《聚合物复合材料》复习提纲
聚合物基复合材料复习要点 热固性复合材料成型工艺

聚合物基复合材料高分子专业考试复习资料现已完结,另有小抄版本稍后更新第四章热固性复合材料成型工艺4.1手糊成型工艺4.1.1定义:用手工或在机械辅助下将增强材料和热固性树脂铺覆在模具上,树脂固化形成复合材料的一种成型方法。
4.1.2工序:①增强材料剪裁②模具准备③涂擦脱模剂④喷涂胶衣⑤成型操作⑥固化⑦脱模⑧修边⑨装配⑩制品。
4.1.3优点:操作简便,操作者容易培训;设备投资少,生产费用低;能生产大型的和复杂结构的制品;制品的可设计性好,且容易改变设计;模具材料来源广;可以制成夹层结构。
缺点:劳动密集型的成型方法,生产效率低—喷射成型工艺;制品质量与操作者的技术水平有关;生产周期长;制品力学性能较其他方法低—袋压成型工艺。
4.1.4原材料:玻璃纤维及其织物选择依据:容易被树脂浸润;有较好的形变性;满足制品的性能要求;价格便宜。
种类:无捻粗纱;无捻粗纱布;短切原丝毡;加捻布;玻璃布袋。
4.1.4.1热固性树脂:要求:①能够配制成黏度适宜的胶液②能在室温或较低温度下凝胶、固化,固化时无低分子物产生③无毒或低毒④价格便宜,来源广泛。
4.1.2辅助材料脱模剂:应具备的条件:(1)不腐蚀模具,不影响固化,与树脂粘附力小;(2)成膜迅速、均匀、光滑;(3)使用简便、安全,价格便宜。
按用途分为:内脱模剂(用于模压和热固化);外脱模剂(用于手糊和冷固化)。
按性状分为:薄膜型脱模剂;混合溶液型脱模剂;油蜡型脱模剂。
4.1.2.1 薄膜型脱模剂:最常用的有:聚酯薄膜、玻璃纸、聚氯乙烯薄膜、聚乙烯薄膜等。
其中聚酯薄膜应用最普遍,使用厚度一般为0.04 mm 、0.02 mm。
使用方法:铺在模具上,或用凡士林贴在模具上。
优点:脱模效果好,使用方便,材料易得。
缺点:薄膜的柔韧性、帖服性差,不能用于形状复杂的制品。
4.1.2.2混合溶液型脱模剂(1)聚乙烯醇脱模剂的配制:在搅拌状态下,用水将聚乙烯醇加热溶解(水温约95℃),冷却到室温,往里滴加乙醇或丙酮(边加边搅拌)。
聚合物基复合材料知识点

聚合物基复合材料知识点概述:聚合物基复合材料是由聚合物基质和填料或增强材料(如纤维)组成的材料。
由于其独特的性能和广泛的应用领域,聚合物基复合材料成为现代工程领域中的重要材料之一。
本文将介绍聚合物基复合材料的相关知识点。
1. 聚合物基质的选择:聚合物基复合材料的性能主要取决于聚合物基质的选择。
常见的聚合物基质包括聚烯烃、聚酰胺、环氧树脂等。
不同的聚合物基质具有不同的化学性质和力学性能,因此在选择聚合物基质时需要考虑材料的具体应用需求。
2. 填料的选择:填料在聚合物基质中起到增强材料性能的作用。
常见的填料包括纤维、颗粒和珠状材料等。
填料的选择影响着复合材料的力学性能、耐热性和阻燃性等方面。
纤维增强材料可提供更高的强度和刚度,而颗粒和珠状填料则可改善材料的摩擦特性和耐磨性。
3. 增强材料的选择:增强材料在聚合物基质中起到增强材料性能的作用。
常见的增强材料包括玻璃纤维、碳纤维和芳纶纤维等。
不同的增强材料具有不同的强度和刚度特性,在选择增强材料时需要考虑材料的具体应用环境和要求。
4. 复合界面的设计:复合材料中的界面是指填料和基质之间的相互作用界面。
复合界面的设计可以影响材料的耐热性、粘合强度和耐化学腐蚀性等方面的性能。
在复合材料的制备过程中,通常会采用表面粗糙化、化学处理和界面改性等方法来改善复合界面的性能。
5. 制备工艺:制备工艺对于聚合物基复合材料的性能和结构有着重要影响。
