上海市位育中学2021届高三第一学期数学十月月考卷(有答案)

合集下载

2021年高三10月月考试卷(数学)

2021年高三10月月考试卷(数学)

2021年高三10月月考试卷(数学)一、填空题:本大题共12小题,每小题5分,共60分.把答案填写在答题卡...相应位置上......1、原命题:“设”以及它的逆命题,否命题、逆否命题中,真命题共有个.2、已知命题,命题,则命题p是命题q的条件3、若向量满足且,则实数k的值为4、若不等式的解集为,求的值5、已知等差数列的前项和为,若,且三点共线(该直线不过点),则等于6、若复数满足,且在复平面内所对应的点位于轴的上方,则实数的取值范围是。

7.已知、、是三角形的三个顶点,,则的形状为。

8.在条件的最大值为 .9.把实数a,b,c,d排成形如的形式,称之为二行二列矩陈。

定义矩阵的一种运算·,该运算的几何意义为平面上的点(x,y)在矩阵的作用下变换成点,若点A在矩阵的作用下变换成点(2,4),则点A的坐标为 .10、把一条长是6m的绳子截成三段,各围成一个正三角形,则这三个正三角形的面积和最小值是m2.11、对,记,按如下方式定义函数:对于每个实数,.则函数最大值为.12、已知函数,直线:9x+2y+c=0.若当x∈[-2,2]时,函数y=f(x)的图像恒在直线的下方,则c的取值范围是________________________二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,只.有.一项..是符合题目要求的.13 定义集合与的运算,则等于(A)(B)(C)(D)()14.根据表格中的数据,可以断定函数的一个零点所在的区间是15、函数()是上的减函数,则的取值范围是 A. B. C. D.( ) 16.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f (x ),另一种平均价格曲线y=g(x ),如f (2)=3表示股票开始卖卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元。

下面给出了四个图象,实线表示y=f (x ),虚线表示y=g(x ),其中可能..正确的是 ( )三、解答题:本大题共6小题,共80分.解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设函数. (I )解不等式;(II )若关于的不等在恒成立,试求的取值范围. 18.(本小题满分12分)已知等差数列的前4项和为10,且、 、成等比数列. (1)求数列的通项公式;(2)设,求数列的前n 项和. 19.(本小题满分12分)设函数,其中向量R x x x n x m ∈==),2sin 3,(cos ),1,cos 2(.(Ⅰ)求f (x )的最小正周期与单调减区间;(Ⅱ)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知f (A ) =2,b = 1,△ABC 的面积为,求的值.ABCD20.(本小题满分14分)为迎接xx年的奥运会,某厂家拟在xx年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元()(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。

2021年高三上学期10月综合测试数学试题含答案

2021年高三上学期10月综合测试数学试题含答案

2021年高三上学期10月综合测试数学试题含答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

满分150分,考试时间120分钟第I卷选择题(共50分)一.选择题:(本题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合要求的,请将正确答案填到答题卡的相应位置)1.设集合},yy=x-A x则<xxB22,]2,0[{},={∈1=(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)2.给出下列两个命题,命题“”是“”的充分不必要条件;命题q:函数是奇函数,则下列命题是真命题的是A. B. C. D.3. “,”是“函数的图象过原点”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数的定义域为(A) (B) (C) (D)5.已知函数若方程有两个不相等的实根,则实数k的取值范围是,.(A)(B)(C)(D)6.定义在R上的奇函数满足,当时,,则在区间内是()A.减函数且f(x)>0 B.减函数且f(x)<0 C.增函数且f(x)>0 D.增函数且f (x)<07.若对任意的恒成立,则的最大值是(A)4(B)6(C)8(D)108.已知函数的图象过点,则的图象的一个对称中心是(A) (B) (C) (D)9.已知函数,则函数的大致图象为10.直线与不等式组表示的平面区域有公共点,则实数m的取值范围是A. B. C. D.二.填空题(每小题5分,共25分。

请把答案填在答题卡上)11.当时,函数的图像恒过点A,若点A在直线上,则的最小值为________12.已知对于任意的x∈R,不等式|x﹣3|+|x﹣a|>5恒成立,则实数a的取值范围是________13.若,则= ___________.14.已知向量和,,其中,且,则向量和的夹角是.15.已知函数在区间内任取两个实数,不等式恒成立,则实数a的取值范围为___________.三.解答题(满分75分。

2021年高三上学期10月月考数学试卷(文科)含解析)

2021年高三上学期10月月考数学试卷(文科)含解析)

