平行四边形的判定全.ppt

合集下载

平行四边形的ppt课件

平行四边形的ppt课件

VS
外角和定理的证明
通过平移、旋转等几何变换,将平行四边 形转化为三角形,再利用三角形外角和定 理进行证明。
谢谢
THANKS
平行四边形的性质课件
目录
CONTENTS
• 平行四边形的基本概念 • 平行四边形的特殊形式 • 平行四边形与生活中的应用 • 平行四边形的证明实例 • 平行四边形的探究与拓展
01 平行四边形的基本概念
CHAPTER
平行四边形的定义
平行四边形定义
平行四边形是两组对边分别平行的四 边形。
平行四边形的符号表示
05 平行四边形的探究与拓展
CHAPTER
平行四边形的面积计算
面积计算公式
平行四边形的面积可以通过底乘高的方式进行计算,其中底为平行四边形的底边,高为该边上的垂直 距离。
面积计算的实际应用
面积计算在日常生活和数学领域中都有广泛的应用,如几何图形面积的求解、土地面积的测量等。
平行四边形的内角和
内角和定理
采光
平行四边形的窗户设计能够更好地利用自然光线 ,提高室内采光效果。
交通标志
方向性
平行四边形形状的交通标志具有明显的方向性,能够清晰地指示 车辆前行方向。
易识别性
平行四边形的简单形状和鲜明的颜色使得交通标志易于识别,有助 于提高交通安全。
规范性
平行四边形的交通标志符合道路交通规范,能够确保交通秩序和安 全。
矩形的四个角都是直角, 对角线相等。
判定
如果一个平行四边形有一 个角是直角,那么它是矩 形。
菱形
定义
有一组邻边相等的平行四 边形是菱形。
性质
菱形的四条边都相等,对 角线互相垂直平分。
判定

《平行四边形的判定定理》PPT课件 (公开课)2022年浙教版 (1)

《平行四边形的判定定理》PPT课件 (公开课)2022年浙教版 (1)
球小,明小各杰投比进张多明少多个投进2个,三人平均每人投进142个x球 1.问2 小 杰14和 设第一次射击的成绩为x个, 可列方程为____3_______
列出方程后,还必须找出符合方程的未知数的值.
能使方程左右两边的值相等 的未知数的值叫方程的解.
倍 速
例1: 判断下列t的值是不是


方程2t+1=7-t的解:
(一组对边平行且相等的四边形是平行四边形)
∴EB=DF
A
E
D
B
F
Cቤተ መጻሕፍቲ ባይዱ
例2:画平行四边形ABCD,使∠B=45°,
AB=2CM,BC=3CM
小结:平行四边形的三个判定方法:
两组对边分别平行
从边看: 两组对边分别相等 一组对边平行且相等
的四 边形 是平 行四 边形
倍 速 课 时 学 练
方程小史
“方程”一词来源于我国古算书《九章算术》.在这 部著作中,已经会列一元一次方程.
解方程: 2 x + 1 2 = 1 4 3
尝试检验法
(1)确定x的取值范围__1_3_≤_x_≤1_8_且__x_取__正__整__数___
对于一些较简单的方 程,可以确定未知数
所以只能取__1_3_,_1_4_,1_5_,_1_6_,1_7_,_1_8_
(2)把所取的的值代入方程左边的代数式 2 x 12 14 ,求出代
100
水沸腾的温度
时 学
37
人体温度

68
20
室温
32
0
水结冰的温度
xk121 0 是一元一次方程,则k=___2____
变式1: x|k| 210是一元一次方程,则k=_1_或___-1_

《平行四边形的判定》课件

《平行四边形的判定》课件

两组对边 分别相等 B
O C
∴ 四边形 ABCD 是平行四边形.
A
D
O
B
C
∠BAD=∠DCB, ∠ABC=∠CDA.
请你试试用两组对角分别相等来证明.
通过以上证明,我们得到平行四边形的判定方法4: 对角线互相平分的四边形是平行四边形.
数学语言:
A
D
∵ OA=OC , OB=OD, ∴ 四边形ABCD是平行四边形. B
判定方法4