常见的制备工艺包括手工层叠法、注塑成型、挤出成型、压制成型等。
不同的制备工艺决定了材料的成型精度、力学性能和表面质量等方面的特性。
6. 应用领域:聚合物基复合材料广泛应用于航空航天、汽车制造、建筑材料、电子电气等领域。
其具有轻质高强度、耐腐蚀、隔热隔音等优势,在这些领域中发挥着重要作用。
例如,碳纤维增强复合材料在航空航天领域中被广泛应用于飞机结构件和卫星结构件等。
7. 未来发展趋势:随着科学技术的不断进步,聚合物基复合材料将继续得到发展和应用。
聚合物基复合材料知识点

复合材料知识点一、绪论1、复合材料定义:①ISO:有两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
②GB:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。
2、复合材料组成:复合材料由基体和增强材料组成。
增强材料是复合材料的主要承力部分,特别是拉伸强度、弯曲强度和冲击强度等力学性能主要由增强材料承担,基体的作用是将增强材料粘合成一个整体,起到均衡应力和传递应力的作用,使增强材料的性能得到充分的发挥,从而产生一种复合效应,使复合材料的性能大大优于单一材料的性能。
3、复合材料的分类:⑴按基体类型分类树脂基复合材料、金属基复合材料、无机非金属基复合材料。
⑵按增强材料类型分类玻璃纤维复合材料、碳纤维复合材料、有机纤维复合材料、陶瓷纤维复合材料。
⑶按用途不同分类结构复合材料、功能复合材料二、增强材料1、增强材料作用:增强材料是复合材料的主要组成部分,它起着提高树脂基的强度、模量、耐热和耐磨等性能的作用,增强材料还有减小复合材料成型过程中的收缩率,提高制品硬度等作用。
2、作为树脂基复合材料的增强材料应具有的基本特征:⑴应具有能明显提高树脂基体某种所需特性的性能,如高的比强度、比模量、高导热性、耐热性、低热膨胀性等,以便赋予树脂基体某种所需的特性和综合性能。
⑵应具有良好的化学稳定性。
⑶与树脂有良好的浸润性和适当的界面反应,使增强材料与基体树脂有良好的界面结合。
⑷价廉。
3、微裂纹假说:玻璃的理论强度取决于分子或原子间的吸引力,其理论强度很高,可以达到2000――12000MPa。
但强度的实际测试结果却低很多,这是因为玻璃或玻璃纤维中存在着数量不等,尺寸不同的微裂纹,因而大大降低了其强度。
微裂纹分布在玻璃或玻璃纤维的整个体积内,但以表面的微裂纹危害最大。
由于微裂纹的存在,玻璃或玻璃纤维在外力的作用下,微裂纹处首先发生应力集中,首先发生破坏。
玻璃纤维比玻璃的强度高很多,是因为玻璃纤维经高温成型时减少了玻璃溶液的不均一性,使微裂纹产生的机会减少;另外,玻璃纤维的断面尺寸小,微裂纹存在的概率也小,故使纤维强度增高。
复合材料复习提纲

聚合物基复合材料复习总结UD : unidirectional 单向性的Quas-isotropic准各向同性的Cure固化precure 预固化stiffness 刚度stre ngth 强度toughness韧性ILSS层间剪切强度CTE 热膨胀系数(coefficient of thermal expansion)carbon fiber 碳纤维VGCF 气相生长碳纤维(vapor-phase growth)SNCB气相生长纳米碳纤维CNT碳纳米管(carbon nanotub© sizi ng上浆Torayca日本东丽台塑Tairyfil 三菱树脂DialeadPCF:沥青基碳纤维(pitched-based carbon fibe)Glass