高考数学二轮复习 专题二 函数与导数 2.2 函数的零点与方程专项练 文
2019版高考数学二轮复习 专题二 函数与导数 2.2.2 函数的零点与方程专项练课件 文

f(x)=
e������ ,������ ≤ 0, ln������,������ > 0,
g(x)=f(x)+x+a,若g(x)
存在2个零点,则a的取值范围是( )
关闭
要A.使[-1得,0方) 程 g(x)B=.f[(0x,)++∞x)+a 有两个零点,等价于方程 f(x)=-x-a 有两 个C.实[-1根,+,∞即) 函数 yD=.[f1(x,+)的∞)图象与直线 y=-x-a 的图象有两个交点,从 图象可知,必须使得直线 y=-x-a 位于直线 y=-x+1 的下方,所以 -a≤1,即 a≥-1.故选 C.
时 范∵当,围fxf((>xx是)1)满=时(���足���1-1f(.fx则()x)=+关������11-于1),+画fx(出1的-x其方)=图程2,象∴f(,fx当()x+)x的2<a图1=时0象没的关有图于负象点实由(1根f,(1x)时)中=,���实心���1-1数对关称于a 的,点取(1,值1)关闭 A中.(心-∞对,-1称]∪得到- 12,, + ∞
(由 g(x))= A.4n
������2-4������ -������2 +
+ 4,������ > 2, 可得图象如下:
4������-B4.,2������n< 2,
C.n
D.0
������ =1
g(x)的图象也关于点(2,0)对称,即有 f(x)与 g(x)
的交点关于点(2,0)对称,
������
A由.(图-1可,+∞知),x1+x2=-B2,.-(l-o1g,12x] 3=log2x4,即 x3·x4=1,当-log2x3=1 时,x3=12.
高考数学备考二轮专题二 函数与导数 第4讲 函数的零点问题 (江苏等八省市新高考地区专用)原卷版

第4讲 函数的零点问题考点1 确定函数零点个数例1.(1)设函数()21,02,0x e x f x x x x ⎧+≥⎪=⎨+<⎪⎩,则函数()()31g x f x x =--的零点个数为( )A .1B .2C .3D .4 (2)已知函数()()12sin 1f x x x π=+-,则函数()f x 在[]2,4-上的所有零点的和为( ) A .6B .8C .6πD .8π 【跟踪演练】1.(1)定义在R 上的函数()f x 满足()(4),()()0f x f x f x f x =+--=且(0)0f =.当2(]0,x ∈时,1()2f x x =-.则函数2()()sin 34g x f x x π⎛⎫=- ⎪⎝⎭在区间[6,2]-上所有的零点之和为_________.(2)已知函数21,0()ln ,0x x f x x x ⎧-+≤=⎨>⎩,则使得1(())2f f x =成立的x 的个数为( ) A .4 B .3 C .2 D .1 考点2 利用函数零点个数求参数例2.(1)已知函数()()22log ,2log 4,2x x f x x x ≥⎧=⎨-<⎩,若函数()y f x k =-有两个零点,则k 的取值范围是( )A .(),2-∞B .(),1-∞C .()2,+∞D .()1,+∞(2)已知函数()21,1ln ,1x x f x x x x⎧-<⎪=⎨>⎪⎩,若关于x 的方程()()212202f x tf x t ++-=⎡⎤⎣⎦有5个不同的实数根,则实数t 的取值范围是( )A .111,22e ⎛⎫- ⎪⎝⎭B .111,22e ⎛⎫- ⎪⎝⎭C .113,22e ⎛⎫- ⎪⎝⎭D .113,22e ⎛⎫- ⎪⎝⎭【跟踪演练】2.(1)若函数()33f x x x a =-+有三个不同零点,则实数a 的取值范围为( ) A. 2a > B. 2a <- C. 22a -<< D. 2a <-或2a >(2)已知函数()24(1),(0)()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若()f x a =有四个不同的解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122341x x x x x ++的取值范围为( )A .()1,-+∞B .71,2⎛⎤- ⎥⎝⎦C .7,2⎛⎤-∞ ⎥⎝⎦ D .[]1,3-考点3 利用导数研究函数零点例3.(1)已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .),0(+∞D .11,e ⎛⎫⎪⎝⎭(2)已知函数()sin f x x =,()cos x g x e x =.(1)讨论函数()()()g x h x f x =在()0,π上的单调性;(2)求函数()()()H x g x xf x =-在ππ,42⎡⎤⎢⎥⎣⎦上的零点个数.【跟踪演练】3.(1)若函数2()x f x mx e-=-+恰有两个不同的零点,则实数m 的取值范围为( ) A .1,1e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .(1,)eD .(,)e +∞ (2)已知函数()sin f x x =,()cos x g x e x =.(1)讨论函数()()()g x h x f x =在()0,π上的单调性; (2)求函数()()()H x g x xf x =-在ππ,42⎡⎤⎢⎥⎣⎦上的零点个数.【仿真练习】一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()25x f x ex --=-的零点位于区间(),1m m +,m ∈Z 上,则42log m m +=( )A .14- B .14 C .12 D .34 2.若函数2()32f x x x a =-+在[)0,+∞上有2个零点,则实数a 的取值范围为( ) A. 99,88⎛⎫- ⎪⎝⎭ B. 90,8⎛⎤ ⎥⎝⎦ C. 9,08⎛⎫- ⎪⎝⎭ D. 90,8⎡⎫⎪⎢⎣⎭3.已知图象连续不断的函数()f x 的定义域为R ,()f x 是周期为2的奇函数,()y f x =在区间[]1,1-上恰有5个零点,则()f x 在区间[]0,2020上的零点个数为( )A .5050B .4041C .4040D .2020 4.已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =-++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( )A .1B .2C .3D .4 5.函数()22ln 3x f x xe x x k =---+有且只有一个零点,则k 的值为( )A .ln 5B .52ln 2-C .2D .ln3二、多项选择题:本题共3小题,每小题5分,共15分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.6.函数()()1,1,ln 1,1,x e x f x x x -⎧≤⎪=⎨->⎪⎩若函数()()g x f x x a =-+只有一个零点,则a 可能取的值有( )A .2B .2-C .0D .17.已知函数2,0()(1),0x x e mx m x f x e x x -⎧++<=⎨-≥⎩(e 为自然对数的底),若()()()F x f x f x 且()F x 有四个零点,则实数m 的取值可以为( )A .1B .eC .2eD .3e 三、填空题:本题共3小题,每小题5分,多空题,第一空2分,第二空3分,共15分.8.函数f (x )=2ln 2,0,41,0x x x x x x ⎧-+>⎨+≤⎩的零点个数是___________9.已知函数()33,0ln ,0x x x f x x x ⎧-≤=⎨->⎩,若函数()()g x f x a =-有3个零点,则实数a 的取值范围是___________10.设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程() f x m =恰有三个不相等的实根,则这三个根之和为_________;若方程() f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为_________. 四、解答题:本题共4小题,共40分。
(课标专用)2020高考数学二轮复习专题二函数与导数2.2函数与方程及函数的应用课件

高频考点•探究突破
-10-
突破点一
突破点二
突破点三
解析:(1)f(x)+|x-2|-kx=0有且只有三个不相等的实数根,
等价于y=f(x)+|x-2|与y=kx的图象有三个交点,
������2 + 3������ + 2,-3 ≤ ������ ≤ 0,
画出 y=f(x)+|x-2|= ������-1,0 < ������ ≤ 2,
显然1e>0.