定 数学语言
对角线互相平分的四 边形是平行四边形.
∵ OA=OC,OB=OD, ∴四边形ABCD是平行四边形.
证明:连接 BD,交 AC 于点 O. A
D
∵四边形 ABCD 是平行四边形, ∴OA=OC,OB=OD
E OF
∵BE//DF, ∴∠EBO=∠FDO.
B
C
∵∠EBO=∠FDO,OB=OD ,∠EOB=∠FOD
∴△EBO≌△FDO, ∴EO=FO ,
∴四边形 BFDE 是平行四边形.
课堂小结
平 行
D
H
A E
O
F
B
G C
随堂练习
1.如图, 在平行四边形 ABCD 中,EF 过对角线 BD 的
中点 O.
求证:四边形 BFDE 是平行四边形. A
FD
O
BE
C
证明:∵四边形 ABCD 是平行四边形, A
FD
∴OB=OD,AD//BC,
O
∴∠FDO=∠EBO.
BE
C
∵ ∠FDO=∠EBO,OD=OB, ∠FOD=∠EOB,《平行四形的判定》AD

平行四边形ppt课件

平行四边形ppt课件

性质
总结词
平行四边形具有一些独特的性质 。
详细描述
平行四边形有一些重要的性质, 包括对角线互相平分、对角相等 、对边相等和邻角互补。这些性 质在解决几何问题时非常有用。
分类
总结词
平行四边形可以根据不同的标准进行分类。
详细描述
根据不同的分类标准,平行四边形可以分为不同的类型。例如,根据角度的大小 ,可以分为锐角、直角和钝角平行四边形;根据边的长度,可以分为等腰和不等 腰平行四边形。不同类型的平行四边形具有不同的性质和特点。
05练习题和答案源自基础练习题0102
03
04
基础练习题1
请描述平行四边形的定义和性 质。
基础练习题2
请列举平行四边形的几个应用 实例。
基础练习题3
请判断以下哪些图形是平行四 边形,哪些不是,并说明理由

基础练习题4
请计算平行四边形的面积和周 长。
进阶练习题
进阶练习题1
请证明平行四边形的对 角线互相平分。
平行四边形结构在桥梁和建筑 物的设计中可以提供更好的支 撑和稳定性。
平行四边形在光学中也有应用, 如在透镜和反射镜的设计中。
数学教育应用
在数学教育中,平行四边形是几 何学的基本概念之一,用于学习
几何定理和性质。
通过平行四边形的性质和定理, 学生可以深入理解空间几何的基
本原理。
平行四边形在解决数学问题中也 有广泛应用,如代数方程、解析 几何和微积分等领域的解题技巧。
推论法
总结词
通过其他几何定理推导出平行四边形。
详细描述
有些几何定理可以推导出四边形是平行四边形,例如,如果一个四边形的对角线互相平分,则它是平行四边形。 此外,还有其他的推论方法可以用来判定平行四边形。

人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件

人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件

新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.

《 平行四边形的判定》课件(共48张PPT)