fiber玻璃纤维C-GF:耐化学腐蚀玻璃纤维A-GF:普通玻纤D-GF:低介玻纤,雷达罩材料E-GF:电工用玻纤(碱金属含量<1%S-GF高强M-GF高模AF:芳纶纤维(Aramid fiberPPTA:聚对苯二甲酰对苯二胺poly-p-phenylene terephthamide对位芳酰胺纤维Kevlar) PMIA :间位芳酰胺纤维(代表Nomex)DuPo nt杜邦Boron Fiber 硼纤维Alumina Fiber氧化铝纤维Basalt Fiber玄武岩纤维UHMWPE Fiber(ultrahigh molecular weight polyethyle ne)超高分子量聚乙烯纤维BMI :双马来酰亚胺树脂curing age nt固化剂PEEK:聚醚醚酮树脂PEK :聚醚酮树脂PES:聚醚砜树脂PEI :聚醚酰亚胺树脂PPS:聚苯硫醚树脂Epoxy resi n 环氧树脂Un saturated polyester res inTETA:三乙烯四胺(triethylene tetramineDDS:二氨基二苯基砜(diaminodiphenyl sulfone) ;DDM 二氨基二苯基甲烷Vi nyl ester resi n:乙烯基环氧树脂Phe nolic res in 酚醛树脂Prepreg 预浸料uni directi onal prepreg 单向预浸料Pot life 适用期(树脂)workinglife(纤维)Shelf life储存期Res in flowability 树脂流动度Lay Up铺贴Gel time凝胶时间Tack粘性drape铺覆性resi n con te nt树脂含量Fiber areal density 纤维面密度volatile content 挥发分含量Separati on film 分离膜Hon eycomb san dwich con structi on 蜂窝夹心结构In frared spectroscopy 红外光谱ATL: Automated tape-laying自动铺带法(CATL曲面铺带;FATL平面铺带)AFP:纤维自动铺放技术Automated fiber placement Pultrusio n拉挤成型OoA:非热压罐成型工艺out of autoclaveAllowables 许用值design Allowables 设计许用值Robust ness 鲁棒性BVID目视勉强可检ISO国际标准ASTM美国标准HB中国航空标准JC中国建筑材料工业部标准FTIR-ATR傅里叶变换衰减全反射红外光谱法1. 碳纤维PAN 一般采用湿法纺丝?因为干纺生产的纤维中溶剂不易洗净,在预氧化及碳化的过程将会由于残留溶剂的挥发或者分解而造成纤维粘结,产生缺陷。
聚合物复合材料

1、为什么要研究天然纤维热塑性聚合物复合材料成型过程中的流变行为?答:因为在大部分聚合物材料的加工过程中,都离不开聚合物材料流体的流动。
它们的加工成型和使用性能以及最终制品的各种性能很大程度上决定于其流变行为。
例如在挤出成型中,流动性过小,会不利于原料充满整个模具,造成挤出困难;但流动性过大,会不利于形成足够的挤出压力,造成制品强度缺陷。
2、你认为将来那种工艺可能会替代挤出成型工艺成为天然纤维聚合物复合材料(热塑性基体)的主要生产工艺?答:热压成型工艺,原因有以下几点1)可以通过人造板工艺制备高比例的天然纤维复合材料。
2)可以利用不同形态的木质纤维材料与塑料加工生产复合材料板材和型材。
3)可以制备宽板,从而更好的替代木质人造板。
