气动保位阀工作原理

合集下载

气动阀门工作原理图解说明

气动阀门工作原理图解说明

气动阀门工作原理图解说明
气动阀门的工作原理如下:
1. 气源: 气动阀门的工作原理主要依赖于气源。

气源通常是一个气缸,里面储存着压缩空气或其他气体。

2. 控制器: 控制器用来控制气源的供应和关闭。

它可以是手动操作的开关,也可以是自动控制器,如电磁阀。

3. 气缸: 气缸是气动阀门的核心部件。

它通常由一个活塞和一个活塞杆组成。

当气源供气时,气缸内的压缩空气推动活塞移动。

4. 阀门: 阀门连接在气缸的出口处。

它可以是旋转阀,也可以是直线阀。

当气源供气时,阀门打开,允许流体通过。

当气源关闭时,阀门关闭,阻止流体通过。

5. 动力传动: 气缸的活塞杆通过动力传动装置连接到阀门,将气源的动力传递给阀门,以实现开启或关闭阀门。

通过控制器和气源的供应,可以实现对气动阀门的控制。

当控制器将气源供气时,气体流经阀门,并允许流体通过。

当控制器关闭气源时,阀门关闭,阻止流体通过。

这种工作原理使得气动阀门在自动化系统中得以广泛应用,可以用于控制流体介质的流量、压力和方向。

气动阀门工作原理

气动阀门工作原理

气动阀门工作原理气动阀门是一种利用气源驱动的控制装置,广泛应用于工业领域中的流体控制系统中。

其工作原理主要是通过气源的压力,控制阀门的开启和关闭,从而实现对流体的控制和调节。

下面将详细介绍气动阀门的工作原理。

1. 气源供应。

气动阀门的工作原理首先需要有稳定的气源供应。

气源可以是压缩空气、氮气或其他气体,通过管道输送到气动阀门的执行机构中。

气源的压力和流量需要根据阀门的工作要求进行调节和控制,以确保阀门的正常工作。

2. 执行机构。

气动阀门的执行机构是控制阀门开启和关闭的关键部件。

执行机构通常由气缸、活塞和阀盖等部件组成,当气源进入气缸时,气缸内的活塞会受到气源的压力而产生运动,从而驱动阀盖实现对阀门的控制。

执行机构的设计和选型直接影响着阀门的灵活性和控制精度。

3. 阀门结构。

气动阀门的结构设计也是其工作原理的重要组成部分。

阀门通常由阀体、阀座、阀盖和阀杆等部件组成,通过阀杆的上下运动来控制阀门的开启和关闭。

阀门的结构设计需要考虑到流体的压力、温度和介质等因素,以确保阀门在不同工况下的可靠性和稳定性。

4. 控制信号。

气动阀门的工作原理还涉及到控制信号的传输和处理。

控制信号可以是手动操作、电气信号或气动信号,通过控制信号的传输和处理,可以实现对阀门的远程控制和自动化操作。

控制信号的稳定性和可靠性对阀门的工作性能有着重要的影响。

5. 工作过程。

当气源供应到位时,执行机构受到气源的压力而产生运动,驱动阀盖实现对阀门的控制。

当阀门开启时,流体可以自由通过阀门进行流通;当阀门关闭时,流体无法通过阀门进行流通。

通过控制气源的压力和执行机构的动作,可以实现对阀门的精确控制和调节。

总结。

气动阀门的工作原理主要涉及气源供应、执行机构、阀门结构和控制信号等方面,通过这些部件的协调配合,实现对阀门的开启和关闭控制。

在实际应用中,需要根据具体的工况和要求,选择合适的气动阀门类型和参数,以确保阀门的正常工作和流体控制的精确性。

气动阀门定位器的工作结构原理说明 定位器工作原理

气动阀门定位器的工作结构原理说明 定位器工作原理

气动阀门定位器的工作结构原理说明定位器工作原理(一)工作原理气动阀门定位器是气动调整阀的紧要附件和配件之一,起阀门定位作用。

气动阀门定位器是按力矩平衡原理工作的,当通入波纹管的信号压力加添时,使主杠杆绕支点转动,使喷嘴挡板靠近喷嘴,喷嘴背压经单向放大器放大后,通入到执行机构薄膜室的压力加添,使阀杆向下移动。