《 平行四边形的判定》课件(共48张PPT)
【 ∵四边形 是平行四边形,∴OD=OB, 证明】 ABCD 已知:如图,四边形ABCD的对角线AC,BD相交于点O,并且 AO=CO,BO=DO。
将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.
OA=OC,AB∥CD (2010·怀化中考)如图,平行四边形ABCD的对角线
E,F. 于点 ∴AB=B′C, AB=A′C(平行四边形的对边相等). AECF . 上两的组两 对点角,分求并别且相证等A:E的=四C四F边。形边是平形行四边形。是平行四边形
从实验结果得出什么结论? ∵ AO=OC,BO=OD 判定一个四边形是平行四边形应具备几个条件? 两组对角分别相等的四边形是平行四边形。 你认为下面四个条件中可选择的是( ) 证明:连结BD,交AC于点O ∵AB CD, ∴四边形ABCD是平行四边形 两组对边分别相等的四边形是平行四边形 求证:四边形BFDE是平行四边形 ∴四边形ABCD是平行四边形
A B
证明:∵四边形ABCD是
E
D
平行四边形
∴AD∥BC AD=BC
∵ DE=1/2AD
BF=1/2BC
∴DE∥BF DE=BF
F
C
∴四边形EBFD是平
行四边形
∴EB=DF
如图,在 ABCD中,已知AE、CF分别是
∠DAB、∠BCD的角平分线,
求证:四边形AECF是平行四边形。
A
F
D
256
1
34
8 7
∵AB ﹦∥CD, ∴四边形ABCD是平行四边形
A
通过了本节课学习,
你有哪些收获?
B
D
O
C
1、两组对边分别平行的 ∵AB∥CD,AD∥BC

苏科版数学九上3.3《平行四边形的判定》课件

苏科版数学九上3.3《平行四边形的判定》课件

一组对边平行且相等的四边形是平行四边形
总结词
如果一个四边形只有一组对边平行且相等,则这个四边形是平行四边形。
详细描述
在平面几何中,如果一个四边形只有一组对边平行且长度相等,则这个四边形 是平行四边形。这是平行四边形的第三种判定方法。
对角线互相平分的四边形是平行四边形
总结词
如果一个四边形的对角线互相平分,则这个四边形是平行四 边形。
04
CATALOGUE
总结与回顾
总结平行四边形的判定方法
总结1
平行四边形的定义判定法。根据平行 四边形的定义,两组对边分别平行的 四边形即为平行四边形。这是判定平 行四边形最基本的方法。
总结2
总结3
两组对边分别相等的四边形是平行四 边形。如果一个四边形的两组对边分 别相等,那么这个四边形就是平行四 边形。
行四边形?
思考题2
对于一个非平行四边形 ,是否存在某些条件下 它会被认为是平行四边
形?
THANKS
感谢观看
平行四边形的性质
总结词:基础性质
详细描述:介绍平行四边形的基本性质,如对角线互相平分、对角相等、对边相等和邻角互补等。这些性质是判定平行四边 形的基础,也是后续判定定理的重要依据。
02
CATALOGUE
平行四边形的判定方法
两组对边分别平行的四边形是平行四边形
总结词
根据平行四边形的定义,如果一个四 边形的两组对边分别平行,则这个四 边形是平行四边形。
详细描述
在平面几何中,如果一个四边形的两 组对边分别处于同一方向,即不交叉 ,则这个四边形是平行四边形。这是 平行四边形的基本判定方法之一。
两组对边分别相等的四边形是平行四边形
总结词

平行四边形的性质与判定PPT精品课件

平行四边形的性质与判定PPT精品课件

从原始社会的氏族部 落发展到奴隶制国家是社 会的进步还是倒退?
三、 商汤灭夏
1、夏桀的暴政及其灭亡
2、商朝的建立
建国者: 汤 时 间: 公元前1600年 都 城: 亳


