,既可以用直线与圆的公共点个数来判断,也可以用圆心到直线的距离d与r的大小关系来判定.要注意让学生根据不同的条件准确快速地判断直线与圆的位置关系.2.切线的判定方法(1)定义法:和圆有且只有一个公共点的直线是圆的切线.(2)数量法:圆心到直线的距离等于半径的直线是圆的切线(d=r).(3)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.3.切线的性质定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.例1.已知⊙O 的半径为3cm ,点P 是直线l 上一点,OP 长为5cm ,则直线l 与⊙O 的位置关系为( ) A.相交 B.相切C.相离D.相交、相切、相离都有可能【答案】D【解析】本题知道⊙O 的半径为3cm ,并知道点P 是直线l 上一点,OP 长为5cm ,并没有告诉圆心到直线l 的距离,且根据已知条件无法确定圆心到直线l 的距离的大小,所以此时要根据直线圆的位置关系的三种情况分别探究是否都有可能.通过具体的数值分析,可知直线l 与圆的位置关系三种都有可能,所以选D.练习1.如图,⊙O 的半径OC=5cm ,直线l ⊥OC ,垂足为H ,且l 交⊙O 于点A 、B 两点,AB=8cm ,则l 沿OC 所在的直线向下平移____cm 时与⊙O 相切.【答案】2【解析】本题是一道判断直线与圆相切有关的问题,涉及到垂径定理、勾股定理以及平移等有关知识的应用.要判断直线l 沿OC 的方向平移多少cm 时与⊙O 相切,只要求到CH 的长度即可.因为CH=OC -OH ,所以只要求到OH 就可解决问题. 解:连接OA ,在Rt⊙AOH 中,因为0A=5cm ,AH=4cm , 所以OH=3452222=-=-AH OA cm.所以CH=OC -OH=2cm.即l 沿OC 所在的直线向下平移2cm 时与⊙O 相切.练习2.如图,直线AB 、CD 相交于点O ,⊙AOD=30°,半径为1cm 的⊙P 的圆心在射线OA 上,且与点O 的距离为6cm .如果⊙P 以1cm/s 的速度沿由A 向B 的方向移动,那么( )秒钟后⊙P 与直线CD 相切. A .4B .8C .4或6D .4或8【解析】本题是一道设计比较新颖的题目,要判断几秒种后⊙P与直线CD相切,则需要计算出当P与直线CD相切时,圆心P移动的距离,如图,在移动的过程中,P与直线CD相切有两种情况,如图,当圆心运动到P1、P2的位置时与直线CD相切,只要求到PP1,PP2长度即可.解:当圆心移动到P1、P2的位置时,设P1与直线CD切于E点,则P1E=1,因为⊙POD=30°,所以OP1=2,所以PP1=6-2=4,同样可求PP2=8cm,所以经过4秒或8秒钟后⊙P与直线CD 相切.故选D.练习3.如图,⊙ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE 为直径的圆与BC的位置关系()A.相交B.相切C.相离D.无法确定【答案】A【解析】解:过点A作AM⊙BC于点M,交DE于点N,⊙AM·BC=AC·AB,⊙AM=4.8⊙D、E分别是AC、AB的中点,⊙DE⊙BC,DE=12BC=5⊙AN=MN=12AM,⊙MN=2.4,⊙以DE为直径的圆半径为2.5⊙r=2.5>2.4,⊙以DE为直径的圆与BC的位置关系是:相交.故选A练习4.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x与⊙O的位置关系是()A.相离B.相切C.相交D.以上三种情况都有可能 【答案】B【解析】解:⊙令x=0,则y=令y=0,则, ⊙A(0,,,0),⊙⊙AOB 是等腰直角三角形, ⊙AB=2,过点O 作OD⊙AB ,则OD=BD=1 ⊙直线y=x与⊙O 相切.故选B判断直线与圆的位置关系时,既可以用直线与圆的公共点个数来判断,也可以用圆心到直线的距离d 与r 的大小关系来判定.例2.如图,在⊙O 中,AB 是直径,AD 是弦,⊙ADE = 60°,⊙C = 30°.判断直线CD是否为⊙O 的切线,并说明理由.【答案】解:连接OD ,如图,⊙⊙ADE=60°,⊙C=30°, ⊙⊙A=⊙ADE -⊙C=60°-30°=30°, 又⊙OD=OA ,⊙⊙ODA=⊙A=30°, ⊙⊙EDO=90°,⊙OD 为⊙O 的半径,⊙CD 是⊙O 的切线【解析】本题考查圆切线的判定方法:若直线与圆有唯一交点,则此直线是圆的切线;若圆心到直线的距离等于圆的半径,则此直线是圆的切线;经过半径的外端与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和该点,证明该连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径,由题可知直线CD 与圆有公共点,故直接连接OD 证明OD⊙CD 即可.练习1.已知:如图,O 为ABC ∆的外接圆,BC 为O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .求证: 直线DA 为⊙O 的切线.【答案】解:连接OA ,⊙BC 为⊙O 的直径,BA 平分⊙CBF ,AD⊙BF ,⊙⊙ADB=⊙BAC=90°,⊙DBA=⊙CBA;⊙⊙OAC=⊙OCA,⊙⊙DAO=⊙DAB+⊙BAO=⊙BAO+⊙OAC=90°,⊙OA为⊙O半径,⊙DA为⊙O的切线.