并带动反馈杆绕支点转动,反馈凸轮也随之作逆时针方向转动,通过滚轮使副杠杆绕支点转动,并将反馈弹簧拉伸,弹簧对主杠杆的拉力与信号压力用在波纹管上的力达到力矩平衡时,仪表达到平衡状态。

执行机构的阀位维持在确定的开度上,确定的信号压力就对应于确定的阀位开度。

以上作用方式为正作用,若要更改作用方式,只要将凸轮翻转,A向变成B 向等,即可。

所谓正作用定位器,就是信号压力加添,输出压力亦加添;所谓反作用定位器,就是信号压力加添,输出压力则削减。

一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。

(二)结构原理气动阀门定位器接收来自掌控器或掌控系统中4~20mA等弱电信号,并向气动执行机构输送空气信号来掌控阀门位置的装置。

其与气动调整阀配套使用,构成闭环掌控回路。

把掌控系统给出的直流电流信号转换成驱动调整阀的气信号,掌控调整阀的动作。

同时依据调整阀的开度进行反馈,使阀门位置能够按系统输出的掌控信号进行正确定位。

(三)紧要功能气动阀门定位器与气动执行机构共同构成自控单元和各种调整阀连接经过调试安装后,组合成气动调整阀。

用于各种工业自动化过程掌控领域当中。

定位器的安装怎样?智能阀门定位器为环路供电设备,能够驱动线性和90、旋转气动阀门。

4—20mA输入信号确定阀门的设定点。

精准明确的掌控通过阀位反馈实现—自动更改空气输出压力以克服阀杆摩擦力和流体的力的作用,维持所需要的阀位。

阀位通过连续的行程%数字显示。

阀位反馈通过基于霍尔效应的非接触技术获得。

气动阀的工作原理

气动阀的工作原理

气动阀的工作原理
气动阀的工作原理是通过气动执行器将气动信号转换为机械运动,从而实现对流体介质的控制。

具体工作原理如下:
1. 气动信号传递:气动信号由控制系统产生,并通过气源将压缩空气送入气动执行器。

2. 转换运动:在气动执行器内部,压缩空气进入气缸,推动活塞运动。

活塞连接着阀芯,当活塞运动时,阀芯也跟随移动。

3. 阀孔控制:当阀芯移动时,它可以与阀体上的阀孔进行连通或断开操作。

连通时,阀芯与阀孔对齐,流体介质可以通过;断开时,阀芯与阀孔不对齐,流体介质无法通过。

4. 流体控制:通过控制气压信号的变化,可以控制活塞位置和阀芯与阀孔的对应关系,从而实现对流体介质的控制。

比如,若阀芯与阀孔连通,则流体可以顺利通过;若阀芯与阀孔断开,则流体无法通过。

5. 控制策略:气动阀根据实际需求,通过控制系统发送不同的气压信号,实现对阀芯位置的调节,从而达到控制流体介质的目的。

通过以上工作原理,气动阀可以在工业自动化控制及流体控制系统中起到重要的作用,广泛应用于各种流体介质的控制领域。

气动保位阀工作原理

气动保位阀工作原理

气动保位阀是阀位保护装置。

当仪表的气源压力中断,或气源供给系统发生故障时,气动保位阀能够自动切断调节器与调节阀气室,或定位器输出与调节阀气室之间的通道,使调节阀的阀位保持原来的控制位置,以保证调节回路中工艺参数不变。

这样介质的被调作用不中断,故障消除后,气动保位阀立刻恢复正常位置。

下图所示为气动保位阀的结构。

当气源信号进入气室B时,作用在比较部件2上的力,与弹簧1的作用力进行比较。

正常状态时,膜片比较部件2的推力,大于给定的弹簧力,此时平板阀芯3抬起,打开喷嘴4,通道处于正常工作状态。

当气源发生故障而供气中断时,气室B的压力下降,在弹簧力作用下,平板阀芯3盖住喷嘴,切断了气室A与输出口的通道。

也就是将气动执行机构的气室密封,使调节阀的工作位置保持在原来的位置上,起到保持阀位的作用。

气动保位阀结构图1—弹簧 2—比较部分 3、平板阀芯 4—喷嘴 A、B—气室TAG:气动薄膜三通调节阀气动智能调节阀气动薄膜双座调节阀气动薄膜衬四氟调节阀卫生级气动薄膜调节阀注:气动保位阀安装在定位器与膜头之间如果有电磁阀,电磁阀因安装在保位阀和膜头之间气动继动器本质上是一种气动放大器。