2021年高三上学期10月月考数学试卷(文科)含解析)一.选择题:本大题共8小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|﹣2<x<2,x∈R},那么集合A∩B 是()A.∅B.{x|0<x<1,x∈R} C.{x|﹣2<x<2,x∈R} D.{x|﹣2<x<1,x ∈R}2.i是虚数单位,计算=()A.﹣1 B.1 C.i D.﹣i3.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件4.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)5.已知数列{a n}中,a n=﹣4n+5,等比数列{b n}的公比q满足q=a n﹣a n(n≥2),且b1=a2,﹣1则|b1|+|b2|+…+|b n|=()A.1﹣4n B.4n﹣1 C. D.6.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C()A.a<b<c B.a<c<b C.b<a<c D.c<a<b7.已知函数y=log b(x﹣a)(b>0且b≠1)的图象如图所示,那么函数y=a+sinbx的图象可能是()A. B. C.D.8.若存在负实数使得方程2x﹣a=成立,则实数a的取值范围是()A.(2,+∞)B.(0,+∞)C.(0,2)D.(0,1)二.填空题(本大题共4个小题,每小题5分,共20分.)9.向量=(1,1),=(2,t),若⊥,则实数t的值为.10.在△ABC中,若cos2B+3cos(A+C)+2=0,则sinB的值为.11.已知tan(+α)=,α∈(,π),则tanα的值是;cosα的值是.12.已知角α的终边经过点(3a,4a)(a<0),则cosα=.13.通项公式为a n=an2+n的数列{a n},若满足a1<a2<a3<a4<a5,且a n>a n对n≥8恒成立,+1则实数a的取值范围是.14.已知函数f(x)=对∀x1,x2∈R,x1≠x2有<0,则实数a的取值范围是.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.15.已知S n为等差数列{a n}的前n项和,且a3=S3=9(Ⅰ)求{a n}的通项公式;(Ⅱ)若等比数列{b n}满足b1=a2,b4=S4,求{b n}的前n项和公式.16.已知函数f(x)=sinωx﹣sin2+(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.17.在△ABC中,A=,cosB=,BC=6.(Ⅰ)求AC的长;(Ⅱ)求△ABC的面积.=1+S n(n∈N*).18.设数列{a n}的前n项和为S n,且a1=1,a n+1(Ⅰ)求数列{a n}的通项公式;与1+b1+b2+…+b n的(Ⅱ)若数列{b n}为等差数列,且b1=a1,公差为.当n≥3时,比较b n+1大小.19.已知f(x)=lg(﹣<x,1).(I)判断f(x)的奇偶性,并予以证明;(Ⅱ)设f()+f()=f(x0),求x0的值.(Ⅲ)求证:对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f().20.设函数y=f(x)的定义域为R,满足下列性质:(1)f(0)≠0;(2)当x<0时,f(x)>1;(3)对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.(I)求f(0)及f(x)*f(﹣x)的值;(Ⅱ)判断函数g(x)=是否具有奇偶性,并证明你的结论;(Ⅲ)求证:y=f(x)是R上的减函数;(Ⅳ)若数列{a n}满足a1=f(0),且f(a n)=(n∈N*),求证:{a n}是等差数列,并求{a n}+1的通项公式.xx学年北京交大附中高三(上)10月月考数学试卷(文科)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|﹣2<x<2,x∈R},那么集合A∩B是()A.∅B.{x|0<x<1,x∈R}C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x<1,x∈R}【考点】交集及其运算.【分析】先求解一元二次不等式化简集合A,然后直接利用交集的运算求解.【解答】解:由x(x﹣1)<0,得0<x<1.所以A={x|x(x﹣1)<0,x∈R}={x|0<x<1},又B={x|﹣2<x<2,x∈R},所以A∩B={x|0<x<1,x∈R}∩{x|﹣2<x<2,x∈R}={x|0<x<1,x∈R}.故选B.2.i是虚数单位,计算=()A.﹣1 B.1 C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】通过复数的分母实数化,即可得到结果.【解答】解:===i.故选:C.3.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件【考点】平面向量共线(平行)的坐标表示;平行向量与共线向量.【分析】利用向量共线的充要条件求出的充要条件,利用充要条件的定义判断出“x=2”是的充分但不必要条件.【解答】解:依题意,∥⇔3﹣(x﹣1)(x+1)=0⇔x=±2,所以“x=2”是“∥”的充分但不必要条件;故选A4.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.5.已知数列{a n}中,a n=﹣4n+5,等比数列{b n}的公比q满足q=a n﹣a n(n≥2),且b1=a2,﹣1则|b1|+|b2|+…+|b n|=()A.1﹣4n B.4n﹣1 C. D.【考点】数列的求和.【分析】先由a n=﹣4n+5及q=a n﹣a n求出q,再由b1=a2,求出b1,从而得到b n,进而得到﹣1|b n|,根据等比数列前n项和公式即可求得|b1|+|b2|+…+|b n|.