【解析】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.练习2.已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足⊙D=⊙ACB.判断直线BD与⊙O的位置关系,并证明你的结论.【答案】直线BD与⊙O相切.证明:如图,连接OB.⊙⊙OCB=⊙CBD+⊙D,⊙1=⊙D,⊙⊙2=⊙CBD,⊙AB⊙OC,⊙⊙2=⊙A,⊙⊙A=⊙CBD.⊙OB=OC,⊙⊙BOC+2⊙3=180°.⊙⊙BOC=2⊙A,⊙⊙A+⊙3=90°.⊙⊙CBD+⊙3=90°.⊙⊙OBD=90°.⊙OB为⊙O半径,⊙直线BD与⊙O相切.【解析】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.练习3.如图,D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO,求证:BD是⊙O的切线.【答案】连接BO,⊙AB=AD,⊙⊙D=⊙ABD⊙AB=AO,⊙⊙ABO=⊙AOB又在⊙OBD中,⊙D+⊙DOB+⊙ABO+⊙ABD=180°,⊙⊙OBD=90°,即BD⊙BO⊙OB为⊙O半径,⊙BD是⊙O的切线.练习4.已知:如图,⊙O是⊙ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊙DC,交DC的延长线于点E,且AC平分⊙EAB.(1)求证:DE是⊙O的切线.(2)若⊙ADC=30°,AC=6,求BC的长.【答案】(1)连接OC,则⊙CAO=⊙ACO.⊙AC平分⊙EAB,⊙⊙EAC=⊙CAO.⊙⊙EAC=⊙ACO .⊙AE⊙OC . ⊙⊙DCO=⊙E=90°,即DE⊙OC . ⊙OC 为半径,⊙DE 是⊙O 的切线. (2)⊙⊙ADC=30°,⊙⊙EAD=60°, ⊙⊙BAC=12⊙EAD=30°, ⊙AB 是⊙O 的直径,⊙⊙ACB=90°,⊙BC=【解析】本题考查了切线的判定与性质;证明某一直线是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一直线来判定切线.(1)应用判定定理判定圆的切线时,必须先弄清“题设”中的两个条件:一是经过半径的外端,二是垂直于这条半径,这两者缺一不可;(2)切线的判定定理中,只有证明是切线后,这个交点才能称为切点;(3)证明切线常见题型:⊙已知交点:连半径、证垂直;⊙交点未知:作垂直、证半径.例3.等腰⊙ABC 中,以AC 为直径作⊙O 交BC 于点D ,交AB 于点G ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线与点F .求证:EF⊙AB .【答案】解:连接OD ,⊙OC=OD ,⊙⊙ODC=⊙OCD ,又⊙AB=AC,⊙⊙OCD=⊙B,⊙⊙ODC=⊙B,⊙OD⊙AB,⊙ED是⊙O的切线,OD是⊙O的半径,⊙OD⊙EF,⊙AB⊙EF .练习1.如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B 作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求⊙AEC的度数;(2)求证:四边形OBEC是菱形.【答案】解:(1)在⊙AOC中,AC=2,⊙AO=OC=2,⊙⊙AOC是等边三角形,⊙⊙AOC=60°,⊙⊙AEC=30°;(2)⊙OC⊙l,BD⊙l.⊙OC⊙BD.⊙⊙ABD=⊙AOC=60°.⊙AB为⊙O的直径,⊙⊙AEB=90°,⊙⊙AEB为直角三角形,⊙EAB=30°.⊙⊙EAB=⊙AEC.⊙CE⊙OB,又⊙CO⊙EB,⊙四边形OBEC为平行四边形.又⊙OB=OC=2.⊙四边形OBEC是菱形.归纳切线的性质:(1)切线和圆有唯一公共点(切线的定义);(2)圆心到直线的距离等于圆的半径(判定方法(2)的逆命题);(3)切线垂直于过切点的半径(切线的性质定理);(4)经过圆心垂直于切线的直线必过切点(推论1);(5)经过切点垂直于切线的直线必过圆心(推论2).例4.如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为()A.5B.6C.√30D.112【答案】B【解析】解:连接OM、ON,⊙四边形ABCD是正方形,⊙AD=AB=11,⊙A=90°,⊙圆O与正方形ABCD的两边AB、AD相切,⊙⊙OMA=⊙ONA=90°=⊙A,⊙OM=ON,⊙四边形ANOM是正方形,⊙AM=OM=5,DE与圆O相切于E点,圆O的半径为5,⊙AM=5,DM=DE,⊙DE=11﹣5=6,故选B.练习1.如图,在Rt⊙AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.【答案】2【解析】解:连接OP、OQ.⊙PQ 是⊙O 的切线,⊙OQ⊙PQ ; 根据勾股定理知PQ 2=OP 2﹣OQ 2, ⊙当PO⊙AB 时,线段PQ 最短, ⊙在Rt⊙AOB 中,OA=OB=3, ⊙AB=OA=6,⊙OP==3, ⊙PQ===2.故答案为:2.练习2.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得⊙APB=60°,则称P 为⊙C 的关联点. 已知点D (21,),E (0,-2),F (32,0) (1)当⊙O 的半径为1时,⊙在点D ,E ,F 中,⊙O 的关联点是__________;⊙过点F 作直线交y 轴正半轴于点G ,使⊙GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径的取值范围.