大学物理习题解答5第五章稳恒电流

合集下载

吉林大学大学物理练习册稳恒电流的磁场作业

吉林大学大学物理练习册稳恒电流的磁场作业

取半径为 r ~ r+dr 的细圆环
dq 2rdr
dI
2
2rdr rdr
O Rr
B1 B2 r 1 R
dI
2
dB dr
B1 B2
2r dB
2dI
r
dr
R r
2
I
dr
2r
2
0
(
2 R
r
)
2
5. 两条无穷长的平行直导线距2a,分别载有大小相等方 向相反的电流I。空间任一点P到两导线的垂直距离分别为 x1和x2,求P点的磁感应强度B。
(2)当φ= / 2 时,线圈所受的力矩最大。
5.半径为R细圆环均匀带电,电荷线密度为λ。
若圆环以角速度ω绕过环心且垂直于 环面转轴作
匀速转动,则环心处的磁感应强度B 的大小

0 / 2
。 I nq 2R
2
B
0 I
2R
0 /
2
6. 一均匀带电圆环,带电量为+q,其半径为R,
置于均匀磁场 中B, 的B方向与圆环所在平面成
和洛仑兹力
B.只有库仑力和洛仑兹力
C.只有三种中某一种
5.载流为I、磁矩为Pm的线圈,置于磁感应强度 为B的均匀磁场中。若Pm与B方向相同,则通过线 圈的磁通量Ф与线圈所受的磁力矩M的大小为
A. IBPm , M 0
B. BPm , M 0
I
C. IBPm , M BPm
D.
BPm I
b 2 x 2
b
F3
0I1I2 dl L 2 x
ba
0 I1I 2
dx
0 I1I 2
ba ln
b 2 cos45 x 2 cos45 b

高考物理稳恒电流解题技巧(超强)及练习题

高考物理稳恒电流解题技巧(超强)及练习题

高考物理稳恒电流解题技巧(超强)及练习题一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T 范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.3.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件4.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数100n =,穿过每匝线圈的磁通量ϕ随时间按正弦规律变化,如图所示,发电机内阻 5.0r =Ω,外电路电阻95R =Ω,已知感应电动势的最大值m m E n ω=Φ,其中m Φ为穿过每匝线圈磁通量的最大值,求串联在外电路的交流电流表(内阻不计)的读数。

大学物理习题解答5第五章稳恒电流

大学物理习题解答5第五章稳恒电流

第五章 稳恒电流本章提要1.电流强度· 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。

如果在t ∆时间内通过导体某一截面的电量为q ∆,则通过该截面的电流I 为qI t∆=∆ · 如果电流随时间变化,电流I 的定义式为tqt q I t d d lim 0=∆∆=→∆2.电流密度· 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。

根据电流密度的定义,导体中某一点面元d S 的电流密度为d d Ij S ⊥= · 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即d j S S=⋅⎰⎰I3.欧姆定律· 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式RU U I 21-=其中R 为导体的电阻,21U U -为导体两端的电势差· 欧姆定律的微分形式为E j σ=其中ρσ1=为电导率4.电阻· 当导体中存在恒定电流时,导体对电流有一定的电阻。

导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。

当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为Sl R ρ= 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率5.电动势· 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。

qA 非=ε· 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为l E lk ⎰⋅=d ε6.电源电动势和路端电压· 若电源正负极板的电势分别为U +和U -,电源内阻为r ,电路中电流为I ,则电源电动势为()U U Ir +-ε=--· 路端电压为Ir U U -=--+ε7.接触电动势· 因电子的扩散而在导体接触面上形成的等效电动势。

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

dt
a
⎞ ⎟⎠
=
n
μ0 2π
l
I
⎛ ⎜⎝
1 R

1 R+
a
⎞ ⎟⎠
dR dt
=
μ0 2π
l
I
⎛ ⎜⎝
1 d

d
1 +
a
⎞ ⎟⎠
v
=

2× 10−7×5 Nhomakorabea0×
0.4
×
2
×
⎛ ⎜⎝
1 0.20

0.20
1 +
0.20
⎞ ⎟⎠
成绩:
r d I
= 2 ×10−6(V ) ………4 分
方法二、相当于四段导体切割磁力线在瞬间,线圈产生的电动势等效于并接的两电动势。 距离长直导线为 r 处的磁感应强度为:
势。若若线圈保持不动,而长直导线中的电流变为交变电流 i = 10 sin (100π t ) A i=10,求线圈中的感应电动
势。(不计线圈的自感) 解:(1)方法(一)如图,距离长直导线为 r 处的磁感应强度为:
B = μ0i ,………2 分 2πr
选回路的绕行方向为顺时针方向,则通过窄条
6
专业班级: 面积 ds 的磁通量为:
d l
I
a
5
专业班级:
学号:
姓名:
在竖直方向的分量为 B .求ab两端间的电势差Ua −Ub .
解: Ob 间的动生电动势:
∫ ∫ ε1
=
4L 0
5