=(﹣4n+5)﹣[﹣4(n﹣1)+5]=﹣4,b1=a2=﹣4×2+5=﹣3,【解答】解:q=a n﹣a n﹣1所以=﹣3•(﹣4)n﹣1,|b n|=|﹣3•(﹣4)n﹣1|=3•4n﹣1,所以|b1|+|b2|+…+|b n|=3+3•4+3•42+…+3•4n﹣1=3•=4n﹣1,故选B.6.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【考点】对数值大小的比较.【分析】利用指数与对数函数的单调性即可得出.【解答】解:∵0<a=log0.80.9<1,b=log1.10.9<0,c=1.10.9>1,∴b<a<c.故选:C.7.已知函数y=log b(x﹣a)(b>0且b≠1)的图象如图所示,那么函数y=a+sinbx的图象可能是()A. B. C.D.【考点】函数的图象.【分析】先根据对数函数的图象和性质象得到a,b的取值范围,再根据正弦函数的图得到答案.【解答】解∵由对数函数图象可知,函数为增函数,∴b>1,y=log b(x﹣a)函数的图象过定点(a+1,0),∴a+1=2,∴a=1∴函数y=a+sinbx(b>0且b≠1)的图象,是有y=sinbx的图象向上平移1的单位得到的,由图象可知函数的最小正周期T=<2π,故选:B8.若存在负实数使得方程2x﹣a=成立,则实数a的取值范围是()A.(2,+∞)B.(0,+∞)C.(0,2)D.(0,1)【考点】特称命题.【分析】由已知,将a分离得出a=.令f(x)=,(x<0).a的取值范围为f(x)在(﹣∞,0)的值域.【解答】解:由已知,将a分离得出a=.令f(x)=,(x<0).已知在(﹣∞,0)上均为增函数,所以f(x)在(﹣∞,0)上为增函数.所以0<f(x)<f(0)=2,a的取值范围是(0,2).故选C.二.填空题(本大题共4个小题,每小题5分,共20分.)9.向量=(1,1),=(2,t),若⊥,则实数t的值为﹣2.【考点】平面向量的坐标运算.【分析】利用两个向量垂直的性质,两个向量数量积公式,可得=2+t=0,由此求得t的值.【解答】解:∵向量=(1,1),=(2,t),若⊥,则=2+t=0,t=﹣2,故答案为:﹣2.10.在△ABC中,若cos2B+3cos(A+C)+2=0,则sinB的值为.【考点】三角函数中的恒等变换应用.【分析】利用三角形内角和定理化简即可得到答案!【解答】解:∵B+A+C=π,∴A+C=π﹣B那么cos(A+C)=cos(π﹣B)=﹣cosB.则:cos2B+3cos(A+C)+2=0⇔cos2B﹣3cosB+2=0⇔2cos2B﹣1﹣3cosB+2=0⇔2cos2B﹣3cosB+1=0⇔(2cosB﹣1)(cosB﹣1)=0解得:cosB=1,此时B=0°,不符合题意.或cosB=,此时B=60°,符合题意.那么:sinB=sin60°=.故答案为:.11.已知tan(+α)=,α∈(,π),则tanα的值是﹣;cosα的值是﹣.【考点】两角和与差的正切函数;任意角的三角函数的定义.【分析】利用两角和与差的正切函数及任意角的三角函数的定义,即可求得tanα与cosα的值.【解答】解:tan(+α)=,∴tanα=tan[(+α)﹣]===﹣;又α∈(,π),∴cosα=﹣=﹣.故答案为:;.12.已知角α的终边经过点(3a,4a)(a<0),则cosα=﹣.【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求得cosα的值.【解答】解:∵角α的终边经过点(3a,4a)(a<0),∴x=3a,y=4a,r==5|a|=﹣5a,则cosα===﹣,故答案为:﹣.13.通项公式为a n=an2+n的数列{a n},若满足a1<a2<a3<a4<a5,且a n>a n对n≥8恒成立,+1则实数a的取值范围是.【考点】数列递推式;数列的应用.【分析】由a n=an2+n是二次函数型,结合已知条件得,由此可知答案.【解答】解:∵a n=an2+n是二次函数型,且a1<a2<a3<a4<a5,a n>a n对n≥8恒成立,+1∴,解得﹣.故答案为:﹣.14.已知函数f(x)=对∀x1,x2∈R,x1≠x2有<0,则实数a的取值范围是0≤a<1或a>3.【考点】分段函数的应用.【分析】由任意x1≠x2,都有<0成立,得函数为减函数,根据分段函数单调性的性质建立不等式关系即可.【解答】解:∵f(x)满足对任意x1≠x2,都有<0成立∴函数f(x)在定义域上为减函数,则满足,得0≤a<1或a>3,故答案为:0≤a<1或a>3.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.15.已知S n为等差数列{a n}的前n项和,且a3=S3=9(Ⅰ)求{a n}的通项公式;(Ⅱ)若等比数列{b n}满足b1=a2,b4=S4,求{b n}的前n项和公式.【考点】等比数列的前n项和;等差数列的通项公式.【分析】(Ⅰ)设等差数列{a n}的公差为d,由a3=S3=9,得,解出a1,d,由等差数列通项公式即可求得答案;(Ⅱ)设等比数列{b n}的公比为q,由b1=a2可得b1,由b4=S4可得q,由等比数列前n项和公式可得答案;【解答】解:(Ⅰ)设等差数列{a n}的公差为d.因为a3=S3=9,所以,解得a1=﹣3,d=6,所以a n=﹣3+(n﹣1)•6=6n﹣9;(II)设等比数列{b n}的公比为q,因为b1=a2=﹣3+6=3,b4=S4=4×(﹣3)+=24,所以3q3=24,解得q=2,所以{b n}的前n项和公式为=3(2n﹣1).16.已知函数f(x)=sinωx﹣sin2+(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.【考点】二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的单调性.【分析】(Ⅰ)利用两角和的正弦公式,二倍角公式化简函数f(x)的解析式为,由此求得它的最小正周期.