【答案】(1) ⊙;⊙;(2)21E D 、30≤≤m 1≥r【解析】(1) ⊙;⊙由题意可知,若点要刚好是圆的关联点;需要点到圆的两条切线和之间所夹的角度为; 由图可知,则,连接,则rBC CPBBCPC 22sin ==∠=; ⊙若点为圆C 的关联点;则需点P 到圆心的距离d 满足r d 20≤≤; 由上述证明可知,考虑临界位置的P 点,如图2;点P 到原点的距离212=⨯=OP ;过作轴的垂线,垂足为,; ⊙,⊙; ⊙,⊙; 易得点与点重合,过作轴于点; 易得,⊙;从而若点为圆的关联点,则点必在线段上,⊙;E D 、P C P C PA PB ︒601︒=∠60APB ︒=∠30CPB 图1CBAPBC PO x OH H 3232tan ===∠OG OF OGF ︒=∠60OGF 360sin =︒⋅=OG OH 23sin ==∠OP OH OPH ︒=∠60OPH 1P G 2P x M P ⊥2M ︒=∠302OM P 330cos 2=︒⋅=OP OM P O P 21P P 30≤≤m(2) 若线段上的所有点都是某个圆的关联点,欲使这个圆的半径最小, 则这个圆的圆心应在线段的中点; 考虑临界情况,如图3;即恰好点为圆的关联时,则; ⊙此时;故若线段上的所有点都是某个圆的关联点,这个圆的半径的取值范围为.利用直线与圆相切的性质可以处理一些较综合的问题,其中相切的性质可以为解题提供垂直的条件.圆与圆的位置关系1.圆和圆的位置关系有五种:外离、外切、相交、内切、内含2.设两圆圆心距为d ,两圆半径分别为R ,r (R>r )由圆和圆的位置关系及圆心距d 与R ,r (R>r )之间的关系得: 两圆外离d R r ⇔>+; 两圆外切d R r ⇔=+;EF EFF E 、K2212===EF KN KF 1=r EF r 1≥r两圆相交R r d R r ⇔-<<+;两圆内切d R r ⇔=-;两圆内含0d R r ⇔≤<-3.相交两圆性质定理: 两圆圆心的连线垂直并且平分这两个圆的公共弦.4.相切两圆的性质:如果两圆相切,那么切点一定在连心线上.例1.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是( )A.内切B.相交C.外切D.外离【答案】B【解析】解:根据题意得R+r=5+3=8,R -r=5-3=2,圆心距=7,⊙2<7<8,⊙两圆相交.故选B .练习1.已知⊙O 1与⊙O 2相交,它们的半径分别是4,7,则圆心距12O O 可能是( )A.2B.3C.6D.12【答案】C【解析】解:两圆半径之差为3,半径之和为11,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,3<12O O <11.符合条件的数只有C .故选C .练习2.已知⊙O 1与⊙O 2的半径分别是方程2430x x -+=的两根,且两圆的圆心距等于4,则⊙O 1与⊙O 2的位置关系是( )A 、外离B 、外切C 、相交D 、内切【答案】B【解析】解:⊙2430x x -+=,⊙(x -3)(x -1)=0,解得:x=3或x=1,⊙⊙O 1与⊙O 2的半径12,r r 分别是方程2430x x -+=的两实根,⊙124r r +=,⊙⊙O 1与⊙O 2的圆心距d=4,⊙⊙O 1与⊙O 2的位置关系是外切.故选B .练习3.若两个圆相切于A 点,它们的半径分别为10cm 、4cm ,则这两个圆的圆心距为( )A .14cmB .6cmC .14cm 或6cmD .8cm【答案】C 【解析】解:⊙两圆半径分别为10cm 、4cm ,⊙若这两个圆外切,则圆心距为:10+4=14(cm ),若这两个圆内切,则圆心距为:10-4=6(cm ),⊙这两个圆的圆心距为14cm 或6cm .故选C .练习4.定圆O 的半径是4cm ,动圆P 的半径是2cm ,动圆在直线l 上移动,当两圆相切时,OP 的值是( )A.2cm 或6cmB.2cmC.4cmD.6cm【答案】A【解析】解:设定圆O 的半径为R=4cm ,动圆P 的半径为r=2cm ,分两种情况考虑: 当两圆外切时,圆心距OP=R+r=4+2=6cm ;当两圆内切时,圆心距OP=R -r=4-2=2cm ,综上,OP 的值为2cm 或6cm .故选A由圆和圆的位置关系及圆心距d 与R ,r (R>r )之间的关系得:两圆外离d R r ⇔>+; 两圆外切d R r ⇔=+;两圆相交R r d R r ⇔-<<+;两圆内切d R r ⇔=-;两圆内含0d R r ⇔≤<-.例2.已知:如图,⊙O 1与⊙O 2外切于A 点,直线l 与⊙O 1、⊙O 2分别切于B ,C 点,若⊙O 1的半径r 1=2cm ,⊙O 2的半径r 2=3cm .求BC 的长.【答案】解:连接O 1B ,O 2C ,O 1O 2,过点O 1作O 1D⊙O 2C 于D ,⊙直线l 与⊙O 1、⊙O 2分别切于B ,C 点,⊙O 1B⊙BC ,O 2C⊙BC ,⊙四边形O 1BCD 是矩形,⊙CD=O 1B=r 1=2cm ,BC=O 1D ,⊙O 2D=O 2C -CD=3-2=1(cm ),⊙⊙O 1与⊙O 2外切于A 点,在Rt⊙O 2DO 1中,O 2O 1=r 1+r 2=2+3=5(cm ),⊙O 1D=cm ,⊙BC=cm .