它与气动薄膜式或气动活塞式执行机构配套使用,用以提高气动执行机构的动作速度。

当仪表远距离传送压力信号,或执行机构气室的容量很大时,由于将产生较明显的传递时间滞后,因此,使用这种附件能显著提高执行机构的响应特性。

下面所示为一种典型的气动继动器的结构。

它是以力平衡原理工作的。

当由调节器或阀门定位器来的控制信号压力输入到气室A时,在膜组件1上产生一个向下的推力,膜片组件1向下转动,打开阀芯2。

此时,气源压力由阀芯、阀座之间的间隙,流人到反馈气室B,同时经由输出端被送到执行机构。

当膜片的上下两侧所产生的作用力相平稀时,输入信号与输出信号将保持一定的比例关系。

如果设P为信号压力,膜片组件1 上膜片的有效面积为A1,下膜片的有效面移为A2,输出压力为Pout,则有下列的平衡关系成立:气动继电器结构1—膜片组建 2—阀芯 3—针形阀PA1=PoutA2式中,面积A1、A2均为常数。

阀门气路上的锁止阀和保位阀的工作原理

阀门气路上的锁止阀和保位阀的工作原理

阀门气路上的锁止阀和保位阀的工作原理The working principles of the lock valve and the position-maintaining valve on the valve pneumatic circuit are vital to ensuring the efficient operation of the valve system. Lock valves are designed to prevent the unintended movement of the valve actuator, while position-maintaining valves are responsible for holding the valve in a specific position. Understanding how these valves function is essential for maintaining the safety and reliability of the valve system.锁止阀的工作原理是通过在气路中引入一个单向阀或者一个阻尼器,来实现对阀门活塞的锁定。

当锁止阀关闭时,气体将被阻挡在阀门活塞两侧,从而阻止活塞的移动。

这种设计可以有效避免因外部压力或振动而导致阀门意外开启或关闭的情况,保证阀门的稳定工作。

Position-maintaining valves, on the other hand, work by maintaining a specific pressure in the actuator chamber to hold the valve in position. By regulating the flow of air into and out of the actuator chamber, these valves ensure that the valve stays in the desired position even under changing process conditions. This is crucial forprocesses where precise control over the valve position is necessaryto maintain optimal performance.保位阀的工作原理是通过对阀门的活塞室施加一定的气压,来保持阀门在特定位置。

气动保位阀工作原理

气动保位阀工作原理

气动保位阀工作原理 Prepared on 22 November 2020一、气动保位阀工作原理气动保位阀是阀位保护装置。

当仪表的气源压力中断,或气源供给系统发生故障时,气动保位阀能够自动切断调节器与调节阀气室,或定位器输出与调节阀气室之间的通道,使调节阀的阀位保持原来的控制位置,以保证调节回路中工艺参数不变。

这样介质的被调作用不中断,故障消除后,气动保位阀立刻恢复正常位置。

下图所示为气动保位阀的结构。

当气源信号进入气室B时,作用在比较部件2上的力,与弹簧1的作用力进行比较。

正常状态时,膜片比较部件2的推力,大于给定的弹簧力,此时平板阀芯3抬起,打开喷嘴4,通道处于正常工作状态。

当气源发生故障而供气中断时,气室B的压力下降,在弹簧力作用下,平板阀芯3盖住喷嘴,切断了气室A与输出口的通道。

也就是将气动执行机构的气室密封,使调节阀的工作位置保持在原来的位置上,起到保持阀位的作用。

气动保位阀结构图1—弹簧2—比较部分3、平板阀芯4—喷嘴A、B—气室TAG:气动薄膜三通调节阀气动智能调节阀气动薄膜双座调节阀气动薄膜衬四氟调节阀卫生级气动薄膜调节阀注:气动保位阀安装在定位器与膜头之间如果有电磁阀,电磁阀因安装在保位阀和膜头之间二、气动继动器工作原理气动继动器本质上是一种气动放大器。