令,求得x的范围,即可得到函数f(x)的单调递增区间.(Ⅱ)因为,根据正弦函数的定义域和值域求得函数f(x)的取值范围.【解答】解:(Ⅰ)==.…因为f(x)最小正周期为π,所以ω=2.…所以.由,k∈Z,得.所以函数f(x)的单调递增区间为[],k∈Z.…(Ⅱ)因为,所以,…所以.…所以函数f(x)在上的取值范围是[].…17.在△ABC中,A=,cosB=,BC=6.(Ⅰ)求AC的长;(Ⅱ)求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)由已知结合平方关系求得sinB=,再由正弦定理求得AC的长;(Ⅱ)由sinC=sin(B+60°)展开两角和的正弦求得sinC,代入三角形的面积公式求得△ABC 的面积.【解答】解:(Ⅰ)∵cosB=,B∈(0,π),又sin2B+cos2B=1,解得sinB=.由正弦定理得:,即,∴AC=4;(Ⅱ)在△ABC中,sinC=sin(B+60°)=sinBcos60°+cosBsin60°==.∴=.18.设数列{a n}的前n项和为S n,且a1=1,a n+1=1+S n(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}为等差数列,且b1=a1,公差为.当n≥3时,比较b n+1与1+b1+b2+…+b n的大小.【考点】数列的求和;数列递推式.【分析】(I)由a n+1=1+S n(n∈N*),当n≥2时可得a n+1=2a n,当n=1时,=2,利用等比数列即可得出;(II)利用等差数列的通项公式可得:b n=2n﹣1.当n≥3时,b n+1=2n+1.1+b1+b2+…+b n=n2+1.通过作差即可比较出大小.【解答】解:(I)∵a n+1=1+S n(n∈N*),∴当n≥2时,a n=1+S n﹣1,∴a n+1﹣a n=a n,即a n+1=2a n,当n=1时,a2=1+a1=2,∴=2,综上可得:a n+1=2a n(n∈N*),∴数列{a n}是等比数列,公比为2,∴.(II)数列{b n}为等差数列,且b1=a1=1,公差为=2.∴b n=1+2(n﹣1)=2n﹣1.当n≥3时,b n+1=2n+1.1+b1+b2+…+b n=1+=n2+1.∴n2+1﹣(2n+1)=n(n﹣2)>0,∴b n+1<1+b1+b2+…+b n.19.已知f(x)=lg(﹣<x,1).(I)判断f(x)的奇偶性,并予以证明;(Ⅱ)设f()+f()=f(x0),求x0的值.(Ⅲ)求证:对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f().【考点】函数奇偶性的判断;抽象函数及其应用.【分析】(I)利用奇偶性的定义,看f(﹣x)和f(x)的关系,注意到和互为倒数,其对数值互为相反数;也可计算f(﹣x)+f(x)=0得到结论.(Ⅱ)根据题意得到关于x0的方程,解方程可得x0的值;(Ⅲ)将a与b代入函数f(x)=lg(﹣<x,1).求出f(a)+f(b)的值,然后计算出f()的值,从而证得结论.【解答】解:(I)f(x)是奇函数,理由如下:f(x)的定义域为(﹣1,1)关于原点对称;又∵f(﹣x)=lg=﹣lg=﹣f(x),所以f(x)为奇函数;(Ⅱ)∵f(x)=lg(﹣1<x<1).∴由f()+f()=f(x0)得到:lg+lg=lg,整理,得lg3×2=lg,∴=6,解得x0=;(Ⅲ)证明:∵f(x)=lg(﹣<x,1).∴f(a)+f(b)=lg+lg=lg•=lg,f()=lg=lg,∴对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f().得证.20.设函数y=f(x)的定义域为R,满足下列性质:(1)f(0)≠0;(2)当x<0时,f(x)>1;(3)对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.(I)求f(0)及f(x)*f(﹣x)的值;(Ⅱ)判断函数g(x)=是否具有奇偶性,并证明你的结论;(Ⅲ)求证:y=f(x)是R上的减函数;(Ⅳ)若数列{a n}满足a1=f(0),且f(a n+1)=(n∈N*),求证:{a n}是等差数列,并求{a n}的通项公式.【考点】抽象函数及其应用.【分析】(I)令x=y=0得出f(0),令y=﹣x得出f(x)f(﹣x)=f(0);(II)求出g(x)的定义域,计算g(﹣x)并化简得出结论;(III)设x1<x2,根据f(x1)=f(x1﹣x2+x2)=f(x1﹣x2)f(x2)得出=f(x1﹣x2)>1,得出结论;(IV)根据f(﹣x)f(x)=1得出a n+1﹣a n﹣2=0得出结论.【解答】解:(I)令x=y=0得f(0)=f2(0),又f(0)≠0,∴f(0)=1.令y=﹣x得f(x)f(﹣x)=f(0)=1.(II)∵f(x)f(﹣x)=1,∴f(﹣x)=,∵x<0时,f(x)>1,∴x>0时,0<f(x)<1,由g(x)有意义得f(x)≠1,∴x≠0,即g(x)的定义域为{x|x≠0},关于原点对称.∴g(﹣x)====﹣g(x),∴g(x)是奇函数.证明:(III)设x1<x2,则x1﹣x2<0,∴f(x1﹣x2)>1,∵f(x1)=f(x1﹣x2+x2)=f(x1﹣x2)f(x2),∴=f(x1﹣x2)>1,∴f(x1)>f(x2),∴f(x)是R上的减函数.(IV)∵f(a n+1)=,∴f(a n+1)f(﹣2﹣a n)=1,∵f(x)f(﹣x)=1,∴a n+1﹣a n﹣2=0,即a n+1﹣a n=2,又a1=f(0)=1,∴{a n}是以1为首项,以2为公差的等差数列,∴a n=1+2(n﹣1)=2n﹣1.精品文档xx年11月30日39234 9942 饂cCK23691 5C8B 岋39065 9899 颙g29049 7179 煹34685 877D 蝽31197 79DD 秝&25755 649B 撛28880 70D0 烐实用文档。