4)可以使用长纤维原料。
3、天然纤维聚合物复合材料挤出成型一步法与两步法有什么区别?答:区别在于一步法省略了混炼造粒这样的步骤,一步法效率高,混炼塑化好,节能显著,生产成本降低,市场竞争力强,但是设备工艺要求较高,反之二步法操作简单,灵活性高,对员工整体技术要求低,但成本要求较高。
4、天然纤维聚合物复合材料模型成型技术的特点?模压成型可使造型美观的物件一次成型,减少了加工和装配工作量,并使连接重量降低。
模压还可使零件各部分的密度均匀,降低内应力。
模压制品的尺寸准确,互换性好,可以提高装配质量。
5、如何来调控浸润角?1对于一个固定的体系,可以通过控制温度,保持时间,吸附气体等调控浸润角。
2改变体系的表面张力调控浸润角。
3固体表面的润湿性能与其结构有关,通过改变物体的表面状态,既改变其表面张力,调控浸润角。
6、聚合物复合材料界面存在的内应力是如何产生的?聚合物基体和纤维在温度降低的时候体积收缩不匹配,而又要保持变形的一致,必然会产生内应力7、想一想界面问题研究的难点在哪里?1.界面区域小且结构组成复杂,是一个多层结构的过渡区域;2.界面的形成过程复杂;3.界面形成的机理多样,但都具有一定的局限性。
聚合物基复合材料 知识点总结

第二章增强材料1.增强材料的品种:1)无机纤维:(1)玻璃纤维(2)碳纤维:①聚丙烯腈碳纤维②沥青基碳纤维(3)硼纤维,(4)碳化硅纤维,(5)氧化铝纤维2)有机纤维:(1)刚性分子链——液晶(干喷湿纺):①对位芳酰胺②聚苯并噁唑③聚芳酯(2)柔性分子链:①聚乙烯②聚乙烯醇2.玻璃纤维的分类:1)按化学组成份:有碱玻璃纤维,碱金属含量>12%;中碱玻璃纤维,碱金属含量6%~12%;低碱玻璃纤维,碱金属含量2%~6%;微碱玻璃纤维,碱金属含量<2%2)按纤维使用特性分:普通玻纤(A-GF);电工玻纤(E玻纤);高强玻纤(S玻纤或R玻纤);高模玻纤(M-GF);耐化学药品玻纤(C玻纤)……3)按产品特点分:长度(定长玻纤<6-50mm>,连续玻纤);直径(粗纤维30μm,初级纤维20μm,中级纤维10-20μm,高级纤维3-9μm);外观(连续纤维,短切纤维,空心玻纤,磨细纤维和玻璃粉)3.玻璃纤维的制备:目前生产玻璃纤维最多的方法有坩埚拉丝法(玻璃球法)和池窑拉丝法(直接熔融法)4.玻璃纤维的力学特性:1)玻璃纤维的拉伸应力--应变关系:玻璃纤维直到拉断前其应力-应变关系为一条直线,无明显的屈服、塑性阶段,呈脆性材料特征2)玻璃纤维的拉伸强度较高,但模量较低;解释:(1)Griffith微裂纹理论:玻璃在制造过程中引入许多微裂纹,受力后裂纹尖端应力集中。
当应力达到一定值时,裂纹扩展,材料破坏。
所以,缺陷尺寸越大,越多,应力集中越严重,导致强度越低(2)分子取向理论:玻纤在制备过程中,受到定向牵引力作用,分子排列更规整,所以玻纤强度更大。
3)玻璃纤维强度特点:单丝直径越小,拉伸强度σb越高;试样测试段长度L越大,拉伸强度σb越低。
这两点结果被称为玻璃纤维强度的尺寸效应和体积效应,即体积或尺寸越大,测试的强度越低4)缺点:①强度分散性大,生产工艺影响②强度受湿度影响,吸水后,湿态强度下降③拉伸模量较低(70GPa),断裂伸长率约为2.6%5.玻璃纤维纱的常用术语、参数:(填空)1)原纱:指玻璃纤维制造过程中的单丝经集束后的单股纱2)表示纤维粗细的指标:①支数β:指1g原纱的长度(m),支数越大表示原纱越细②特(tex):指1000m长原纱的质量(g),tex数越大,纱越粗③旦、袋(den):指9000m长原纱的质量(g),den 数越大纱越粗3)捻度:表示纱的加捻程度,指每米长原纱的加捻数,即捻/m。