×
B)id l
=
4L 0
5
ω Bldl
=
1ωB( 4 25

《大学基础物理学》农科用教材自作pdf课件-05稳恒电流

《大学基础物理学》农科用教材自作pdf课件-05稳恒电流

V2 dV = RT ln RT V1 V
V2 C 1 (∴ = ) V1 C 2
A RT C 1 ln 得电动势 ε = = q ZF C 2
Z为价电荷数 F为法拉第常数,F=96485C/mol
海 南 大 学
第五章 恒定电流( steady current )
三、细胞内外的扩散电动势
海 纳 百 川
第五章 恒定电流( steady current )
具有相同温度T的两金属A、B的接触电势差
U AB = U
海 纳
' AB
+U
" AB
kT n A ln = VB − V A + e nB
A
B
大 道
若有三种相同温度T的两金属A、B、C的接触电势差
kT n A U AB = U + U = VB − V A + ln e nB 百 kT nB ' " U BC = U BC + U BC = VC − V A + ln e nC 川 kT n A U AC = U AB + U BC = VC − V A + ln e nC
细胞内的主要是K+、Na+和Cl-三种 离子,扩散电动势为
ε=
RT ln ZF PK K + PK K +
o i
大 K+ 道 致 远 Na+
+ PNa Na + + PNa Na
+
o i
+ PCl Cl − + PCl Cl

i o
(V )
Cl-
i、o分别表示膜内、外; PK、 PNa、 PCl是细胞膜对K+、 Na+和Cl-的通透系数;

大学物理习题课-稳恒电流的稳恒磁场-2011.6.10

大学物理习题课-稳恒电流的稳恒磁场-2011.6.10

1 5
r r 向上, M垂直 B, 向上,
一根无限长的直圆柱形铜导线, 例5. 一根无限长的直圆柱形铜导线,外包一层相对磁导率为 µr的圆筒形磁介质,导线半径为 R1,磁介质的外半径为 R2。 的圆筒形磁介质, 导线内有电流通过, 磁介质内、 导线内有电流通过 , 求 : 磁介质内 、 外的磁场强度和磁感应 强度的分布
大学物理习题课
恒定电流的稳恒磁场

电流 电流密度 电动势
电流强度 电流密度
v v j = qnv
(S )
∆q dq I = lim = ∆t →0 ∆ t dt
v r 对任意曲面S: 对任意曲面 : I = ∫∫ j ⋅ dS
r I 是 j 的通量
v v dqin 电流的连续性方程 ∫∫S j ⋅ dS = − dt v v 电流稳恒条件 ∫∫ j ⋅ dS = 0
I
v × B 1
p -e 3r
用补偿法求p处的磁感应强度: 用补偿法求 处的磁感应强度: 处的磁感应强度
v v 根据 ∫ B⋅ dl = µ0 ∑Ii
L
v v
v • B2
δ
o`
v
得: B = 1
µ0δ r
6
B2 =
µ0δr
88
41µ0δr ∴B = B − B2 = 1 264
v v v v v fm = qv× B = −ev× B
计算得 方向: B = 5.0×10−16 (T) 方向:垂直于纸面向里
例2:空气中有一半径为 的“无限长”直圆柱金属导体,竖直 :空气中有一半径为r的 无限长”直圆柱金属导体, 的圆柱空洞, 线oo`为中心轴线 ,在圆柱体内挖一个直径为 r 的圆柱空洞, 为中心轴线 空洞侧面与oo`相切,在未挖洞部分通以均匀分布的电流I,方 空洞侧面与 相切,在未挖洞部分通以均匀分布的电流 , 相切 向沿oo`向下,如图所示。在距轴线 处有一电子 电量为-e) 处有一电子( 向沿 向下,如图所示。在距轴线3r处有一电子(电量为 ) 向下 o 沿平行于oo`轴方向 在中心轴线oo` 轴方向, 沿平行于 轴方向,在中心轴线 r/2