【解析】此题考查两圆相切的性质、切线的性质、矩形的判定与性质.难度适中,解题的关键是准确作出辅助线,掌握相切两圆的性质.练习1.如图为某机械的截面图,相切的两圆⊙O 1,⊙O 2均与⊙O 的弧AB 相切,且O 1O 2⊙l 1(l 1为水平线),⊙O 1,⊙O 2的半径均为30mm ,弧AB 的最低点到l 1的距离为30mm ,公切线l 2与l 1间的距离为100mm .则⊙O 的半径为( )A.70mmB.80mmC.85mmD.100mm【答案】B【解析】解:如图,设⊙O 的半径为Rmm ,依题意,得CE=100-30=70(mm ),⊙l 2⊙O 1O 2,⊙CD=O 1D=30(mm ),DE=CE -CD=70-30=40(mm ),OD=OE -DE=R -40(mm ),在Rt⊙OO 1D 中,O 1O=R -30(mm ),O 1D=30mm ,由勾股定理,得O 1D 2+OD 2=O 1O 2,即302+(R -40)2 =(R -30)2,解得R=80mm .故选B 练习2.如图,⊙O 1,⊙O 2,⊙O 3两两相切,AB 为⊙O 1,⊙O 2的公切线,AB 为半圆,且分别与三圆各切于一点.若⊙O 1,⊙O 2的半径均为1,则⊙O 3的半径为( )A.1B.121 1 【答案】C 【解析】解:如图,分别作三个圆心到AB 的垂线,垂足分别点E 、D 、F ,⊙O 1与⊙O 2的半径相等且相切于S ,则O 3D 过点S ,且点D 是半圆AB 的圆心,延长DS 交圆D 于点W ,则WD 是半圆AB 的半径.EFO 2O 1是矩形,SDEO 1是正方形,DQ=DW=SD+O 3S+O 3W设圆O 3的半径为R ,由勾股定理得O 3DO 1-1.故选C .两圆相切有两种情况:内切和外切,注意在处理两圆相切问题时需要分类讨论.例3.已知:如图,⊙O 1与⊙O 2相交于A ,B 两点,过A 点的割线分别交两圆于C ,D ,弦CE⊙DB ,连接EB ,试判断EB 与⊙O 2的位置关系,并证明你的结论.【答案】解:过B 作⊙O 2的直径BH ,连接AH ,AB ,⊙BH 是⊙O 2的直径,⊙⊙BAH=90°,⊙CE⊙DB ,⊙⊙ACE=⊙D⊙⊙H=⊙D ,⊙ACE=⊙ABE ,⊙⊙H=⊙ABE⊙⊙H+⊙ABH=90°,⊙⊙ABH+⊙ABE=90°⊙⊙EBH=90°, 又⊙O 2B 为半径,⊙EB 是⊙O 2的切线.【解析】此题考查直线与圆的位置关系,解题的关键是根据题意作出辅助线,再根据在同圆中等弧所对的圆周角相等和三角形的内角和等于180°进行解答.练习1.已知:相交两圆的公共弦的长为6cm ,两圆的半径分别为cm 23,cm 5,求这两个圆的圆心距.【答案】解:当公共弦在圆心的同侧时如图,AB=6cm ,O 1A=5cm ,O 2A=⊙公共弦长为6cm ,⊙AC=3cm ,AC⊙O 1O 2,⊙O 1C=4cm ,O 2C=3cm ,⊙当公共弦在两个圆心之间时,圆心距=4+3=7cm ;当公共弦在圆心的同侧时,圆心距=4-3=1cm .则这两个圆的圆心距是7cm 或1cm .【解析】此题主要考查了相交两圆的性质以及勾股定理.注意此题应考虑两种情况是解题关键.先根据勾股定理,得圆心距的两部分分别是4cm,3cm,然后根据两圆的位置关系确定圆心距.练习2.已知⊙O1和⊙O2相交于A、B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.(1)如图,当点D与点A不重合时,试猜想线段EA=ED是否成立?证明你的结论;(2)当点D与点A重合时,直线AC与⊙O2有怎样的位置关系?此时若BC=2,CE=8,求⊙O1的直径.【答案】解:(1)EA=ED成立.证明:连接AB,在EA延长线上取点F;⊙AE是⊙O1的切线,切点为A,⊙⊙FAC=⊙ABC,⊙⊙FAC=⊙DAE(对顶角),⊙⊙ABC=⊙DAE,而⊙ABC是⊙O2内接四边形ABED的外角,⊙⊙ABC=⊙D,⊙⊙DAE=⊙D,⊙EA=ED;(2)当点D与点A重合时,直线CA与⊙O2只有一个公共点,所以,直线CA与⊙O2相切,直径为4.两圆相交的重点是对相交弦的处理.。
与圆有关的位置关系

与圆有关的位置关系知识强化一、知识概述1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.(1)d>r点在圆外;(2)d=r点在圆上;(3)d<r点在圆内.2、确定圆的条件不在同一直线上的三个点确定一个圆.3、三角形的外接圆(1)定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.注意:①要弄清“接”是指三角形各顶点在圆上,“外”是指三角形外,“内”是指圆内.②三角形的外接圆和圆的内接三角形是针对上述同一个图形,从不同角度的两种说法.(2)三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.4、反证法(1)定义:从命题结论的反面出发,经过推理论证,得出矛盾,从而证明命题成立,这种方法叫做反证法.(2)反证法证明命题的一般步骤①反设:作出与结论相反的假设;②归谬:由假设出发,利用学过的公理、定理推出矛盾;③作结论:由矛盾判定假设不正确,从而肯定命题的结论正确.5、直线和圆的位置关系的定义及有关概念(1)直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.