综上,f(t)=1
的两根为 2
������
与
1e,
故方程 f(-f(x))=1 的解即为方程 f(x)=-���2���与 f(x)=-1e的解.
解方程 f(x)=-���2���:
①当 x≤0 时,方程可化为 mx-1=-���2���,解得 x=1���-������2��� = ������������-22,
高频考点•探究突破
-7-
突破点一
突破点二
突破点三
即时巩固 1 定义在 R 上的函数 f(x),满足 f(x)=
������2 + 2,������∈[0,1), 2-������2,������∈[-1,0),
且f(x+1)=f(x-1),若g(x)=3-log2x,则函数h(x)=f(x)-g(x)在区间(0,+∞) 内的零点个数有( B )
������
函数y=f(x)的图象与直线y=-a>0存在两个交点,此时方程f(-f(x)) =1的实数根有2个;由f(x)=-b∈(-1,0),知函数y=f(x)的图象与直线y= -b∈(-1,0)存在两个交点,此时方程f(-f(x))=1的实数根有2个.综上可 知方程的实数根个数为4.
2024高考数学二轮专题复习——二次求导、虚设零点

同构、二次求导、虚设零点在导数中的应用1.(2022·新高考Ⅰ卷T22)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.(2022·全国乙(理)T21)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.3.(2022·新高考Ⅱ卷T22)已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4、【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<05.(2020年高考数学课标Ⅰ卷理科)已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.6.(2020年高考数学课标Ⅲ卷理科)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.7.(2018年高考数学课标Ⅲ卷(理))已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <,当0x >时,()0f x >;(2)若0x =是()f x 的极大值点,求a .8.(2017年高考数学课标Ⅱ卷理科)已知函数3()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.9.(2016高考数学课标Ⅱ卷理科)(I )讨论函数2()2xx f x e x -=+的单调性,并证明当0x >时,(2)20x x e x -++>;(II )证明:当[0,1)a ∈时,函数2x =(0)x e ax ag x x -->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.10.(2013高考数学新课标2理科)已知函数()ln()x f x e x m =-+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(2)当2m ≤时,证明()0f x >.类型一、虚设零点基础知识:在求解函数问题时,很多时候都需要求函数f (x )在区间I 上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f (x )在区间I 上存在唯一的零点(例如,函数f (x )在区间I 上是单调函数且在区间I 的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x 0.因为x 0不易求出(当然,有时是可以求出但无需求出),所以把零点x 0叫做隐零点;若x 0容易求出,就叫做显零点,而后解答就可继续进行.实际上,此解法类似于解析几何中“设而不求”的方法.基本题型:1.(虚设零点研究函数最值)已知函数op =ln −x +B(∈p .(1)若函数op 在[1,+∞)上单调递减,求实数的取值范围;(2)若=1,求op 的最大值.2.(虚设零点研究双变量问题)设函数()ln xf x x ae =+,1()(0)xg x axe a e=<<.(1)设函数()()()h x f x g x =-,判断()y h x =的零点的个数;(2)设1x 是()h x 的极值点,2x 是()h x 的一个零点,且12x x <,求证:1232x x ->.3.(虚设零点研究不等式恒成立)已知函数()ln 11x f x x x=++.(1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞都有()e xa f x ≥,求实数a 的取值范围.类型二、二次构造二次求导基础题型:1、(二次构造二次求导研究函数单调性)讨论函数f (x )=(x +1)ln x -x +1的单调性.2.(二次构造二次求导研究不等式恒成立)设函数1()e ,()ln x f x m g x x n -==+,m n 、为实数,若()()g x F x x=有最大值为21e (1)求n 的值;(2)若2()()e f x xg x >,求实数m 的最小整数值.3.(二次构造二次求导求最值)已知函数()()ln 1xf x ae x a R -=+-∈.(1)当a e ≤时,讨论函数()f x 的单调性:(2)若函数()f x 恰有两个极值点()1212,x x x x <,且122ln 3x x +≤,求21x x 的最大值.4.(二次构造二次求导证明不等式)若关于x 的方程x ln x =m 有两个不相等的实数解x 1,x 2,求证:x 1·x 2<1e 2(e是自然对数的底数).5.(二次构造二次求导解决不等式恒成立)已知函数12()ln x f x e x ax a -=++-,且1,x a R >∈.(1)若0a =,证明:()f x 单调递增;(2)若1()f x x<,求a 的取值范围.类型三、同构基础知识:1、同构式指除了变量不同,其余地方均相同的表达式.2、同构式的应用(1)在方程中的应用:如果方程f(a)=0和f(b)=0呈现同构特征,则a ,b 可视为方程f(x)=0的两个根.(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式3、常见的同构变形有:(1)ax e ax ≥x ln x ⇒ax e ax ≥ln x ·e ln x ,可构造函数f (x )=x e x 来进行研究.(2)x 2ln x =a ln a -a ln x ⇒x 2ln x =a ln a x ⇒x ln x =a x ln ax,可构造函数f (x )=x ln x 来进行研究.(3)e x a +1>ln(ax -a )(a >0)⇒e x a +1>ln a +ln(x -1)⇒e x a -ln a +x >ln(x -1)+x -1⇒e x a +ln e xa>ln(x -1)+(x -1),可构造函数f (x )=x +ln x 来进行研究.