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律

大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律
L5
ε2 =
∫ (υ × B)idl = ∫ ω Bldl = 2ω B( 5 L)
0 0
L5
1
1
2
=
1 ω BL2 50
a点电势高于O点.
∴ U a − U b = ε 2 − ε1 =
1 16 15 3 ω BL2 − ω BL2 = − ω BL2 = − ω BL2 50 50 50 10
6.如图所示,一无限长直导线通有电流 I=5.0A,一矩形单匝线圈与此长直导线共面。设矩形线圈以 V=2.0m/s 的速度垂直于长直导线向右运动。已知:l=0.40m, a=0.20m, d=0.20m,求矩形线圈中的感应电动 势。若若线圈保持不动,而长直导线中的电流变为交变电流 i = 10 sin ( 100π t ) A i=10,求线圈中的感应电动 势。 (不计线圈的自感) 解: (1)方法(一)如图,距离长直导线为 r 处的磁感应强度为:
ε1r1 ε2r2
R1 R2 R4
ε3r3 A
R3 B
1. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,
3
专业班级:
学号:
姓名:
成绩:
1 由实线表示), AB = EF = R ,大圆弧 BC 的半径为R,小圆弧 DE 的半径为 R ,求圆心O 处 2
的磁感强度 B 的大小和方向.
解:解:(1) AB , CD , EF 三条直线电流在O 点激发的磁场零;
2
专业班级: 正)为 (D) (A)
学号:
姓名:
成绩:
π r 2 B . . (B) 2π r 2 B .(C) −π r 2 B sin α . (D) −π r 2 B cos α