(2)用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:(1)直线l和⊙O相交d<r(如图(1)所示);(2)直线l和⊙O相切d=r(如图(2)所示);(3)直线l和⊙O相离d>r(如图(3)所示).6、切线(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(2)切线的性质:圆的切线垂直于过切点的半径.(3)切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.(4)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.7、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.8、圆和圆的位置关系(1)图示定义法(交点数)①相离:如果两个圆没有公共点,那么就说这两个圆相离,如上图(1)、(5)、(6)所示,其中(1)又叫做外离,(5)(6)叫做内含;②相切:如果两个圆只有一个公共点,那么就说这两个圆相切,如图(2)、(3)所示,其中(2)叫外切,(3)叫内切;③相交:如果两个圆有两个公共点,那么就说这两个圆相交,如图(4)所示.注意:圆与圆的位置关系按公共点的个数可分为0,1,2三大类即:(Ⅰ)没有公共点:(Ⅱ)有惟一公共点:(Ⅲ)有两个公共点:相交(2)用数量关系判断两圆的位置关系当两圆的半径一定时,两圆的位置关系与两圆圆心的距离(圆心距)的大小有关,设两圆半径分别为R和r(R>r),圆心距为d,则:(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r.二、重难点知识归纳与圆有关的位置关系的判断是重点,切线的判定和性质是重点也是难点.三、典型例题剖析例1、如图,已知矩形ABCD中,AB=3cm AD=4cm.若以A为圆心作圆,使B、C、D三点中至少有一点在圆外,且至少有一点在圆内,求⊙A的半径r的取值范围.解:∵矩形ABCD中,∠B=90°,AB=3cm,BC=AD=4cm,∴AC=5cm,其中点B到点A的距离最小,点C到点A的距离最大.若以AB为半径作圆,则没有点在⊙A内;若以AC为半径作圆,则没有点在⊙A外.故⊙A的半径r的取值范围是3cm<r<5cm.点拨:这里是由点与圆的位置确定半径r的大小.本例还要注意“至少”一词的理解.例2、阅读下列文字:在Rt△ABC中,∠C=90°,若∠A≠45°,则AC≠BC.证明:假设AC=BC.∵∠A≠45°,∠C=90°,∴∠A≠∠B.∴AC≠BC,这与题设矛盾,∴AC≠BC.上面的证明有没有错误,若没有错误,指出其证明方法是什么?若有错误,请给予指正.解:有错误.改正如下:假设AC=BC,则∠A=∠B,又∠C=90°,∴∠B=∠A=45°,这与∠A≠45°矛盾.∴AC=BC不成立.∴AC≠BC.点拨:运用反证法证题应从“假设”出发,即把假设当作已知条件,一步步有根据地推出与定义、定理、公理或已知矛盾的结论,从而判定“假设”不成立,进一步肯定命题的结论.例3、如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?解:以AB为直径的圆与CD是相切关系.理由如下:如图,过E作EF⊥CD,垂足为F.∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC.∵DE平分∠ADC,CE平分∠BCD,∴.∴以AB为直径的圆的圆心为E,且,∴以AB为直径的圆与边CD相切.点拨:在证明直线与圆的位置关系时,常过圆心向直线作垂线段,再比较垂线段与半径的大小即可.例4、已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD(如图).求证:DC是⊙O的切线.证明:连结OD...∵BC是⊙O的切线,∴∠OBC=90°.∴∠ODC=90°.∴OD⊥DC.∴DC是⊙O的切线.点拨:已知点B是切点,连结OB得OB⊥BC,要证CD是切线,也要连结OD,证OD ⊥CD,再沟通已知与未知的联系即可.例5、如图,AB是⊙O的直径,AD、BC、CD是⊙O的切线,切点分别是A、B、E,DO、AE相交于点F,CO、BE相交于点G.求证:(1)CO⊥DO;(2)四边形EFOG是矩形.分析:(1)欲证CO⊥DO,只需证明∠ODC+∠OCD=90°.根据切线长定理,得.再由切线的性质定理,不难得AD∥BC,从而∠ADC+∠BCD=180°,(1)获证.(2)仍由切线长定理,可证AE⊥DO,BE⊥CO.而∠AEB=90°,(2)获证.证明:(1) ∵AB是⊙O的直径,AD、BC是⊙O的切线,∴AD⊥AB,BC⊥AB.∴AD∥BC.∴∠ADC+∠BCD=180°.又由切线长定理,得.∴∠ODC+∠OCD=90°,即∠DOC=90°.故CO⊥DO.(2)∵DA、DE与⊙O相切于点A、E,∴DA=DE.∴AE⊥DO.∴∠EFO=90°.同理,∠EGO=90°.又∠DOC=90°,∴四边形EFOG是矩形.点评:在有关圆的问题,切线长定理与切线的性质定理的综合应用往往是证明线段相等、角相等、弧相等、垂直关系的重要依据.例6、已知⊙O1与⊙O2的半径分别为R,r,且R≥r,r是方程x2-6x+3=0的两根.设O1O2=d,那么:①若d=7,试判定⊙O1与⊙O2的位置关系;②若,试判定⊙O1与⊙O2的位置关系;③若d=5,试判定⊙O1与⊙O2的位置关系;④若两圆相切,求d的值.解:∵R、r是方程x2-6x+3=0的两根,∴R+r=6,R·r=3.