复合材料重点

复合材料复习重点一、复合材料的定义,命名及分类1.什么是复合材料?特点?用经过选择的、含一定数量比的两种或两种以上的不同性能、不同形态的组分〔或称组元〕材料通过人工复合组合而成的多相、三维结合且各相之间有明显界面的、具有特殊性能的材料。
它既保持了原组分的主要特点,又显示了原组分材料所没有的新性能。
复合材料应具有以下三个特点:(1)复合材料是由两种或两种以上不同性能的材料组元通过宏观或微观复合形成的一种新型材料,组元之间存在着明显的界面。
(2)复合材料中各组元不但保持各自的固有特性而且可最大限度发挥各种材料组元的特性,并赋予单一材料组元所不具备的优良持殊性能。
(3)复合材料具有可设计性。
2.复合材料的分类、命名和各有什么特点?高性能复合材料按基体材料的性质分为两类:金属基复合材料〔metal matrix posite,MMC〕金属基复合材料相对于传统的金属材料来说,具有较高的比强度与比刚度;而与树脂基复合材料相比,它又具有优良的导电性与耐热性;与陶瓷基材料相比,它又具有高韧性和高冲击性能。
聚合物基复合材料(polymer matrix posite,PMC)1、具有较高的比强度和比模量〔刚度〕;2、耐疲劳性能好;3、减震性能好;4、过载时平安性好;5、高温性能好;6、可设计性强、成型工艺简单。
陶瓷基复合材料〔ceramic matrix posite,CMC〕3.复合材料开展经过了几代?第一代复合材料(玻璃纤维增强塑料);第二代复合材料(碳纤维增强塑料);第三代复合材料〔纤维增强金属基复合材料〕;第四代复合材料〔多功能复合材料〕4.复合材料界面如何定义?界面特点?复合材料的界面是指基体与增强体之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
界面特点:i)非单分子层,其组成、构造形态、形貌十分复杂、形式多样界面区至少包括:(1)基体和增强体的局部原始接触面;(2)基体与增强体相互作用生成的反响产物,此产物与基体及增强体的接触面;(3)基体和增强体的互扩散层;(4)增强体上的外表涂层;(5)基体和增强体上的氧化物及它们的反响产物之间的接触面等。
聚合物基复合材料-内容总结

2. 物理性能:密度小、耐热性好、热膨胀系数负效应、黏结性差 3. 化学性能
• 氧化性 易氧化成CO、CO2,空气中耐热性差,200-290℃开始氧化,比GF 差 • 耐腐蚀性 比GF更耐腐蚀,只能被强氧化剂氧化,耐水性好 • 耐热性 不与空气接触时,表现极好的耐热性,在高于1500℃时,强度才
开始下降
• 强度比湿纺原丝提高50%以上
碳纤维
b)PAN原丝的预氧化处理(2h) PAN原丝
二维有序结构
200-300℃
O2,张力
预氧化纤维
六元环梯形结构
① 预氧化作用 通过氧化反应使β碳原子部分氧化成羟基、羰基,在分子间和分子内形成氢键, 利用其诱导作用,使CN在较低的温度下环化形成带有六元共轭环的梯形结构,从 而提高PAN的热稳定性,经受住高温碳化处理。
组成
① 基体相:聚合物基体可分为塑料、橡胶两类 ② 增强相:是聚合物基复合材料的骨架,决定复合材料的强度和刚 度的主要因素 ③ 界面相:是聚合物基体与增强材料间形成的第三相,是产生复合
效果的主要因素
增强材料
增强材料:聚合物基复合材料的骨架,决定复合材料的强度和刚度的主
要因素,显著提高复合材料的机械性能,即赋予复合材料高强度和高模量 等力学性能。形态主要有微粒、薄片、纤维,其中纤维的效果最好。