2021年高三数学上学期10月月考试题 理(含解析)新人教A版

2021年高三数学上学期10月月考试题 理(含解析)新人教A版

2021年高三数学上学期10月月考试题理(含解析)新人教A版【试卷综析】试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支撑学科知识体系的重点内容为考点挑选合理背景,考查更加科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解,考查考生的数学素养和学习潜能.第Ⅰ卷(选择题共50分)一、选择题:每小题5分,共10题,50分.【题文】1.已知集合={0,1, 2,3},集合,则=()A.{ 3 } B.{0,1,2} C.{ 1,2} D.{0,1,2,3}【知识点】交集的运算.A1【答案解析】B 解析:因为,所以={0,1,2},故选B.【思路点拨】先解出集合B,再求即可.【题文】2.若,则()A. B. C. D.【知识点】导数的概念.B11【答案解析】B 解析:,故选B.【思路点拨】利用导数的概念解之即可.【题文】3.函数的定义域为()A. B. C. D.【知识点】函数的定义域.B1【答案解析】C 解析:若使原函数有意义,则,解得或,即函数的定义域为,故选C. 【思路点拨】若使原函数有意义,解一元二次不等式即可.【题文】4.已知函数,,若,则()A.1B. 2C. 3D. -1【知识点】函数的值.B1【答案解析】A 解析:由题意得:,所以,解得,故选A.【思路点拨】先由题意得,然后解方程即可.【题文】5.已知分别是定义在上的偶函数和奇函数,且,则()A. B. C. 1 D. 3【知识点】奇函数、偶函数的性质.B4【答案解析】C 解析:因为分别是定义在上的偶函数和奇函数,所以,,又因为,故,即,则1,故选C.【思路点拨】先由题意的,,再结合可求出,进而得到结果.【题文】6.已知集合={2,0,1,4},={|,,},则集合中所有元素之和为()A.2 B.-2 C.0 D.【知识点】集合中元素的特性.A1【答案解析】B 解析:因为,所以有下列情况成立:(1)=2,解得,当时,不满足题意,舍去,故;(2)=0,解得,经检验满足题意;(3)=1,解得,经检验满足题意;(4)=4,解得,经检验满足题意;所以集合中所有元素之和为,故选B.【思路点拨】由分情况讨论即可得到结果.【题文】7.曲线在点(1,1)处切线的斜率等于()A. B. C.2 D.1【知识点】导数的几何意义.B11【答案解析】C 解析:因为,所以,则,故选C.【思路点拨】先对原函数求导,再利用导数的几何意义求出斜率即可.【题文】8.若则()A. B. C. D.1【知识点】定积分.B13【答案解析】 B 解析:设,则,()11112300011()2()2233f x dx x f x dx dx x mx m m=+=+=+=⎰⎰⎰,所以.故选B.【思路点拨】本题考查了定积分以及微积分基本定理的应用.【题文】9.下列四个图中,函数y=的图象可能是()A B C D【知识点】函数的图像;函数的性质.B8【答案解析】C 解析:令,则原函数转化为,此函数为奇函数,关于坐标原点对称,可排除A,D;又因为当时,函数值为正值,故排除B,则答案为C.【思路点拨】借助于函数的性质结合排除法即可.【题文】10.如图所示的是函数的大致图象,则等于()A.B. C.D.【知识点】导数的几何意义.B11【答案解析】C 解析:由图象知的根为0,1,2,d=0,,的两根为1和2,,,,为的两根,,,,故选C.【思路点拨】由图象知的根为0,1,2,求出函数解析式,为的两根,结合根与系数的关系求解.第Ⅱ卷(非选择题共100分)二、填空题:每小题5分,共5题,25分.11.物体运动方程为,则时瞬时速度为【知识点】导数的几何意义.B11【答案解析】解析:由题意得:,当时瞬时速度为,故答案为:。