∴.(1)∵d=7,即d>R+r,∴两圆外离.(2)∵,即d<R-r,∴两圆内含.(3)∵d=5,即R-r<d<R+r,∴两圆相交.(4)要使⊙O1与⊙O2相切,则d=R+r或d=R-r,∴d=6或时,两圆相切.点拨:由两圆的位置与两圆的半径、圆心距之间的数量关系知,应先分别求出R+r、R-r,然后再比较d与R+r、R-r的大小从而作出判断.例7、已知⊙O1与⊙O2相交于A、B两点,且O2点在⊙O1上.(1)如图(1),AD是⊙O2的直径,连结DB,并延长交⊙O1于C.求证:CO2⊥AD.(2)如图(2),如果AD是⊙O2的一条弦,连结DB并延长交⊙O1于C,那么CO2所在的直线是否与AD垂直?证明你的结论.证明:(1)连结AB,则有∠AO2C=∠ABC=180°-∠ABD=90°,∴CO2⊥AD.(2)作直径AD1交⊙O2于D1,连结D1B并延长交⊙O1于C1.由第(1)问知:∠AO2C1=90°,∴∠AD1B+∠BC1O2=90°.在⊙O2中,∠AD1B=∠ADB;在⊙O1中,∠BC1O2=∠BCO2.∴∠ADB+∠BCO2=90°.∴CE⊥AD.点拨:解决此类问题,关键是要找出一般与特殊的关系,在图形变换中,要找出不变量.。
与圆有关的位置关系

R与圆有关的位置关系一、知识梳理1、点和圆的位置关系.对于给定的圆,平面上的点与这个圆的位置关系有三种: 点在圆内;点在圆上;点在圆外.点P 在⊙O 内0d R ⇔≤<; 点Q 在⊙O 上d R ⇔=; 点R 在⊙O 外d R ⇔>. 2、直线与圆的位置关系.直线l 与O 相离d R ⇔>; 直线l 与O 相切d R ⇔=; 直线l 与O 相交0d R ⇔≤<.3、圆与圆的位置关系.圆与圆的位置关系可以分为三种情况: 若两圆没有公共点,则两圆相离; 若两圆有唯一公共点,则两圆相切;若两圆有两个公共点,则两圆相交.(1)相离⎧⎨⎩外离内含;(2)相交;(3)相切⎧⎨⎩外切内切.外离12d R R ⇔>+ 外切12d R R ⇔=+ 相交1212R R d R R ⇔-<<+内切12d R R ⇔=- 内含120d R R ⇔<-≤ 相交两圆连心线的性质定理:相交两圆的连心线垂直平分两圆的公共弦. 相切两圆连心线的性质定理:相切两圆的连心线经过切点.二、例题精讲例1、如图,在ABC △中,90C ∠=︒,43AC BC ==,,点P 是线段AC 上的一个动点,以点P 为圆心、P A 长为半径作⊙P ,B C 、两点分别在这个圆的外部和内部,试确定点P 的位置范围.A例2、如图,⊙1O 与⊙2O 内切于点P ,经过⊙1O 上点Q 的切线与⊙2O 相交于A 、B 两点,直线PQ 交⊙2O 于点R .求证: =RARB .例3、已知Rt ABC △中,90ABC ∠=︒,3AB =,4BC =,以点B 为圆心作⊙B . (1)如果⊙B 与斜边AC 相切,那么B 的半径长R 是多少?(2)如果⊙B 与斜边AC 只有唯一一个公共点,求⊙B 的半径长R 的取值范围. (3)⊙B 如果与斜边AC 有两个公共点,求⊙B 的半径长R 的取值范围. (4)如果⊙B 与斜边AC 没有公共点,求⊙B 的半径长R 的取值范围.1、已知矩形ABCD 中,3AB =,4BC =,如果分别以点A 、C 为圆心的两圆相切,点D 在C 内,点B 不在C 内,那么A 的半径长R 的取值范围是什么?PO 1 O 2QABR·· ABCD343DA2、已知Rt ABC △中,90ABC ∠=︒,3AB =,4BC =,点O 是AC 上一点,AO m =,O 的半径长为1,如果O 与直角边AB 没有公共点,求m 的取值范围.例4、已知两相交圆的半径是5和4,公共弦长为6,求这两圆的圆心距.例5、已知点()2 0A ,、()8 0B ,.(1)点P 在y 轴正半轴上,若过点P 、A 、B 的圆的面积最小,求点P 的坐标; (2)点P 在直线y x =上,若过点P 、A 、B 的圆的面积最小,求这个圆的圆心坐标.1、已知1O 与2O 相交于A 、B 两点,连心线12O O 交AB 于点C,1O A =,2O A =6AB =,求12O AO ∠的度数.2、已知:如图,两个半径长为r 的等圆1O 与2O 外切于点T ,点A 、点B 分别是1O 、2O 上的点,且AT BT ⊥,垂足为点T .试猜想线段AB 的长与半径r 的数量关系,并证明你的猜想.压轴题:已知一次函数m x y +-=21的图像经过点A (-2,3),并与x 轴相交于点B ,二次函数22-+=bx ax y 的图像经过点A 和点B .(1)分别求这两个函数的解析式;(2)如果将二次函数的图像沿y 轴的正方向平移,平移后的图像与一次函数的图像相交于点P ,与y 轴相交于点Q ,当PQ ∥x 轴时,试问二次函数的图像平移了几个单位.如图,已知AB ⊥MN ,垂足为点B ,P 是射线BN 上的一个动点,AC ⊥AP ,∠ACP =∠BAP ,AB =4,BP =x ,CP =y ,点C 到MN 的距离为线段CD 的长. (1)求y 关于x 的函数解析式,并写出它的定义域.(2)在点P 的运动过程中,点C 到MN 的距离是否会发生变化?如果发生变化,请用x 的代数式表示这段距离;如果不发生变化,请求出这段距离.(3)如果圆C 与直线MN 相切,且与以BP 为半径的圆P 也相切,求BP ∶PD 的值.AB P D CNM。
圆与圆有关的位置关系圆与圆的位置关系课件

计算公式:面积 = π * r^2,其 中r为圆的半径。