(4)x +1e x ≥x α-ln x α(x >0)⇒1e x -ln 1ex ≥x α-ln x α(x >0),可构造函数f (x )=x -ln x 来进行研究.(5)x α+1e x ≥-αln x ⇒x e x ≥-αln x x α⇒x e x≥-αln x ·e -αln x ,可构造函数f (x )=x e x 来进行研究.基本题型:1.已知函数()21ln 2f x a x x =+,在其图象上任取两个不同的点()11,P x y 、()()2212,Q x y x x >,总能使得()()12122f x f x x x ->-,则实数a 的取值范围为()A .()1,+∞B .[)1,+∞C .()1,2D .[]1,22.(多选)若1201x x <<<,则下列不等式成立的是()A .1221xx x e x e >B .1221xx x e x e <C .2121ln ln x x ee x x ->-D .1221ln ln xx e ex x -<-3、已知函数()()1ln f x kx x =-,其中k 为非零实数.(1)求()f x 的极值;(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围:4.已知函数f (x )=(a -1)ln x +ax 2+1.(1)讨论函数f (x )的单调性;(2)如果对任意的x 1>x 2>0,总有f (x 1)-f (x 2)1-x 2≥2,求a 的取值范围.基本方法:1、同构法构造函数的策略(1)指对各一边,参数是关键;(2)常用“母函数”:f(x)=xe x ,f(x)=e x ±x ;寻找“亲戚函数”是关键;(3)信手拈来凑同构,凑常数、x 、参数;(4)复合函数(亲戚函数)比大小,利用单调性求参数范围2、(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立;(2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立;(3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在极值点;(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立;(5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.新预测1.(多选题)已知函数()xf x xe =,若120x x <<,则下列选项中正确的是()A .()()()12120x x f x f x -->⎡⎤⎣⎦B .()()1221x f x x f x >C .()()121f x f x e-<D .()()1221f x f x x x -<-2.若对任意a ,b 满足0<a <b <t ,都有b ln a <a ln b ,则t 的最大值为________.3.已知曲线f (x )=b e x +x 在x =0处的切线方程为ax -y +1=0.(1)求a ,b 的值;(2)当x 2>x 1>0时,f (x 1)-f (x 2)<(x 1-x 2)(mx 2+1)恒成立,求实数m 的取值范围.4.设函数f (x )=(x -1)e x -kx 2(k ∈R ).当k 1时,求函数f (x )在[0,k ]上的最大值M .5、设函数()ln ,k R kf x x x=+∈.(1)若曲线()y f x =在点()(),e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数);(2)若对任何()()1212120,x x f x f x x x >>-<-恒成立,求k的取值范围.6.已知函数()()222ln f x x mx x m m R =+++∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)函数()f x 有两个不同的极值点()1212,x x x x <,求()211f x x x +的取值范围.7.已知22()5ln f x ax bx x =++-.(1)若()f x 在定义域内单调递增,求a b +的最小值.(2)当0a =时,若()f x 有两个极值点1x ,2x ,求证:122x x e +>.8.已知函数()211ln )f x x x x a a=+-,()0a ≠.(1)求函数()f x 的单调区间;(2)令()()2Fx af x x =-,若()12F x ax <-在()1,∈+∞x 恒成立,求整数a 的最大值.(参考数据:4ln33<,5ln44>9.已知函数()xf x xe =,()ln (0)g x ax a x a =+>.(1)求函数()f x 的极值.(2)若关于x 的不等式()()f x g x <的解集不是空集,求实数a 的取值范围.10.设函数()cos ,()x f x e x ax a R =+∈.(1)当0a =时,求函数()f x 在区间[0,]π上的最小值;(2)若5[0,4x π,()1f x ≤恒成立,求a 的取值范围.11.已知函数()()221ln 2a f x x a x x-+=+⋅-,其中a 为常数.(1)若0a =,求函数()f x 的极值;(2)若1a =-,证明:函数()f x 在(0,1)上有唯一的极值点0x ,且()02f x <-.12.已知函数()tan 2f x x x =-,0,2x π⎛⎫∈ ⎪⎝⎭,()3g x ax x =-.(1)求函数()y f x =的极值;(2)当13a ≤时,证明:()()g x f x <在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立.13.已知函数()()()211ln 02f x ax a x x a =+--≠.(1)当1a =时,求函数()f x 在点()()1,1f 处的切线;(2)讨论函数()f x 的单调性;(3)当1a <-时,判断函数()()()1ln 1g x x x x f x =--+-的零点个数.14.已知函数()22ln f x mx x x =-+,其中m 为正实数.(1)当1m =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形面积;(2)当1[,1]2x ∈时,()2f x mx ≥-,求m 的取值范围.15.形如()()k x y h x =的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得()ln ln ()()ln ()k x y h x k x h x ==,两边对x 求导数,得()()ln ()()()y h x k x h x k x y h x '''=+,于是()()()[()ln ()()]()k x h x y h x k x h x k x h x '''=+.已知()x f x x =((0,)x ∈+∞),21()()22a g x x a R =+∈.(1)求曲线()y f x =在1x =处的切线方程;(2)若(0,)x ∀∈+∞,()()f x g x ≥恒成立,求a 的取值范围.16.已知函数()(ln )(ln )(0)x f x e a a x x a =-⋅>,其中 2.71828e =⋅⋅⋅是自然对数的底数(1)当a e =时,求函数()f x 的导函数()f x '的单调区间;(2)若函数()f x 有两个不同极值点12,x x 且12x x <;①求实数a 的取值范围;②证明:21x x -≤.17.已知函数()ln ()xx mf x m R e +=∈.(1)若()f x 在[]1,e 上单调递增,求实数m 的取值范围;(2)若2m =,证明:()f x <18.已知函数f (x )=ax e x (a ∈R ),g (x )=ln x +x +1.若f (x )≥g (x )恒成立,求实数a 的取值范围.。