2021年高三上学期10月月考试题数学(文)含答案

2021年高三上学期10月月考试题数学(文)含答案

2021年高三上学期10月月考试题数学(文)含答案(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1、已知集合M ={x |x <1},N ={x |lg(2x +1)>0},则M ∩N = .2、复数z =a +i 1-i 为纯虚数,则实数a 的值为 .3、抛物线的焦点到准线的距离是 .4、“”是“”的 条件.5、向量(1,2)、(-3,2),若()∥(),则实数k =_________.6、已知m 为任意实数,则直线(m -1)x +(2m -1)y =m -5必过定点_________.7、若关于x 的方程cos 2x +4sin x -a =0有解,则实数a 的取值范围是 .8、将y =sin2x 的图像向右平移φ单位(φ>0),使得平移后的图像仍过点⎝⎛⎭⎫π3,32,则φ的最小值为_______.9、若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是_________. 10、已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.11、已知△ABC 是等边三角形,有一点D 满足→AB +12→AC =→AD ,且|→CD |=3,那么→DA ·→DC = .12、已知椭圆的左右焦点分别为,点 P 是椭圆上某一点,椭圆的左准线为,于点,若四边形为平行四边形,则椭圆的离心率的取值范围是13、已知函数f (x )=⎩⎨⎧-x 2+ax (x ≤1)2ax -5 (x >1),若x 1, x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 .14、已知函数f (x )满足f (x )=f (1x ),当x ∈[1,3]时,f (x )=ln x ,若在区间[13,3]内,函数g (x )=f(x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是 .二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 15、(本小题满分14分) 已知直线和.问:m 为何值时,有:(1); (2).16、(本小题满分14分)已知函数f (x )=sin(ωx +φ) (ω>0,0<φ<π),其图像经过点M ⎝⎛⎭⎫π3,12,且与x 轴两个相邻的交点的距离为π. (1)求f (x )的解析式;(2)在△ABC 中,a =13,f (A )=35,f (B )=513,求△ABC 的面积.17、(本小题满分15分)已知|a |=3,|b |=2,a 与b 的夹角为120º,当k 为何值时, (1)k a -b 与a -k b 垂直;(2)|k a -2b |取得最小值?并求出最小值.18、(本小题满分15分)如图①,一条宽为1km的两平行河岸有村庄A和供电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄A、B供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km.(1)已知村庄A与B原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km.现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.(2)如图②,点E在线段AD上,且铺设电缆的线路为CE、EA、EB.若∠DCE=θ(0≤θ≤π3),试用θ表示出总施工费用y (万元)的解析式,并求y的最小值.19、(本小题满分16分)已知椭圆的两个焦点为,离心率为,点是椭圆上某一点,的周长为,(1)求椭圆的标准方程;(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,设直线的斜率为(),求所有满足要求的.20、(本小题满分16分)已知a为实数,函数f(x)=a·ln x+x2-4x.(1)是否存在实数a,使得f (x)在x=1处取极值?证明你的结论;(2)若函数f (x)在[2, 3]上存在单调递增区间,求实数a的取值范围;(3)设g(x)=2a ln x+x2-5x-1+ax,若存在x0∈[1, e],使得f(x0)<g(x0)成立,求实数a的取值范围.高三数学(文科)月考试卷 答案xx.10.61、(0,1)2、13、4、充分不必要”5、-136、 (9,-4)7、[-4,4]8、π69、[12,+∞) 10、411、3 12、 13、 (-∞,4) 14、⎣⎡ln33,⎭⎫1e15、解:(1)∵,∴,得或;当m =4时,l 1:6x +7y -5=0,l 2:6x +7y =5,即l 1与l 2重合,故舍去. 当时,即 ∴当时,. ………7分 (2)由得或; ∴当或时,. ………14分16、解:(1)依题意知,T =2π,∴ω=1,∴f (x )=sin(x +φ)∵f (π3)=sin(π3+φ)=12,且0<φ<π ∴π3<π3+φ<4π3 ∴π3+φ=5π6 即φ=π2∴f (x )=sin ⎝⎛⎭⎫x +π2=cos x . ………6分(2)∵f (A )=cos A =35,f (B )=cos B =513, ∴A ,B ∈(0,π2)∴sin A =45,sin B =1213 ………8分∴sin C =sin(A +B )=sin A cos B +cos A sin B =5665………10分 ∵在△ABC 中a sin A =bsin B ∴b =15. ………12分∴S △ABC =12ab sin C =12×13×15×5665=84. ………14分17、解:(1)∵k a -b 与a -k b 垂直,∴(k a -b )·(a -k b )=0.