当两个圆相交时,可以分别计算 两个圆的面积,然后根据公共部 分的面积来计算相交部分的面积
。
如果已知两圆半径分别为r和R, 则相交部分的面积为S = π * r *
R。
04
相离圆的位置关系
相离圆的特点
两圆心距离大于两圆半径之和 两圆没有公共点
03
相交圆的位置关系
相交圆的特点
两个圆相交,则存在 两个公共点。
相交圆的半径与两个 圆的中心距离相等。
两个公共点都在两个 圆的边界上。
相交圆的性质
相交圆的连心线垂直平分两圆 交点所在的弦。
相交圆的弦被两圆的连心线所 平分。
相交圆的弦长等于两圆半径之 和或差(视弦的位置而定)。
相交圆的面积计算
内离→内含
随着两圆之间的距离逐渐 增大,它们可能从内离变 为内含。
相交→相切→内切
随着两圆之间的距离逐渐 减小,它们可能从相交变 为相切,再变为内切。
02
相切圆的位置关系
外切圆
总结词
两圆外切,即两圆的圆心距离等于两圆半径之和。
详细描述
当两个圆相切时,它们的圆心位于同一直线上,并且圆心之间的距离等于两个 圆的半径之和。外切圆是一种常见的相切圆位置关系,它在几何学和图形学中 具有重要应用。
移动与旋转
移动
通过将一个圆平移到另一个圆的位置 ,可以实现相离圆到相交圆的转换。 移动过程中,圆心之间的距离会发生 变化,但圆的形状和大小保持不变。
旋转
旋转一个圆,使它与另一个圆相交, 可以实现相离圆到相交圆的转换。旋 转过程中,圆心之间的距离保持不变 ,但圆上各点的位置会发生变化。
相离圆与相交圆的转换关系
(课件1)3.6圆和圆的位置关系

01
02
03
04
判断两个圆的圆心距与两圆的 半径之和、半径之差的大小关 系,即可确定两圆的位置关系
。
若圆心距小于两圆的半径之和 且大于两圆的半径之差,则两
圆相交。
若圆心距等于两圆的半径之和 ,则两圆外切。
若圆心距等于两圆的半径之差 ,则两圆内含。
相交的性质
01
02
相交的两个圆有一条公 共弦,该公共弦是两个 圆的交点所连成的线段。
(课件1)3.6圆和圆的 位置关系
目录
• 圆和圆的位置关系概述 • 相交关系 • 相切关系 • 分离关系 • 综合应用
01
圆和圆的位置关系概述
定义
01
圆和圆的位置关系是指两个圆之 间相对位置的描述,包括相交、 相切、相离三种基本关系。
02
相交是指两个圆有公共点,且公共 点数大于1;相切是指两个圆有且 仅有一个公共点;相离则是指两个 圆没有公共点。
综合应用实例
两圆相交的应用
求两圆的公共弦长、两圆的交点 坐标等。
两圆相切的应用
求两圆的切线方程、判断直线与圆 的位置关系等。
两圆相离的应用
判断直线与圆的位置关系、求两圆 的圆心距等。
THANKS FOR WATCHING
感谢您的观看
相交的两个圆有两个交 点,这两个交点位于公 共弦上。
03
相交的两个圆有四个不 同的弧,其中两个弧是 公共弧,另两个弧是各 自独立的弧。
04
相交的两个圆在公共弦 上对称,即公共弦的中 点是两个圆的圆心连线 的中点。
03
相切关系
相切的定义
01
02
03
04
相切的定义
两圆相切是指两圆只有一个公 共点,ቤተ መጻሕፍቲ ባይዱ个公共点叫做切点,
考点20 与圆有关的位置关系及计算(精讲)(解析版)

考点20.与圆有关的位置关系及计算(精讲)【命题趋势】与圆相关的位置关系也是各地中考数学中的必考考点之一,主要内容包括点、直线与圆的位置关系、切线的性质和判定、三角形的内切圆和外接圆三块,在解答题中想必还会考查切线的性质和判定,和直角三角形结合的求线段长的问题和三角函数结合的求角度的问题等知识点综合,考查形式多样,多以动点、动图的形式给出,难度较大。
关键是掌握基础知识、基本方法,力争拿到全分。
【知识清单】1:点、直线与圆的位置关系类(☆☆)1)点和圆的位置关系:已知⊙O的半径为r,点P到圆心O的距离为d,则:图1图2(1)d<r⇔点在⊙O内,如图1;(2)d=r⇔点在⊙O上,如图2;(3)d>r⇔点在⊙O外,如图3.解题技巧:掌握已知点的位置,可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系,可以确定该点与圆的位置关系。
2)直线和圆的位置关系:设⊙O的半径为r,圆心到直线l的距离为d,则直线和圆的位置关系如下:图1图2图3(1)d>r⇔相离,如图1;(2)d=r⇔相切,如图2;(3)d<r⇔相交,如图3。
2:切线的性质与判定(☆☆☆)1)切线的性质:(1)切线与圆只有一个公共点;(2)切线到圆心的距离等于圆的半径;(3)切线垂直于经过切点的半径。
解题技巧:利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题。
2)切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法);(2)到圆心的距离等于半径的直线是圆的切线(数量关系法);(3)经过半径外端点并且垂直于这条半径的直线是圆的切线(判定定理法)。
切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径。
3)切线长定理定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。
定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆有关的位置关系(讲义)➢知识点睛
1.点与圆的位置关系
d表示__________的距离,r表示___________.