高考物理稳恒电流解题技巧(超强)及练习题

高考物理稳恒电流解题技巧(超强)及练习题

高考物理稳恒电流解题技巧(超强)及练习题一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.a.己知带电粒子电荷量均为g,粒子定向移动所形成的电流强度为,求在时间t内通过某一截面的粒子数N.b.直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l所示,在距粒子源l1、l2两处分别取一小段长度相等的粒子流I .已知l l:l2=1:4,这两小段粒子流中所含的粒子数分别为n1和n2,求:n1:n2.(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂直于水柱的横截面可视为圆.在水柱上取两个横截面A、B,经过A、B的水流速度大小分别为v I、v2;A、B直径分别为d1、d2,且d1:d2=2:1.求:水流的速度大小之比v1:v2.(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l远远大于细管内的横截面积S2;重力加速度为g.假设水不可压缩,而且没有粘滞性.a.推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:b.在上述基础上,求:当液面距离细管的高度为h时,细管中的水流速度v.【答案】(1)a. Q It N q q== ;b. 21:2:1n n =;(2)221221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh 【解析】 【分析】 【详解】 (1)a.电流Q I t=, 电量Q Nq = 粒子数Q It N q q== b.根据2v ax =可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =极短长度内可认为速度不变,根据x v t∆=∆, 得12:2:1t t =根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n = (2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等.也即:2··4v d π处处相等 故这两个截面处的水流的流速之比:221221::1:4v v d d ==(3)a .设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv = 由12S S >>,可得:12v v <<.所以液体面下降的速度1v 比细管中的水流速度可以忽略不计. b.根据能量守恒和机械能守恒定律分析可知:液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能. 又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:21002mgh mv +=+ 解得:2v gh =3.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V 回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A 由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I总′=I1′+12UR'=0.2+0.82A=0.6A由闭合电路欧姆定律得E=I总′r+U1′+U3′,即E=0.6r+0.8+5②联立①②解得E=7.0 V,r=2.0Ω【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.4.如图所示,固定的水平金属导轨间距L=2 m.处在磁感应强度B=4×l0-2 T的竖直向上的匀强磁场中,导体棒MN垂直导轨放置,并始终处于静止状态.已知电源的电动势E=6 V,内电阻r=0.5 Ω,电阻R=4.5 Ω,其他电阻忽略不计.闭合开关S,待电流稳定后,试求:(1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A;(2)0.096 N,方向沿导轨水平向左【解析】【分析】【详解】(1)由闭合电路欧姆定律可得:I=64.50.5EAR r=++=1.2A(2)安培力的大小为:F=BIL=0.04×1.2×2N=0.096N安培力方向为沿导轨水平向左5.微波炉的工作应用了一种电磁波——微波(微波的频率为2.45×106Hz).食物中的水分子在微波的作用下加剧了热运动,内能增加,温度升高,食物增加的能量是微波给它的.右下表是某微波炉的部分技术参数,问:(1)该微波炉内磁控管产生的微波波长是多少? (2)该微波炉在使用微波挡工作时的额定电流是多少?(3)如果做一道菜,使用微波挡需要正常工作30min ,则做这道菜需消耗的电能为多少? 【答案】(1)0.12m (2)5A (3)61.9810J ⨯ 【解析】 【分析】由c =λf 求得λ;额定电流=额定功率除以额定电压;消耗的电能等于功率与时间的乘积. 【详解】(1)波长为863100.12245010c m m f λ⨯===⨯. (2)额定电流:11005220P I A A U ===. (3)消耗的电能 E =W =Pt =1100×1800=1.98×106J . 【点睛】本题主要考查了电功率和电能的计算,属于基础题.6.山师附中一研究性学习小组制作了一辆以蓄电池为驱动能源的环保电动汽车,其电池每次充电仅需三至五个小时,蓄电量可让小汽车一次性跑500m ,汽车时速最高可达10m/s ,汽车总质量为9kg .驱动电机直接接在蓄电池的两极,且蓄电池的内阻为r=0.20Ω.当该汽车在水平路面上以v =2m/s 的速度匀速行驶时,驱动电机的输入电流I =1.5A ,电压U =3.0V ,内电阻R M =0.40Ω.在此行驶状态下(取g =10 m/s 2),求: (1)驱动电机输入的电功率P 入; (2)驱动电机的热功率P 热; (3)驱动电机输出的机械功率P 机; (4)蓄电池的电动势E .【答案】(1)4.5W (2)0.9W (3)3.6W (4)3.3V 【解析】试题分析:根据P =UI 求出驱动电机的输入功率;由P =I 2r 可求得热功率;由输入功率与热功率的差值可求出机械功率;由闭合电路欧姆定律可求得电源的电动势. (1)驱动电机输入的电功率:P 入=IU =1.5×3.0W =4.5W (2)驱动电机的热功率:P 热=I 2R =(1.5)2×0.40W =0.9W (3)驱动电机输出的机械功率:P 机=P 入−P 热=3.6W(4)蓄电池的电动势:E =U +IR =(3.0+1.5×0.2)V=3.3V点睛:本题主要考查了功率的公式P =UI ,以及机械功率的公式P =Fv 的应用;要注意体会能量的转化与守恒关系.7.一根粗细均匀的金属导线,两端加上恒定电压10 V 时,通过金属导线的电流为2 A ,求:①金属导线电阻;②金属导线在10 s 内产生的热量. 【答案】(1)5 Ω (2)200 J【解析】试题分析:根据欧姆定律和焦耳定律即可解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 稳恒电流本章提要1.电流强度· 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。

如果在t ∆时间内通过导体某一截面的电量为q ∆,则通过该截面的电流I 为qI t∆=∆ · 如果电流随时间变化,电流I 的定义式为tqt q I t d d lim 0=∆∆=→∆2.电流密度· 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。

根据电流密度的定义,导体中某一点面元d S 的电流密度为d d Ij S ⊥= · 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即d j S S=⋅⎰⎰I3.欧姆定律· 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式RU U I 21-=其中R 为导体的电阻,21U U -为导体两端的电势差· 欧姆定律的微分形式为E j σ=其中ρσ1=为电导率4.电阻· 当导体中存在恒定电流时,导体对电流有一定的电阻。

导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。

当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为Sl R ρ= 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率5.电动势· 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。

qA 非=ε· 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为l E lk ⎰⋅=d ε6.电源电动势和路端电压· 若电源正负极板的电势分别为U +和U -,电源内阻为r ,电路中电流为I ,则电源电动势为()U U Ir +-ε=--· 路端电压为Ir U U -=--+ε7.接触电动势· 因电子的扩散而在导体接触面上形成的等效电动势。

ABln n kT e n ε=其中e 为电子电量,k 为玻尔兹曼常数,T 为热力学温度8.含源电路的欧姆定律()A B U U IR Ir ε-=+9.基尔霍夫定律· 基尔霍夫定律是求解复杂电路的基本方法。