∴k a 2-k 2a ·b -b ·a +k b 2=0.∴9k -(k 2+1)×3×2·cos120°+4k =0.∴3k 2+13k +3=0.∴k =-13±1336. ………7分(2)∵|k a -2b |2=k 2a 2-4k a ·b +4b 2=9k 2-4k ×3×2·cos120°+4×4 =9k 2+12k +16=(3k +2)2+12.∴当k =-23时,|k a -2b |取得最小值为23. ………15分18、解:(1)由已知可得△ABC 为等边三角形,∵AD ⊥CD ,∴水下电缆的最短线路为CD .过D 作DE ⊥AB 于E ,可知地下电缆的最短线路为DE 、AB . ………3分 又CD =1,DE =32,AB =2,故该方案的总费用为 1×4+32×2+2×0.5=5+ 3 (万元). …………6分 (2)∵∠DCE =θ (0≤θ≤ π3)∴CE =EB =1cos θ,ED =tan θ,AE =3-tan θ.则y =1cos θ×4+1cos θ×2+(3-tan θ)×2=2×3-sin θcos θ+2 3 ……9分令f (θ)=3-sin θcos θ (0≤θ≤ π 3)则f '(θ)=-cos 2θ-(3-sin θ)(-sin θ)cos 2θ=3sin θ-1cos 2θ ,……11分∵0≤θ≤ π 3,∴0≤sin θ≤32,记sin θ0=13,θ0∈(0, π 3)当0≤θ<θ0时,0≤sin θ<13,∴f '(θ)<0当θ0<θ≤ π 3时,13<sin θ≤32,∴f '(θ)>0∴f (θ)在[0,θ0)上单调递减,在(θ0, π3]上单调递增.……13分∴f (θ)min =f (θ0)=3-13223=22,从而y min =42+23,此时ED =tan θ0=24,答:施工总费用的最小值为(42+23)万元,其中ED =24. ……15分 19、解:(1)由题意得,椭圆的标准方程为: ---------------------6分 (2)设的直线方程为设,(不妨设) 由得,----------------------8分AB ∴==由得,即,即或 注:求出给2分20、解:(1)函数f (x )定义域为(0,+∞),f '(x )=ax +2x -4=2x 2-4x +a x假设存在实数a ,使f (x )在x =1处取极值,则f '(1)=0,∴a =2, ……2分此时,f '(x )=2(x -1)2x,∴当0<x <1时,f '(x )>0,f (x )递增;当x >1时,f '(x )>0,f (x )递增. ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取极值. ………4分(2)f '(x )=2x 2-4x +a x =2(x -1)2+a -2x,①当a ≥2时,∴f '(x )≥0,∴f (x )在(0,+∞)上递增,成立; ………6分②当a <2时,令f '(x )>0,则x >1+1-a2或x <1-1-a 2,∴f (x )在(1+1-a2,+∞)上递增, ∵f (x )在[2, 3]上存在单调递增区间,∴1+1-a2<3,解得:6<a <2 综上,a >-6. ………10分(3)在[1,e]上存在一点x 0,使得成立,即在[1,e]上存在一点,使得,即函数在[1,e]上的最小值小于零.有22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==①当,即时, 在上单调递减, 所以的最小值为,由可得,因为,所以; ………12分 ②当,即时,在上单调递增,所以最小值为,由可得; ………14分 ③当,即时,可得最小值为, 因为,所以,,故 此时不存在使成立.综上可得所求的范围是:或. ………16分解法二:由题意得,存在x ∈[1, e],使得a (ln x -1x )>x +1x成立.令m (x )=ln x -1x ,∵m (x )在[1, e]上单调递增,且m (1)=-1<0, m (e)=1-1e >0故存在x 1∈(1,e),使得x ∈[1, x 1)时,m (x )<0;x ∈(x 1, e]时,m (x )>0 故存在x ∈[1, x 1)时,使得a <x 2+1x ln x -1成立,·························(☆)或存在x ∈(x 1, e]时,使得a >x 2+1x ln x -1成立,·························(☆☆) ………12分记函数F (x )=x 2+1x ln x -1,F '(x )=(x 2-1)ln x -(x +1)2(x ln x -1)2当1<x ≤e 时,(x 2-1)ln x -(x +1)2=(x 2-1)·⎝⎛⎭⎪⎫ln x -x +1x -1∵G (x )=ln x -x +1x -1=ln x -2x -1-1递增,且G (e)=-2e -1<0∴当1<x ≤e 时,(x 2-1)ln x -(x +1)2<0,即F '(x )<0∴F (x )在[1, x 1)上单调递减,在(x 1, e]上也是单调递减, ………14分 ∴由条件(☆)得:a <F (x )max =F (1)=-2 由条件(☆☆)得:a >F (x )min =F (e)=e 2+1e -1综上可得,a >e 2+1e -1或a <-2. ………16分~31922 7CB2 粲kw25948 655C 敜37280 91A0 醠22014 55FE 嗾39428 9A04 騄d27288 6A98 檘33985 84C1 蓁37111 90F7 郷23438 5B8E 宎@25055 61DF 懟。