①点在圆外⇔_____________;
②点在圆上⇔_____________;
③点在圆内⇔_____________.
三点定圆定理:_________________________________.
注:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.
2.直线与圆的位置关系
d表示__________________的距离,r表示__________.
①直线与圆相交⇔____________;
②直线与圆相切⇔____________;
③直线与圆相离⇔____________.
切线的判定定理:__________________________________
__________________________________________________;
切线的性质定理:__________________________________.*切线长定理:______________________________________
__________________________________________________.注:与三角形各边都相切的圆叫做三角形的内切圆,内切圆
的圆心是三角形三条角平分线的交点,叫做三角形的内心.*3. 圆与圆的位置关系
d表示__________的距离,R表示________,r表示
_________.
①圆与圆外离⇔_________________;
②圆与圆外切⇔_________________;
③圆与圆内切⇔_________________;
④圆与圆内含⇔_________________;
⑤圆与圆相交⇔_________________.
4.圆内接正多边形
_______________________________叫做圆内接正多边形,这个圆叫做该正多边形的_________.
正多边形的中心:___________________________________;
正多边形的半径:___________________________________;
A
正多边形的中心角:_________________________________; 正多边形的边心距:_________________________________.
➢ 精讲精练
1. 矩形ABCD 中,AB =8
,BC P 在AB 边上,且BP =3AP ,如果圆P
是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ) A .点B ,C 均在圆P 外
B .点B 在圆P 外、点
C 在圆P 内 C .点B 在圆P 内、点C 在圆P 外
D .点B ,C 均在圆P 内
2. 如图,在5×5的正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧
所在圆的圆心是点________.
第2题图 第3题图
3. 小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原
来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块
B .第②块
C .第③块
D .第④块
4. 如图,在Rt △ABC 中,∠C =90°,
∠A =60°,BC =4 cm ,以点C 为圆 心,以3 cm 长为半径作圆,则⊙C
与AB 的位置关系是__________.
5. 在Rt △ABC 中,∠C =90°,AC =3,BC =4.以C 为圆心,R 为半径所作的圆与
斜边AB 有且只有一个公共点,则R 的取值范围是_________________. 6. 在△ABC 中,∠C =90°,AC =3 cm ,BC =4 cm .若⊙A ,⊙B 的半径分别为1
cm ,4 cm ,则⊙A ,⊙B 的位置关系是______.
7. 若有两圆相交于两点,且圆心距为13 cm ,则下列哪一选项中的长度可能为
此两圆的半径( ) A .25 cm ,40 cm
B .20 cm ,30 cm
C .1 cm ,10 cm
D .5 cm ,7 cm
8. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,∠CDB =20°,过点C 作⊙O
的切线,交AB 的延长线于点E ,则∠E =_____.
C
B A
第8题图 第9题图 9. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,点C 是劣弧AB 上的一个动点,若∠P =40°,则∠ACB =_______.
10. 如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果
∠E =46°,∠DCF =32°,那么∠
A =______.
O
F E D
C
B
A
第10题图 第11题图
11. 如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相切,点
E ,
F 分别在边AD ,DC 上.现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE =2,则正方形ABCD 的边长是________.
12. 如图,在⊙O 中,FC 为直径,长为8.分别以F ,C 为圆心,以⊙O 的半径R
为半径作弧,与⊙O 相交于点E ,A 和D ,B ,则A ,B ,C ,D ,E ,F 是⊙
O
的六等分点,
顺次连接AB ,BC ,CD ,DE ,
EF ,FA . 过点O 作OG ⊥BC ,垂足为G ,则OG 长为
_______.
13. 如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距
OM 和BC ︵
的长分别为( )
A .23
π
, B .
π
C 23
π
,
D .43π,
14. 如图,⊙O 的直径为AB ,点C 在圆周上(异于A ,B ),
F
E B
AD⊥CD.
(1)若BC=3,AB=5,求AC的长;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的
切线.
A
B
15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点
D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
【参考答案】 ➢ 知识点睛
1. 点到圆心;圆的半径;d r >;d r =;d r <.
不在同一条直线上的三个点确定一个圆.
2. 圆心O 到直线l ;圆的半径;d r <;d r =;d r >.
经过半径的外端且垂直于该半径的直线是圆的切线; 圆的切线垂直于过切点的半径.
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
3. 圆心之间;大圆半径;小圆半径.
d R r >+;d R r =+;d R r =-;0d R r <-≤;R r d R r -<<+. 4. 顶点都在同一圆上的正多边形;外接圆.
一个正多边形的外接圆的圆心叫做这个正多边形的中心;
外接圆的半径叫做正多边形的半径;
正多边形每一边所对的圆心角叫做正多边形的中心角; 中心到正多边形的一边的距离叫做正多边形的边心距.
➢ 精讲精练
1. C
2. Q
3. B
4. 相交
5. 34R <≤或12
5
R = 6. 外切 7. B 8. 50° 9. 110° 10. 99°
11. 2
12. 13. D
14. (1)AC =4;(2)证明略
15. (1)直线DE 与⊙O 相切,理由略;(2)194
DE =。