王 像
启像
三、 商汤灭夏
1、夏桀的暴政及其灭亡 2、商朝的建立 3、盘庚迁殷 4、商朝的统治区域 5、商朝经济的发展
商朝的经济发展有 哪些表现?
10.如图,△ABC是等边三角形,点D,F分别在线段BC,AB上, ∠EFB=60°,DC=EF.
(1)求证:四边形EFCD是平行四边形; (2)若BF=EF,求证:AE=AD.
解:(1)∵△ABC是等边三角形,∴∠ABC=60°,又∵∠EFB= 60°,∴∠ABC=∠EFB,∴EF∥BC,又∵DC=EF,∴四边形EFCD 是平行四边形 (2)连接BE,∵∠EFB=60°,BF=EF,∴△BEF为等 边三角形,∴BE=BF=EF,∠ABE=60°,∵CD=EF,∴BE=CD, 又∵△ABC为等边三角形,∴AB=AC,∠ACD=60°,∴∠ABE= ∠ACD,∴△ABE≌△ACD(SAS),∴AE=AD
【对应训练】 7.如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将 △BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边 形ACE′E的形状是_______平__行__四__边.形
8 . 如 图 , 已 知 点 E , C 在 线 段 BF 上 , BE = CE = CF , AB∥DE , ∠ACB=∠F.
(1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. 解 : (1)∵ 四 边 形 ABCD 是 平 行 四 边 形 , ∴ BC = AD , BC∥AD , ∴∠EAD=∠AEB,∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD, ∴△ABC≌△EAD(SAS) (2)∵AE平分∠DAB,∴∠DAE=∠BAE,又 ∵∠DAE=∠AEB,AB=AE,∴∠BAE=∠AEB=∠B,∴△ABE为等 边 三 角 形 , ∴ ∠ BAE = 60° , ∵ ∠ EAC = 25° , ∴ ∠ BAC = 85° , ∵△ABC≌△EAD,∴∠AED=∠BAC=85°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓ 通过平行四边形判定方法的灵活运用,培养主动探 索的精神及创新意识; ✓ 通过一题多变与一题多解,引发求异创新的欲望.
教学重难点
重点:
平行四边形的判定方法及应用.
难点:
平行四边形的判定定理与性质定理的灵 活应用.
探究
张师傅手中有一些木条,他想通过适当的测量、 割剪,钉制一个平行四边形框架,你能帮他想出 一些办法来吗?并说明理由.
∴四边形ABCD为平行四边形.
探究
将两根木条AC,BD的中点重叠,并用钉子固定, 再用一根橡皮筋绕端点A,B,C,D围成一个四边 形ABCD .想一想,△AOB≌△COD吗?四边形 ABCD的对边之间有什么关系?你得到什么结论?
B
A
O
C
D
B
O
C
D
△AOB≌△COD → A ∠BAC=∠ACD→AB∥CD
探究
在一方格纸上,画一个有一组对边平行且 相等的四边形.
步骤1:画一线段AD. 步骤2:平移线段AD到BC.
根据平移的特征,AD、
A
D
BC有怎样的关系?
B
C
连结AB、DC,得到四边 形ABCD,它是一组对边平行 且相等的四边形
探究
平行且相等
已知:在四边形ABCD中, AD BC.
求证:四边形ABCD是平行四边形.
证明:∵四边形ABCD是平行四边形.
∴OA=OC,AD∥BC,
A
E D
∴∠AEF=∠CFE
又∵∠AOE=∠COF
O
∴△AOE≌△COF
∴OE=OF
B
C
∴四边形AECF是平行四边形.
F
小练习
已知:E、F是平行四边形ABCD对角 线AC上的两点,并且OE=OF.
求证:四边形BFDE是平行四边形
证明:作对角线BD,交AC于点O.
A E OF
D ∵四边形ABCD是平行四边形
∴ BO=DO 又∵ EO=FO
B
C
∴ 四边形BFDE是平行四边形
【例2】已知:E、F是平行四边形ABCD对角 线AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
A
E OF
B
C
还有其他证明方法 吗?
证明:连接对角线BD,交AC于点O
D ∵四边形ABCD是平行四边形
A
F
B
E
O
C
D
解:有6个平行四边形,分别是:
ABOF, ABCO, BCDO,
CDEO, DEFO, EFAO.
理由是:因为正△ABO≌正△AOF,所以AB=BO, OF=FA.根据 “两组对边分别相等的四边形是平行 四边形”,可知四边形ABCD是平行四边形.其它五 个同理.
探究
取两根等长的木条AB、CD,将它们平行放 置,再用两根木条BC、AD加固,得到的四边形 ABCD是平行四边形吗?
18.1.2 平行四边形的判定
教学目标
【知识与能力】
✓ 系统掌握平行四边形的判定定理;
✓ 灵活运用判定定理进行有关判断和说理叙述.
【过程与方法】
✓ 通过平行四边形判定定理的归纳与说理,培养的归 纳推理能力,领会数学的严密性; ✓ 通过尝试练习和变式尝试,培养分析问题和解决问 题的能力.
【情感态度与价值观】
∠BCA=∠C′;
(2) △ABC的顶点分别是△B′C′A′各边的
中点. C′
A
B′
B
C
A′
证明:(1) ∵ A′B′∥BA,C′B′∥BC,
∴ 四边形ABCB′是平行四边形. ∴ ∠ABC=∠B′(平行四边形的对角相等). 同理∠CAB=∠A′,∠BCA=∠C′. (2) 由(1)证得四边形ABCB′是平行四边形.同理,四边
同理,△BOC≌△AOD →
∠CAD=∠ACB→AD∥BC
四边形ABCD是平行四边形.
结论:两条对角线互相平分的四边形是平行四边形.
知识要点
平行四边形判定方法1
两组对边分别相等的四边形是平行四边形.
平行四边形判定方法2
对角线互相平分的四边形是平行四边形.
【例1】已知: ABCD中,E,F分别是边AB, CD的中点,求证:四边形AECF是平行四边形.
形ABA′C是平行四边形. ∴ AB=B′C, AB=A′C(平行四边形的对边相等). ∴ B′C=A′C. 同理 B′A=C′A, A′B=C′B. ∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、
C′A′、A′B′的中点.
做一做
小明用手中六个全等的正三角形做拼图游戏时, 拼成一个六边形.你能在图中找出所有的平行四边 形吗?并说说你的理由.
∴ AO=CO,BO=DO ∵AE=CF ∴AO-AE=CO-CF ∴EO=FO 又 BO=DO ∴ 四边形BFDE是平行四边形
A
E
B
证明:∵四边形ABCD是平行四边形 ∴AD ∥ BC且AD =BC ∴∠EAD=∠FCB 在△AED和△CFB中
D
AE=CF ∠EAD=∠FCB
AD=BC
F
∴△AED ≌△CFB(SAS)
A●