它与气动薄膜式或气动活塞式执行机构配套使用,用以提高气动执行机构的动作速度。

当仪表远距离传送压力信号,或执行机构气室的容量很大时,由于将产生较明显的传递时间滞后,因此,使用这种附件能显着提高执行机构的响应特性。

下面所示为一种典型的气动继动器的结构。

它是以力平衡原理工作的。

当由调节器或阀门定位器来的控制信号压力输入到气室A时,在膜组件1上产生一个向下的推力,膜片组件1向下转动,打开阀芯2。

此时,气源压力由阀芯、阀座之间的间隙,流人到反馈气室B,同时经由输出端被送到执行机构。

当膜片的上下两侧所产生的作用力相平稀时,输入信号与输出信号将保持一定的比例关系。

气动单、双向保位阀

气动单、双向保位阀

气动单、双向保位阀
ZPB-11/21型气动单、双向保位阀是执行器附件之一,它与气动薄膜执行机构或双向作用的活塞式气动执行机构配套使用。

当气源系统发生故障时能自动切断气动执行机构进气和排气的通道,使其保持在事故时的位置,确保位阀能自动恢复正常工作。

所以气动保位阀在重要的自动控制回路中作为安全保护仪表。

结构原理:
气动保位阀是按力平衡原理设计而成。

它由:调节螺杆、锁紧螺母、调节弹簧、耗气孔、膜片、信号压力膜室、阀体、膜片、阀、阀弹簧、下膜室以及外罩,上、下阀体等零件组成。

技术参数
环境温度:-25~+55℃;
相对湿度:5%~95%;
振动频率:10~50Hz;幅值0.15mm;
设定压力调整范围:0.14~0.7MPa;
通道压力:0.02~0.7 MPa;
灵敏度:0.010 MPa;
接管螺纹:ZG1/4”;
外形尺寸:φ60×142(ZPB-21型)、φ60×106(ZPB-11型);
重量:0.77㎏(ZPB-21型)、0.77㎏(ZPB-21型)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气动保位阀是阀位保护装置。

当仪表的气源压力中断,或气源供给系统发生故障时,气动保位阀能够自动切断调节器与调节阀气室,或定位器输出与调节阀气室之间的通道,使调节阀的阀位保持原来的控制位置,以保证调节回路中工艺参数不变。

这样介质的被调作用不中断,故障消除后,气动保位阀立刻恢复正常位置。

下图所示为气动保位阀的结构。

当气源信号进入气室B时,作用在比较部件2上的力,与弹簧1的作用力进行比较。

正常状态时,膜片比较部件2的推力,大于给定的弹簧力,此时平板阀芯3抬起,打开喷嘴4,通道处于正常工作状态。

当气源发生故障而供气中断时,气室B的压力下降,在弹簧力作用下,平板阀芯3盖住喷嘴,切断了气室A与输出口的通道。

也就是将气动执行机构的气室密封,使调节阀的工作位置保持在原来的位置上,起到保持阀位的作用。

气动保位阀结构图
1—弹簧 2—比较部分 3、平板阀芯 4—喷嘴 A、B—气室
TAG:气动薄膜三通调节阀气动智能调节阀气动薄膜双座调节阀气动薄膜衬四
氟调节阀卫生级气动薄膜调节阀
注:
气动保位阀安装在定位器与膜头之间
如果有电磁阀,电磁阀因安装在保位阀和膜头之间
气动继动器本质上是一种气动放大器。

它与气动薄膜式或气动活塞式执行机构配套使用,用以提高气动执行机构的动作速度。

当仪表远距离传送压力信号,或执行机构气室的容量很大时,由于将产生较明显的传递时间滞后,因此,使用这种附件能显著提高执行机构的响应特性。

下面所示为一种典型的气动继动器的结构。

它是以力平衡原理工作的。

当由调节器或阀门定位器来的控制信号压力输入到气室A时,在膜组件1上产生一个向下的推力,膜片组件1向下转动,打开阀芯2。

此时,气源压力由阀芯、阀座之间的间隙,流人到反馈气室B,同时经由输出端被送到执行机构。

当膜片的上下两侧所产生的作用力相平稀时,输入信号与输出信号将保持一定的比例关系。

如果设P为信号压力,膜片组件1 上膜片的有效面积为A1,下膜片的有效面移为A2,输出压力为Pout,则有下列的平衡关系成立:
气动继电器结构
1—膜片组建 2—阀芯 3—针形阀
PA1=PoutA2式中,面积A1、A2均为常数。