(1)基尔霍夫第一定律:流入任一节点的电流和流出该节点的电流的代数和等于零。

0I =∑(2)基尔霍夫第二定律:沿任一个闭合回路的电动势的代数和等于回路中电阻上电势降落的代数和。

IR ε=∑∑思考题5-1 电流是电荷的流动,在电流密度0j ≠的地方,电荷的体密度ρ是否可能等于零?答:有可能等于零。

在金属导体中电荷的定向移动形成电流,电荷的体密度等于零。

而单独的正离子或负离子的运动形成电流时电荷的体密度不等于零。

5-2 如果通过导体中各处的电流密度不相同,那么电流能否是恒定的?为什么?答:电流能够恒定,因⎰⎰⋅=Sd S j Ι,虽然导体中各处的电流密度不相同,只要电流密度j 对导体各截面的通量相等,通过导体的电流就恒定。

5-3 一铜线外涂以银层,两端加上电压后,在铜线和银层中通过的电流是否相同?电流密度是否相同?电场强度是否相同?答:因lUS R U I ρ==,而两种导线的横向截面不同;长度是一样;铜线与银层的材料不同,电阻率不同;所以两端施加同样的电压而通过的电流不相同;电流密度lUS I j ρ==不相同,电场强度l U j E 2ρρ==也不相同。

5-4 截面相同的铝丝和钨丝串联,接在一直流电源上,问通过铝丝和钨丝的电流强度和电流密度是否相等?铝丝内和钨丝内的电场强度是否相等?答:通过铝丝和钨丝的电流强度相等,又因二者截面积相同,根据SI j d d =,则通过的电流密度也相等。

根据ρσEE j ==,ρ为导体材料的电阻率,两种材料电阻率不相等,通过的电流密度相等,所以两材料内的电场强度不相等。

5-5电源的电动势和端电压有什么区别?两者在什么情况下才相等?答:电动势是单位正电荷从负极经电源内部移到正极时非静电力所做的功,端电压是指电源正负两极之间的电压,一般情况下电源的端电压不等于电动势,两者之差为Ir ,即电源电流与内阻r 之积,称内阻电位降。

当电源内阻为0,即Ir=0时,端电压在数值上等于电动势。

对于有内阻的电源,只要流过它的电流为零(处于开路状态的电源就如此),端电压也与电动势数值相等。

练习题5-1 大气中由于存在少量的自由电子和正离子而具有微弱的导电性。

已知地球表面附近空气的电导率1411310m σ---=⨯Ω⋅,场强1C N 100-⋅=E ,地球半径m 1066⨯=R 。

若将大气电流视为稳恒电流,计算由大气流向地球表面的总电流强度。

解:已知1411310m ---δ=⨯Ω⋅,1100N C E -=⋅,如图5-1所示,在地球表面取一微元曲面d S ,则由大气流向曲面S d 的电流强度d d dI S j S =⋅=j(1)对①式积分即可得大气流向地球表面的总电流强度jS jdS dS SS==⋅=⎰⎰⎰⎰j I因1412-2310100310(A m )--=δ=⨯⨯=⨯⋅j E又地球表面积为()()22614244610 4.5210m S R =π=π⨯⨯=⨯则12143310 4.5210 1.410(A)I jS -==⨯⨯⨯≈⨯即大气流向地球表面的总电流强度为31.410A ⨯。

图5-1①5-2 截面积为10mm 2的铜线中,允许通过的电流是60A ,试计算铜线中的允许电流密度。

设每个铜原子贡献一个自由电子,可算得铜线中的自由电子密度是328m 105.8-⨯,试计算铜线中通有允许电流时自由电子的漂移速度。

解:铜线截面积25210mm 1.010m S -==⨯,允许通过的电流60A I =,则铜线中允许电流密度62560 6.010(A m )1.010I j S --===⨯⋅⨯ 又知铜线中的自由电子密度2838.510m n -=⨯,则铜线中通有允许电流时自由电子的漂移速度64128196.010 4.410(m s )8.510 1.610j v ne ---⨯===⨯⋅⨯⨯⨯5-3 有一灵敏电流计可以测量小到A 1010-的电流,当铜导线中通有这样小的电流时,每秒内有多少个自由电子通过导线的任一截面?如导线的截面积是2mm 1,自由电子的密度是328m 105.8-⨯,自由电子沿导线漂移cm 1需要多少时间?解:铜导线中通有电流1010A I -=,则每秒内通过导线任一截面的自由电子数108-119101 6.310(s )1.610It n e --⨯===⨯⨯ 又知导线的截面积2621mm 110m S -==⨯,自由电子的密度2838.510m n -=⨯, 则电子的平均漂移速率1015-162819107.3510(m s )1108.510 1.610I v Sne ----===⨯⋅⨯⨯⨯⨯⨯ 自由电子沿导线漂移1cm l =需要的时间为21215110 1.410(s)7.3510l t v --⨯==≈⨯⨯5-4 一铜棒的截面积为2mm 8020⨯,长为m 0.2,两端的电势差为mV 50。