高考数学二轮复习专题 函数与导数第4讲与函数的零点相关的问题文

第4讲与函数的零点相关的问题函数零点的个数问题1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D )(A)2 (B)3 (C)4 (D)5解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个.2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B )(A)5 (B)6 (C)7 (D)8解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象:由图可得这两个函数的交点为A,O,B,C,D,E,共6个点.所以原函数共有6个零点.故选B.3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为.解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1,当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1<a<0,则实数a的取值范围为(-1,0)∪(0,+∞).答案:(-1,0)∪(0,+∞)4.(2015北京卷)设函数f(x)=①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.解析:①当a=1时,f(x)=其大致图象如图所示:由图可知f(x)的最小值为-1.②当a≤0时,显然函数f(x)无零点;当0<a<1时,易知f(x)在(-∞,1)上有一个零点,要使f(x)恰有2个零点,则当x≥1时,f(x)有且只有一个零点,结合图象可知,2a≥1,即a≥,则≤a<1;当a≥1时,2a>1,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞).答案:①-1 ②[,1)∪[2,+∞)确定函数零点所在的区间5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B )(A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4)解析:设f(x)=ln(x+1)-,则f(1)=ln 2-2<0,f(2)=ln 3-1>0,得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B.6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是f(x),g(x)的零点,则( A )(A)g(a)<0<f(b) (B)0<g(a)<f(b)(C)f(b)<0<g(a) (D)f(b)<g(a)<0解析:考查函数y=e x与y=4-2x的图象,得其交点的横坐标a应满足0<a<1;考查函数y=ln x 与y=5-2x2的图象,得其交点的横坐标b应满足1<b<2,f(b)>e+2-4>0,可排除C,D;0<a<1,g(a)<ln 1+2-5<0,故选A.利用导数解决与函数有关的方程根(函数零点)问题7.(2015河南省六市3月第一次联合调研)设函数f(x)=xln x,g(x)=(-x2+ax-3)e x(a为实数).(1)当a=5时,求函数y=g(x)在x=1处的切线方程;(2)求f(x)在区间[t,t+2](t>0)上的最小值;(3)若存在两不等实根x1,x2∈[,e],使方程g(x)=2e x f(x)成立,求实数a的取值范围.解:(1)当a=5时g(x)=(-x2+5x-3)·e x,g(1)=e.g′(x)=(-x2+3x+2)·e x,故切线的斜率为g′(1)=4e.所以切线方程为y-e=4e(x-1),即y=4ex-3e.(2)f′(x)=ln x+1,x(0, ) (,+∞) f′(x) - 0 +f(x) 单调递减极小值(最小值) 单调递增①当t≥时,在区间(t,t+2)上f(x)为增函数,所以f(x)min=f(t)=tln t,②当0<t<时,在区间(t, )上f(x)为减函数,在区间(,t+2)上f(x)为增函数,所以f(x)min=f()=-.(3)由g(x)=2e x f(x),可得2xln x=-x2+ax-3,a=x+2ln x+,令h(x)=x+2ln x+,h′(x)=1+-=.x1 (1,e)(,1)h′(x) - 0 +h(x) 单调递减极小值(最小值) 单调递增h()=+3e-2,h(1)=4,h(e)=+e+2.h(e)-h()=4-2e+<0.所以实数a的取值范围为(4,e+2+].8.(2015湖北八市联考)已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)=-x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围.解:(1)f′(x)=-2x-1,因为x=0时,f(x)取得极值,所以f′(0)=0,故-2×0-1=0,解得a=1,经检验当a=1时,f(x)在x=0处取得极大值符合题意,所以a=1.(2)由a=1知f(x)=ln(x+1)-x2-x,由f(x)=-x+b,得ln(x+1)-x2+x-b=0,令φ(x)=ln(x+1)-x2+x-b,则f(x)=-x+b在[0,2]上恰有两个不同的实数根等价于φ(x)=0在[0,2]上恰有两个不同的实数根.φ′(x)=-2x+=,当x∈(0,1)时,φ′(x)>0,于是φ(x)在(0,1)上单调递增;当x∈(1,2)时,φ′(x)<0,于是φ(x)在(1,2)上单调递减;依题意有解得ln 3-1≤b<ln 2+,所以实数b的取值范围是[ln 3-1,ln 2+).一、选择题1.