结构特点-含活泼氢原子,反应过程中伴有氢原子转移
如多元伯胺、多元羧酸、多元硫醇和多元酚 催化型固化剂:引发树脂分子中的环氧基按阳离子或阴离子聚合的历程进行固化 结构特点-叔胺、三氟化硼络合物 交联剂:能与双酚A型环氧树脂的羟基进行交联
溶解脱泡 挤出纺丝
UHMWPE+溶剂+抗氧剂等
脱溶剂
UHMWPE溶液 UHMWPE纤维
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《聚合物复合材料》复习提纲
一、题型及分数
1、选择题(每空1分,共10分);
2、简答题(每题5分,共40分);
3、计算题(每题10分,共20分);
4、分析与论述题(每题10分,共30分)。
第一章
1、复合材料的定义与分类;
答:复合材料是指将两种或两种以上不同性能的材料,用适当的方法复合而成的一种新材料,其性能比单一材料性能优越。
1、按基体材料类型分为聚合物基复合材料(PMC)金属基复合材料(MMC)无机非金属基复合材料,包括陶瓷基复合材料和水泥基复合材料(CMC)等,2、按增强材料类型分为玻璃纤维增强复合材料;碳纤维增强复合材料;芳纶(Kevlar)纤维增强复合材料;UHMW-PE纤维增强复合材料等3、按用途分为结构复合材料、功能复合材料、结构功能一体化复合材料.
2、聚合物基复合材料的性能特点(比强度、比模量);
3、聚合物基复合材料的主要应用领域。
第二章
1、UP与UPR的区别、UPR的特征官能团;
2、通用UP 的合成配方,配方中各成分的主要作用;
3、UP稀释剂的种类、作用及用量;
4、酸值的定义及含义;
5、提高聚酯化反应程度的方法;
6、UPR的固化机理;
7、引发剂的引发途径、有机过氧化物的特性参数及其意义;
8、UPR最常用的有机过氧化物类引发剂的名称、性状及用量;
9、有机过氧化物最常用的促进剂、特点及用量;
10、UPR最常用的阻聚剂及其用量;
11、乙烯基酯树脂的结构特点与性能特点;
12、VE的合成方法与常用原材料;
13、VE的分子结构与性能的关系;
14、环氧树脂的定义、特征官能团及分类;
15、EP最重要的几个性能特点;
16、二酚基丙烷型EP的合成原料、合成原理、结构通式;
17、环氧值的定义及含义,环氧值与环氧当量的关系;
18、常用脂肪胺类固化剂的特点、多乙烯多胺的结构通式;
19、胺类固化剂用量的计算;
20、常用芳香族多元胺的种类及特点;
21、酸酐类固化剂的特点、常用酸酐及其活性顺序;
22、酸酐类固化剂用量的计算;
23、常用阴离子型固化剂的种类与代表;
24、EP常用的活性与非活性稀释剂、增韧剂;
25、酚醛树脂的特点与分类;
26、热固性酚醛与热塑性酚醛的合成(原料与比例);
27、单体官能度对合成酚醛树脂的影响;
28、热固性酚醛可通过哪两种方式固化;
29、热塑性酚醛只能通过什么方式固化,最常用的固化剂是什么;
30、酚醛树脂改性的方法有哪两种。
第三章
1、GF的结构、组成与分类;
2、GF的生产方法;
3、GF的性能特点(GF高强的原因);
4、CF的分类、制备原理;
5、CF的生产工艺;
6、CF的性能特点;
7、芳纶纤维的优缺点;
8、玄武岩纤维的优缺点。
第四章
1、复合材料成型工艺的选择原则;
2、手糊成型工艺的优缺点;
3、RTM成型工艺原理及优缺点;
4、模压成型工艺原理及优缺点;
5、缠绕成型工艺原理及优缺点;
6、缠绕规律、缠绕类型及缠绕工艺措施;
7、拉挤成型工艺原理及应用领域;
8、真空辅助树脂灌注成型工艺原理及应用领域。