已知铜的电导率715.710s m σ-=⨯⋅,铜内自由电子的电荷体密度为310m 1036.1-⋅⨯C 。

求:(1)它的电阻;(2)电流;(3)电流密度;(4)棒内的电场强度;(5)所消耗的功率;(6)棒内电子的漂移速度。

解:铜棒的截面积2322080m m 1.610m S -=⨯=⨯,长 2.0m l =,电导率715.710s m -δ=⨯⋅,则(1) 铜棒电阻为()Ω⨯≈⨯⨯⨯=⋅==--537102.2106.1107.521S l S l ρR δ (2) 铜棒两端的电势差为250mV 510V U -==⨯,则电流()235510 2.310A 2.210U I R --⨯==≈⨯⨯ (3) 电流密度为()36232.310 1.410A m 1.610I j S --⨯===⨯⋅⨯ (4) 棒内的电场强度()62171.4102.510V m 5.710j E --⨯===⨯⋅δ⨯ (5) 所消耗的功率()()223522.310 2.210 1.110W P I R -==⨯⨯⨯≈⨯(6) 又自由电子的电荷体密度1031.3610c m ne -=⨯⋅,则电子的漂移速度()64101.410 1.010m s 1.3610j v ne -⨯===⨯⋅⨯5-5大多数生物细胞的形状类似圆球,这类细胞的细胞膜可视为一个同心球壳体系,如图5-2所示。

由于活体细胞内外均有许多带电粒子,这些粒子可通过细胞膜进行交换,形成跨膜电流。

设细胞膜内半径为R a ,外半径为R b ,膜中介质的电阻率为ρ。

求(1)细胞膜电阻;(2)若膜内外的跨膜电势为U ab ,求跨膜电流的电流密度与半径r 的关系。

解:(1)设想细胞膜是由许多个圆球组成,以r 代表其中任意薄层圆球的半径,其面积2d 4S r =π,以d r 表示此薄层的厚度,由题意可知电流沿径向方向,则长度即为d r ,该薄层的电阻应为24d d d rrρS r ρR π=⋅=,则细胞膜电阻 ()b a a b b a RbRaRbRaR R R R ρR R ρr r ρR R πππ411414d d 2-=⎪⎪⎭⎫ ⎝⎛-===⎰⎰ (2)若膜内外的跨膜电势为ab U ,跨膜电流()()44ab ab a b abab b a a b b a U U R R U I R R R R R R R π===ρ-πρ- 由于在距离球心r 处总电流ab I 所通过的“截面积”24r S π=,则跨膜电流的电流密度与半径r 的关系由下式得出:()ab b a ab a b ab b a ab R R R R r U r R R U R R S I j -⋅=⋅-==2244ρπρπ5-6电缆的芯线是半径为cm 5.01=r 的铜线,在铜线外面包一层同轴的绝缘层,绝缘层的外半径为cm 0.12=r ,电阻率121010m .ρΩ=⨯⋅。

在绝缘层外面又用铅层保护起来(见图5-3)。

求(1)长m 1000=L 的这种电缆沿径向的电阻;(2)当芯线与铅层间的电势差为100V 时,在这电缆中沿径向的电流多大? 解:(1)设想电缆芯线与绝缘层之间是由许多薄圆柱层所组成,以r 代表其中任意薄层截面的半径,其面积rl S π2=,以d r 表示此薄层的厚度,则该薄层的径向电阻应为rlrρS r ρR π==2d d d 长m l 1000=的这种电缆沿径向的电阻为12ln 22d d 21r r l ρrl rρR R r r π=π==⎰⎰ 代入数据后,得()Ω⨯=⨯⨯⨯⨯=--82212101.1)105.0100.1ln(10002100.1πR (2)当芯线与铅层间的电势差100V U =时,根据欧姆定律求得径向电流 781009.110(A)1.110U I R -===⨯⨯5-7 一个蓄电池在充电时通过的电流为3.0A ,此时蓄电池两极间的电势差为4.25V 。

相关文档
最新文档