(2015太原一模)已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x-b的零点所在的区间是( B )(A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)解析:因为实数a,b满足2a=3,3b=2,所以a=log23>1,0<b=log32<1,因为函数f(x)=a x+x-b,所以f(x)=(log23)x+x-log32单调递增,因为f(0)=1-log32>0f(-1)=log32-1-log32=-1<0,所以根据函数的零点存在性定理得出函数f(x)=a x+x-b的零点所在的区间是(-1,0),故选B.2.(2015凉山州模拟)设函数f(x)=|ln x|-的两个零点为x1,x2,则有( A )(A)x1x2<1 (B)x1x2=1(C)1<x1x2<(D)x1x2≥解析:由f(x)=|ln x|-=0,得|ln x|=,作函数y=|ln x|与y=的图象如图.不妨设x1<x2,由图可知,x1<1<x2,则ln x1<0,且|ln x1|>|ln x2|,所以-ln x1>ln x2,则ln x1+ln x2<0,即ln (x1x2)<0,所以x1x2<1.故选A.3.(2015蚌埠二模)函数f(x)=有且只有一个零点时,a的取值范围是( D )(A)(-∞,0] (B)(0, )(C)(,1) (D)(-∞,0]∪(1,+∞)解析:因为f(1)=ln 1=0,所以当x≤0时,函数f(x)没有零点,故-2x+a>0或-2x+a<0在(-∞,0]上恒成立,即a>2x,或a<2x在(-∞,0]上恒成立,故a>1或a≤0.故选D.4.(2014重庆卷)已知函数f(x)=且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是( A )(A) (-,-2]∪(0, ] (B) (-,-2]∪(0, ](C) (-,-2]∪(0, ] (D) (-,-2]∪(0, ]解析:g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点就是函数y=f(x)的图象与函数y=m(x+1)的图象有两个交点,在同一直角坐标系内作出函数f(x)=和函数y=m(x+1)的图象,如图,当直线y=m(x+1)与y=-3,x∈(-1,0]和y=x,x∈(0,1]都相交时,0<m≤;当直线y=m(x+1)与y=-3,x∈(-1,0]有两个交点时,由方程组消元得-3=m(x+1),即m(x+1)2+3(x+1)-1=0,化简得mx2+(2m+3)x+m+2=0,当Δ=9+4m=0,即m=-时,直线y=m(x+1)与y=-3相切,当直线y=m(x+1)过点(0,-2)时,m=-2,所以m∈(-,-2].综上,实数m的取值范围是(-,-2]∪(0, ],故选A.5.(2014湖北卷)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x.则函数g(x)=f(x)-x+3的零点的集合为( D )(A){1,3} (B){-3,-1,1,3}(C){2-,1,3} (D){-2-,1,3}解析:当x≥0时,函数g(x)的零点即方程f(x)=x-3的根,由x2-3x=x-3,解得x=1或3;当x<0时,由f(x)是奇函数得-f(x)=f(-x)=x2-3(-x),即f(x)=-x2-3x.由f(x)=x-3得x=-2-(正根舍去).故选D.6.已知x0是函数f(x)=2x+的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则( B )(A)f(x1)<0,f(x2)<0 (B)f(x1)<0,f(x2)>0(C)f(x1)>0,f(x2)<0 (D)f(x1)>0,f(x2)>0解析:函数y=2x,y=在(1,+∞)都为单调增函数,所以f(x)=2x+在(1,+∞)上为单调增函数.因为f(x0)=0,所以x1∈(1,x0),x2∈(x0,+∞)时,f(x1)<f(x0)=0,f(x2)>f(x0)=0,从而答案B正确.7.(2015山东模拟)已知函数f(x)=则下列关于函数y=f[f(kx)+1]+1(k≠0)的零点个数的判断正确的是( C )(A)当k>0时,有3个零点;当k<0时,有4个零点(B)当k>0时,有4个零点;当k<0时,有3个零点(C)无论k为何值,均有3个零点(D)无论k为何值,均有4个零点解析:令f[f(kx)+1]+1=0得,或解得f(kx)+1=0或f(kx)+1=;由f(kx)+1=0得,或即x=0或kx=;由f(kx)+1=得,或即e kx=1+(无解)或kx=;综上所述,x=0或kx=或kx=;故无论k为何值,均有3个解.故选C.8.(2015怀化二模)定义域为R的函数f(x)=若关于x的函数h(x)=f2(x)+af(x)+有5个不同的零点x1,x2,x3,x4,x5,则++++等于( C ) (A)15 (B)20 (C)30 (D)35解析:作函数f(x)=的图象如图,则由函数h(x)=f2(x)+af(x)+有5个不同的零点知,1+a+=0,解得a=-,则解f2(x)-f(x)+=0得,f(x)=1或f(x)=;故若f(x)=1,则x=2或x=3或x=1;若f(x)=,则x=0或x=4;故++++=1+4+9+16=30.故选C.9.(2015郑州二模)已知函数f(x)=函数g(x)=f(x)-2x恰有三个不同的零点,则实数a的取值范围是( A )(A)[-1,3) (B)[-3,-1](C)[-3,3) (D)[-1,1)解析:因为f(x)=所以g(x)=f(x)-2x=而方程-x+3=0的解为3,方程x2+4x+3=0的解为-1,-3;若函数g(x)=f(x)-2x恰有三个不同的零点,则解得,-1≤a<3.实数a的取值范围是[-1,3).故选A.10.(2015呼和浩特一模)若函数f(x)=ln x+kx-1有两个零点,则实数k的取值范围是( A )(A) (-,0) (B) (-∞,- )(C) (-,+∞) (D) (-e2,- )解析:作函数y=ln x-1与y=-kx的图象如图,当直线与y=ln x-1相切时,设切点(x,ln x-1),y′=,=,解得,x=e2,故0<-k<,故-<k<0.故选A.11.(2013安徽卷)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( A )(A)3 (B)4 (C)5 (D)6解析:先求函数的导函数,由极值点的性质及题意,得出f(x)=x1或f(x)=x2,再利用数形结合确定这两个方程实数根的个数.因为f′(x)=3x2+2ax+b,函数f(x)的两个极值点为x1,x2,所以f′(x1)=0,f′(x2)=0,所以x1,x2是方程3x2+2ax+b=0的两根.所以解关于x的方程3(f(x))2+2af(x)+b=0得f(x)=x1或f(x)=x2.不妨设x1<x2,由题意知函数f(x)在(-∞,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.又f(x1)=x1<x2,如图,数形结合可知f(x)=x1有两个不同实根,f(x)=x2有一个实根,所以不同实根的个数为3.