如果在结构设计时A1=A2,则Pout=p,即输出压力与信号压力成1:1的关系。

如果A1=2A2,那么输出压力是信号压力的2倍。

当p变化时,Pout 就有相应的变化。

图中的针形阀3用于改善继动器的动特性,适用于不同容量的执行机构。

当配用小尺寸的执行机构时,如果继动器流量大,会使执行机构产生振荡,所以应使针形阀开度大一些,这样可使阀芯开度变化缓慢一些,达到输出稳定的目的。

当继
动器与大尺寸执行机构相配时,为了得到足够的动作速度,应让针阀开度关小一些,这样继动器就可能输出很大的流量。

TAG:气动固定球阀气动切断球阀气动超薄球阀三片式球阀二片式球阀气动V型调节球阀气动偏心旋转阀气动内螺纹三通球阀
三、硬密封O型球阀的四点弊端
硬密封O型球阀应用于自动控制系统上,可实现对其管道内介质切断或流通。

硬密封O型球阀具有结构新颖,耐高温,耐腐蚀,气蚀及闪蒸的损害等特点,并且具有良好的密封性,即达到气泡级。

但是它也具体一些不足之处,如下:
1)硬密封O型球阀在密封面磨损后,一般不能自动补偿,须人为紧固主阀体与副阀体之间的螺栓才能达到补偿目的。

2)硬密封O型球阀一般采用两片式和三片式结构,或采用一体式螺纹紧固阀座结构。

因此,O型球阀不能在线维修,且安装和拆卸困难。

3)硬密封O型球阀的球芯在阀门开关过程中始终与阀门相对滑动摩擦,同时,阀芯和阀座之间的密封是通过阀座压向球芯的预紧密封力实现的。

如果在使用一段时间后阀座磨损,则球芯和阀座之间的预紧密封力会减小,阀门关闭时密封副之间的密封性能降低,阀门可能出现内漏。

4)硬密封O型球阀使用寿命短,应用范围较小,拆装和维修困难。

TAG:长输管线球阀氧气球阀 BQ41F/H保温球阀 DQ41F/H低温球阀金属密封轨道球阀精铸高平台球阀
四、直通单座调节阀的结构详解
直通单座调节阀由阀体、阀座、阀芯、导向套、阀盖、阀杆和填料等零件组成。

阀芯和阀杆连接在一起。

连接方法可用过盈配合销钉固定或螺纹连接销钉固定,也可以阀杆和阀芯一体车出。

在阀盖和阀体间设有导向套,为阀芯上下移动起导向作用。

导向套上的小孔,连通阀体内腔和阀出口端。

导向套上腔的介质很容易通过小孔流入阀出口端,不会影响阀芯的移动。

直通单座调节阀的阀体内只有一个阀芯和一个阀座。

特点是泄漏量小,易于保证密封。

结构上有调节型和切断型。

它们的区别在于阀芯的形状不同。

调节型阀芯的形状为柱塞形;切断型阀芯的形状为平板形或锥形,它的另一个特点是介质对阀芯的作用力大,即不平衡力大,特别是在高压差、大口径的情况下更为严重,所以仅适用于低压差的场合。

否则应适当选择推力大的执行机构,或配以阀门定位器。

直通单座调节阀阀芯有正装和反装两种类型。

当阀芯向下移动时,阀芯与阀座间流通面积减小,称为正装;反之则称为反装。

调节阀的公称尺寸DN和阀座直径dN标志着阀门的大小。

对于公称尺寸DN<2.5mm 的单导向阀芯,只能正装不能反装。

因此气开式必须采用反作用执行机构。

气开式调节阀随信号压力的增大而流通面积也增大;而气关式则相反,随信号压力的增大而流通面积减小。

1—阀体 2—阀座 3—阀芯 4—导向套 5—阀盖 6—阀杆 7—填料
TAG:电动调节阀电动单座调节阀电动双座调节阀电动笼式单座调节阀电动
套筒调节阀
/vipcom/yixinvalve/news-4.html。

相关文档
最新文档