2021年高三数学上学期10月模块考试试题 理(含解析)

2021年高三数学上学期10月模块考试试题 理(含解析)

2021年高三数学上学期10月模块考试试题理(含解析)【试卷综析】本次试卷考查的范围是三角函数和数列。

试卷的题型着眼于考查现阶段学生的基础知识及基本技能掌握情况。

整份试卷难易适中,没有偏、难、怪题,保护了学生的学习信心并激励学生继续学习的热情;在选题和确定测试重点上都认真贯彻了“注重基础,突出知识体系中的重点,培养能力”的命题原则,重视对学生运用所学的基础知识和技能分析问题、解决问题能力的考查。

第Ⅰ卷选择题(共50分)一、选择题:本题共10小题,每小题5分,共50分。

1.若a、b为实数,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【知识点】必要条件、充分条件与充要条件的判断.L4【答案解析】B 解析:若a、b为实数,,令a=﹣1,b=1,ab=﹣1<1,推不出,若,可得b>0,∴0<,⇒,∴”是“必要不充分条件,故选B.【思路点拨】令a=﹣1,b=1特殊值法代入再根据必要条件和充分条件的定义进行判断.【题文】2.已知实数满足,则下列关系式恒成立的是()A. B.C. D.【知识点】指数函数的图像与性质.L4【答案解析】A 解析:∵实数满足,∴x>y,A.当x>y时,,恒成立,B.当x=π,y=时,满足x>y,但不成立.C.若,则等价为x2>y2成立,当x=1,y=﹣1时,满足x>y,但x2>y2不成立.D.若,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足x>y,但x2<y2不成立.故选:A.【思路点拨】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【题文】3.下列四个图中,函数的图象可能是()【知识点】函数的图象.L4【答案解析】C 解析:当x>0时,y<0,排除A、B两项;当﹣2<x<﹣1时,y>0,排除D 项.故选:C.【思路点拨】根据四个选择项判断函数值的符号即可选择正确选项.【题文】4.已知函数是定义在R上的偶函数, 且在区间单调递增. 若实数满足, 则的最小值是()A. B.1 C. D.2【知识点】奇偶性与单调性的综合.L4【答案解析】C 解析:∵函数f(x)是定义在R上的偶函数,∴,等价为f(log2a)+f(﹣log2a)=2f(log2a)≤2f(1),即f(log2a)≤f(1).∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增,∴f(log2a)≤f(1)等价为f(|log2a|)≤f(1).即|log2a|≤1,∴﹣1≤log2a≤1,解得,故a的最小值是,故选:C【思路点拨】根据函数奇偶性和单调性之间的关系,将不等式进行化简,即可得到结论.【题文】5.已知向量,其中,,且,则向量和的夹角是()A. B. C. D.【知识点】数量积表示两个向量的夹角.L4【答案解析】A 解析:设两个向量的夹角为θ∵,∴,∴,即∴,∵θ∈[0,π],∴,故选A【思路点拨】利用向量垂直的数量积为0列出方程;利用向量的平方等于向量模的平方及向量的数量积公式将方程用模与夹角表示求出夹角.【题文】6.把函数的图象适当变化就可以得的图象,这个变化可以是()A.沿轴方向向右平移 B.沿轴方向向左平移C.沿轴方向向右平移 D.沿轴方向向左平移【知识点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.L4【答案解析】C 解析:∵函数=sin(3x﹣)=sin3(x﹣),∴把函数的图象沿x轴方向向右平移个单位,可得的图象,故选:C.【思路点拨】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【题文】7.已知等差数列的前n项和为,又知,且,,则为()A.33 B.46 C.48 D.50【知识点】等差数列的性质;定积分的简单应用.L4【答案解析】C 解析:=(xlnx﹣x)=e﹣e﹣(﹣1)=1∵等差数列中,S 10,S 20﹣S 10,S 30﹣S 20为等差数列,即1,17﹣1,S 30﹣17为等差数列,∴32=1+S 30﹣17,∴S 30=48,故选 C 。

高三数学-10月月考数学试题参考答案

高三数学-10月月考数学试题参考答案

2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。

2021年高三上学期10月阶段检测数学文试题含答案

2021年高三上学期10月阶段检测数学文试题含答案

2021年高三上学期10月阶段检测数学文试题含答案一、 选择题(每小题5分,共50分)1、设集合 ,,则( )A .B .C .D . 2、已知角α的终边经过点(-3,4),则cos α=( )A.45B.35 C .-35 D .-453、设,,则( )A .B .C .D .4、在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≥b ”是“sin A ≥sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件5、曲线在点A(1, -1)处的切线的斜率是( )A .4B . 3C .2D .16、将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于点⎝ ⎛⎭⎪⎫-π2,0对称 D .y =f (x )的图像关于直线x =π2对称 7、设是定义在R 上的周期为2的函数,当时,,则 ( )A . 1B .C . -23D .8、在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3b =2a ,则的值为( )A .- B. C .1 D.729、 设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=3x -2x +b (b 为常数),则f (-1)=( )A .B .1C .-1D .010.设f(x),g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,且,则不等式的解集是 ( )A .(-∞,-2)∪(0,2)B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(2,+∞)二、 填空题(每题5分,共25分)11、函数的单调递减区间是____________.12、在△ABC 中,A =60°4,AC =,BC =23,则AB 等于_____.13.函数f(x)=cosx -log 8x 的零点个数为_____________.14、函数y =cos 2x -2cos x 的最小值为________.15、设是定义在(-∞,+∞)上的函数,对一切x ∈R 均有,当<1时,则当时,函数的解析式为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档