故选A.二、填空题12.(2015兰州二模)设函数f(x)=函数y=f[f(x)]-1的零点个数为.解析:因为函数f(x)=当x≤0时,y=f[f(x)]-1=f(2x)-1=log22x-1=x-1,令y=f[f(x)]-1=0,x=1(舍去).当0<x≤1时,y=f[f(x)]-1=f(log2x)-1=-1=x-1,令y=f[f(x)]-1=0,x=1.当x>1时,y=f[f(x)]-1=f(log2x)-1=log2(log2x)-1,令y=f[f(x)]-1=0,log2(log2x)=1,则log2x=2,x=4,故函数y=f[f(x)]-1的零点个数为2个.答案:213.(2015潍坊模拟)已知f(x)是定义在(0,+∞)上的单调函数,f′(x)是f(x)的导函数,若对∀x∈(0,+∞),都有f[f(x)-2x]=3,则方程f′(x)-=0的解所在的区间是.(区间长度不大于1)解析:由题意,可知f(x)-2x是定值,令t=f(x)-2x,则f(x)=2x+t,又f(t)=2t+t=3,解得t=1,所以有f(x)=2x+1,所以f′(x)=2x·ln 2,令F(x)=f′(x)-=2x·ln 2-,可得F(1)=21·ln 2-4<0,F(2)=22·ln 2-2>0,即F(x)=2x·ln 2-零点在区间(1,2)内,所以f′(x)-=0的解所在的区间是(1,2).答案:(1,2)14.(2011山东卷)已知函数f(x)=1og a x+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n= .解析:对函数f(x),因为2<a<3<b<4,所以f(2)=log a2+2-b<1+2-b=3-b<0,f(3)=log a3+3-b>1+3-b=4-b>0.即f(2)f(3)<0,易知f(x)在(0,+∞)单调递增,所以f(x)存在唯一的零点x0,且x0∈(2,3),所以n=2.答案:2利用导数研究方程根的问题训练提示: 利用导数研究高次式、分式、指数式、对数式方程解的个数问题的一般思路(1)将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题.(2)利用导数研究出该函数在该区间上的单调性、极值(最值)、端点值等性质,进而画出其图象.(3)结合图象求解.1.(2015贵州七校联盟第一次联考)已知函数f(x)=(ax2+x)e x,其中e是自然对数的底数,a∈R.(1)当a>0时,解不等式f(x)≤0;(2)当a=0时,求整数t的所有值,使方程f(x)=x+2在[t,t+1]上有解.解:(1)因为e x>0,所以不等式f(x)≤0,即为ax2+x≤0,又因为a>0,所以不等式可化为x(x+)≤0,所以不等式f(x)≤0的解集为[-,0].(2)当a=0时,方程即为xe x=x+2,由于e x>0,所以x=0不是方程的解,所以原方程等价于e x--1=0,令h(x)=e x--1,因为h′(x)=e x+>0对于x≠0恒成立,所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,又h(1)=e-3<0,h(2)=e2-2>0,h(-3)=e-3-<0,h(-2)=>0,所以方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,所以整数t的所有值为{-3,1}.2.(2015广东江门市3月模拟)设函数f(x)=e x(ln x-a),e是自然对数的底数,a∈R为常数.(1)若y=f(x)在x=1处的切线l的斜率为2e,求a的值;(2)在(1)的条件下,证明切线l与曲线y=f(x)在区间(0, )至少有1个公共点.解:(1)f′(x)=e x(ln x-a+),依题意,k=f′(1)=e(ln 1-a+1)=2e,解得a=-1,(2)由(1)f(1)=e,直线l的方程为y-e=2e(x-1),即y=2ex-e,令g(x)=f(x)-(2ex-e)=e x(ln x+1)-2ex+e,则g()=(1-ln 2)>0,g(e-4)=-3e e-4-2e-3+e<-3+e<0(用其他适当的数替代e-4亦可)因为y=g(x)在(e-4, )上是连续不断的曲线,g(e-4)g()<0,y=g(x)在(e-4, )内有零点,而(e-4, )⊂ (0, ),从而切线l与曲线y=f(x)在区间(0, )至少有1个公共点.3.(2015菏泽市一模)设函数f(x)=ln x-ax2-bx.(1)当a=b=时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(0<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=-1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.解:(1)依题意,知f(x)的定义域为(0,+∞),当a=b=时,f(x)=ln x-x2-x,f′(x)=-x-=.令f′(x)=0,解得x=1或x=-2(舍去),当0<x<1时,f′(x)>0;当x>1时,f′(x)<0,所以f(x)的单调增区间为(0,1),减区间为(1,+∞);(2)由题意知F(x)=ln x+,x∈(0,3],则有k=F′(x0)=≤在(0,3]上恒成立,所以a≥(-+x0)max,当x0=1时,-+x0取得最大值,所以a∈[,+∞);(3)当a=0,b=-1时,f(x)=ln x+x,由f(x)=mx,得ln x+x=mx,又x>0,所以m=1+,要使方程f(x)=mx在区间[1,e2]上有唯一实数解,只需m=1+有唯一实数解,令g(x)=1+(x>0),所以g′(x)=,由g′(x)>0得0<x<e;g′(x)<0,得x>e,所以g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数.g(1)=1,g(e2)=1+,g(e)=1+,故1≤m<1+.4.(2015威海5月模拟)已知函数f(x)=+ax,x>1.(1)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;(2)若a=2,求函数f(x)的极小值;(3)若方程(2x-m)ln x+x=0在(1,e]上有两个不等实根,求实数m的取值范围. 解:(1)f′(x)=+a,由题意可得f′(x)≤0在x∈(1,+∞)上恒成立;所以a≤-=(-)2-,因为x∈(1,+∞),所以ln x∈(0,+∞),所以-=0时函数t=(-)2-的最小值为-,所以a≤-.(2)当a=2时,f(x)=+2x,f′(x)=,令f′(x)=0得2ln2x+ln x-1=0,解得ln x=或ln x=-1(舍去),即x=.当1<x<时,f′(x)<0,当x>时,f′(x)>0,所以f(x)的极小值为f()=+2=4.(3)将方程(2x-m)ln x+x=0两边同除ln x得(2x-m)+=0,整理得+2x=m,即函数f(x)与函数y=m在(1,e]上有两个不同的交点.