D
AB=CD AD=BC
●B

C
上述问题可归结为: 已知:在四边形ABCD中,AB=CD,AD=BC. 求证:四边形ABCD为平行四边形.
证明:连接AC.
A
B
∵ AB=CD,AD=BC,AC=AC
∴△ACD≌△CAD(SSS)
∴∠CAB=∠DCA
∴AB∥CD
D
C
同理,∠CAD=∠ACB
∴ AD∥BC
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=DC,∠D=∠B.
∵ E,F分别是边AB,CD的中点,
∴BE=DF
A
∴△ADF≌△CBE
∴AF=CE
E
又∵AE=CF
∴四边形AECF是平行四边形. B
D F C
小练习
如下图, ABCD的对角线AC,BD相交于 O,EF过点O与AD,BC分别相交于点E,F.连 接EB,EC.求证:四边形AECF是平行四边形.
新课导入
回顾旧知
下面图片中,哪些是平行四边形?你是 怎样判断的?
平行四边形的主要特征
1.边: a.平行四边形两组பைடு நூலகம்边分别平行. b.平行四边形两组对边分别相等.
2.角:平行四边形两组对角分别相等. 3.对角线: 平行四边形对角线互相平分 .
怎样证明对边相等或对角 线相等或对角线互相平分的四 边形是不是平行四边形?
A
D
证明:连接AC
C ∴DE=BF
同理可证:BE=DF
四边形BFDE是平行四边形.
已知:E、F是平行四边形ABCD对角线 AC上的两点,当点E,F满足什么条件时,四 边形BFDE是平行四边形?
A
D
E
OF
B
C
小练习
已知:如图,A′B′∥BA,B′C′∥CB,
C′A′∥AC.
求证:
(1) ∠ABC=∠B′, ∠CAB=∠A′,
相关文档
最新文档