由(2)可知,f(x)在(1,)上单调递减,在(,e]上单调递增f()=4,f(e)=3e,当x→1时,→+∞,所以4<m≤3e.实数m的取值范围为(4,3e].类型:利用导数研究方程根的问题1.已知函数f(x)=x3-x-.(1)判断的单调性;(2)求函数y=f(x)的零点的个数;解:(1)设φ(x)=x2-1-,其中x>0,φ′(x)=2x+>0,所以φ(x)在(0,+∞)单调递增,即在(0,+∞)单调递增.(2)因为φ(1)=-1<0,φ(2)=3->0,又φ(x)在(0,+∞)单调递增,故φ(x)在(1,2)内有唯一零点.又f(x)=x3-x-=x·φ(x),显然x=0为f(x)一个零点,因此y=f(x)在[0,+∞)有且仅有2个零点.2.设a∈R,函数f(x)=ln x-ax.(1)讨论函数f(x)的单调区间和极值;(2)已知x1=(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>.(1)解:函数f(x)的定义域为(0,+∞).求导数,得f′(x)=-a=.①若a≤0,则f′(x)>0,f(x)是(0,+∞)上的增函数,无极值;②若a>0,令f′(x)=0,得x=.当x∈(0, )时,f′(x)>0,f(x)是增函数;当x∈(,+∞)时,f′(x)<0,f(x)是减函数.所以当x=时,f(x)有极大值,极大值为f()=ln -1=-ln a-1.综上所述,当a≤0时,f(x)的递增区间为(0,+∞),无极值;当a>0时,f(x)的递增区间为(0, ),递减区间为(,+∞),极大值为-ln a-1.(2)证明:因为x1=是函数f(x)的零点,所以f()=0,即-a=0,解得a==.所以f(x)=ln x-x.因为f()=->0,f()=-<0,所以f()f()<0.由(1)知,函数f(x)在(2,+∞)上单调递减,所以函数f(x)在区间(,)上有唯一零点,因此x2>.3.(2015郑州质量预测)已知函数f(x)=(x2-2x)ln x+ax2+2.(1)当a=-1时,求f(x)在点(1,f(1))处的切线方程;(2)当a>0时,设函数g(x)=f(x)-x-2,且函数g(x)有且仅有一个零点,若e-2<x<e,g(x)≤m,求m的取值范围.解:(1)当a=-1时,f(x)=(x2-2x)ln x-x2+2,定义域为(0,+∞),f′(x)=(2x-2)ln x+(x-2)-2x.所以f′(1)=-3,又f(1)=1,f(x)在(1,f(1))处的切线方程为3x+y-4=0.(2)令g(x)=f(x)-x-2=0,则(x2-2x)ln x+ax2+2=x+2,即a=,令h(x)=,则h′(x)=--+=.令t(x)=1-x-2ln x,t′(x)=-1-=,因为t′(x)<0,所以t(x)在(0,+∞)上是减函数,又因为t(1)=h′(1)=0,所以当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,所以h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以h(x)max=h(1)=1.因为a>0,所以当函数g(x)有且仅有一个零点时,a=1.当a=1,g(x)=(x2-2x)ln x+x2-x,若e-2<x<e,g(x)≤m,只需g(x)max≤m,g′(x)=(x-1)(3+2ln x),令g′(x)=0得x=1或x=,又因为e-2<x<e,所以函数g(x)在(e-2,)上单调递增,在(,1)上单调递减,在(1,e)上单调递增, 又g()=-e-3+2,g(e)=2e2-3e,因为g()=-e-3+2<2e<2e(e-)=g(e),即g()<g(e),g(x)max=g(e)=2e2-3e,所以m≥2e2-3e.4.已知函数f(x)=x3-ax2,常数a∈R.(1)若a=1,过点(1,0)作曲线y=f(x)的切线l,求l的方程;(2)若曲线y=f(x)与直线y=x-1只有一个交点,求实数a的取值范围.解:函数求导得f′(x)=3x2-2ax.(1)当a=1时有f′(x)=3x2-2x,设切点P为(x0,y0),则k=f′(x0)=3-2x0,则P处的切线方程为y=(3-2x0)(x-x0)+-.该直线经过点(1,0),所以有0=(3-2x0)(1-x0)+-,化简得-2+x0=0,解得x0=0或x0=1,所以切线方程为y=0和y=x-1.(2)法一由题得方程x3-ax2-x+1=0只有一个根,设g(x)=x3-ax2-x+1,则g′(x)=3x2-2ax-1,因为Δ=4a2+12>0,所以g′(x)有两个零点x1,x2,即3-2ax i-1=0(i=1,2),且x1x2<0,a=,不妨设x1<0<x2,所以g(x)在(-∞,x1),(x2,+∞)单调递增,在(x1,x2)单调递减,g(x1)为极大值,g(x2)为极小值,方程x3-ax2-x+1=0只有一个根等价于g(x1)>0且g(x2)>0,或g(x1)<0且g(x2)<0, 又g(x i)=-a-x i+1=--x i+1=--+1(i=1,2),设h(x)=-x3-+1,所以h′(x)=-x2-<0,所以h(x)为减函数,又h(1)=0,所以x<1时h(x)>0,x>1时h(x)<0,所以x i(i=1,2)大于1或小于1,由x1<0<x2知,x i(i=1,2)只能小于1,所以由二次函数g′(x)=3x2-2ax-1性质可得g′(1)=3-2a-1>0,所以a<1.法二曲线y=f(x)与直线y=x-1只有一个交点,等价于关于x的方程ax2=x3-x+1只有一个实根.显然x≠0,所以方程a=x-+只有一个实根.设函数g(x)=x-+,则g′(x)=1+-=.设h(x)=x3+x-2,h′(x)=3x2+1>0,h(x)为增函数,又h(1)=0.所以当x<0时,g′(x)>0,g(x)为增函数;当0<x<1时,g′(x)<0,g(x)为减函数;当x>1时,g′(x)>0,g(x)为增函数;所以g(x)在x=1时取极小值1.又当x趋向于0时,g(x)趋向于正无穷;又当x趋向于负无穷时,g(x)趋向于负无穷;又当x趋向于正无穷时,g(x)趋向于正无穷.所以g(x)图象大致如图所示.所以方程a=x-+只有一个实根时,实数a的取值范围为(-∞,1).。
高考数学二轮复习第一篇专题二函数与导数第2讲导数的简单应用教案文

第2讲导数的简单应用1.(2018·全国Ⅰ卷,文6)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( D )(A)y=-2x (B)y=-x (C)y=2x (D)y=x解析:法一因为f(x)为奇函数,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f'(x)=3x2+1,f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二因为f(x)=x3+(a-1)x2+ax为奇函数,所以f'(x)=3x2+2(a-1)x+a为偶函数,所以a=1,即f'(x)=3x2+1,所以f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.2.(2016·全国Ⅰ卷,文9)函数y=2x2-e|x|在[-2,2]的图象大致为( D )解析:因为f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g'(x)=4x-e x.又g'(0)<0,g'(2)>0,所以g(x)在(0,2)内至少存在一个极值点,所以g(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.3.(2018·全国Ⅱ卷,文13)曲线y=2ln x在点(1,0)处的切线方程为.解析:因为y'=,y'x=1=2,所以切线方程为y-0=2(x-1),即y=2x-2.答案:y=2x-24.(2017·全国Ⅰ卷,文14)曲线y=x2+在点(1,2)处的切线方程为.解析:f(x)=x2+,f(1)=2.f'(x)=2x-,f'(1)=1.所以y=x2+在(1,2)处的切线方程为y-f(1)=f'(1)(x-1),y-2=x-1,即x-y+1=0.答案:x-y+1=05.(2015·全国Ⅱ卷,文16)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .解析:法一因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1.又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0,由得ax2+ax+2=0,因为Δ=a2-8a=0,所以a=8.法二因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1,又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0.因为y'=2ax+(a+2),所以令2ax+a+2=2,得x=-,代入y=2x-1,得y=-2,所以点-,-2在y=ax2+(a+2)x+1的图象上,故-2=a×-2+(a+2)×-+1,所以a=8.答案:86.(2017·全国Ⅲ卷,文21)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.(1)解:f(x)的定义域为(0,+∞),f'(x)=+2ax+2a+1=.若a≥0,因为x∈(0,+∞)时,f'(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,因为x∈0,-时,f'(x)>0,当x∈-,+∞时,f'(x)<0,故f(x)在0,-上单调递增,在-,+∞上单调递减.(2)证明:由(1)知,当a<0时,f(x)在x=-处取得最大值,最大值为f-=ln--1-, 所以f(x)≤--2等价于ln--1-≤--2,即ln-++1≤0,设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0,所以当x>0时,g(x)≤0,从而当a<0时,ln-++1≤0,即f(x)≤--2.7.(2015·全国Ⅱ卷,文21)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解:(1)f(x)的定义域为(0,+∞),f'(x)=-a.若a≤0,则f'(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈0,时,f'(x)>0;当x∈,+∞时,f'(x)<0.所以f(x)在0,上单调递增,在,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln +a1-=-ln a+a-1.因此f>2a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).1.考查角度(1)考查导数的几何意义的应用,包括求曲线的切线方程、根据切线方程求参数值等;(2)考查导数在研究函数性质中的应用,包括利用导数研究函数性质判断函数图象、利用导数求函数的极值和最值、利用导数研究不等式与方程等.2.题型及难易度选择题、填空题、解答题均有,其中导数几何意义的应用为中等难度偏下,其他问题均属于较难的试题.(对应学生用书第11~13页)导数的几何意义【例1】(1)(2018·山东日照校际联考)已知f(x)=e x(e为自然对数的底数),g(x)=ln x+2,直线l是f(x)与 g(x) 的公切线,则直线l的方程为( )(A)y=x或y=x-1(B)y=-ex或y=-x-1(C)y=ex或y=x+1(D)y=-x或y=-x+1(2)(2018·河南南阳一中三模)经过原点(0,0)作函数f(x)=x3+3x2图象的切线,则切线方程为;(3)(2018·黑龙江省哈尔滨九中二模)设函数f(x)=(x-a)2+(ln x2-2a)2.其中x>0,a∈R,存在x0使得f(x0)≤成立,则实数a的值为.解析:(1)设切点分别为(x1,),(x2,ln x2+2),因为f'(x)=e x,g'(x)=,所以==,所以=,所以(x2-1)(ln x2+1)=0,所以x2=1或x2=,因此直线l的方程为y-2=1·(x-1)或y-1=e·x-,即y=ex或y=x+1.故选C.(2)因为f'(x)=3x2+6x.设切点为P(x0,y0),切线斜率为k,则把①,③代入②得切线方程为y-(+3)=(3+6x0)(x-x0),④又切线过(0,0),所以-(+3)=-x0(3+6x0),解得,x0=0或x0=-.代入④式得切线方程为y=0或9x+4y=0.(3)由题意,问题等价于f(x)min≤.而函数f(x)可看作是动点M(x,ln x2)与N(a,2a)之间距离的平方,动点M在函数y=2ln x的图象上,N在直线y=2x的图象上,问题转化为直线与曲线的最小距离.如图,由y=2ln x得y'==2,得x=1,所以曲线上点M(1,0)到直线y=2x的距离最小,为d=,所以f(x)≥.又由题意,要使f(x0)≤,则f(x0)=,此时N恰好为垂足,由k MN===-,解得a=.答案:(1)C (2)y=0或9x+4y=0 (3)(1)求切线方程的关键是求切点的横坐标,使用切点的横坐标表达切线方程,再根据其他已知求解;(2)两曲线的公切线的切点未必是同一个点,可以分别设出切点横坐标,使用其表达切线方程,得出的两方程表示同一条直线,由此得出方程解决公切线问题;(3)从曲线外一点P(m,n)引曲线的切线方程,可设切点坐标为(x0,f(x0)),利用方程=f'(x0)求得x0后得出切线方程;(4)一些距离类最值,可以转化为求一条直线上的点到一条曲线上的点的最小值,此时与已知直线平行的曲线的切线到已知直线的距离即为其最小值.热点训练1:(1)(2018·辽宁省辽南协作校一模)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( )(A)y=-2x+3 (B)y=x(C)y=3x-2 (D)y=2x-1(2)(2018·安徽皖南八校4月联考)若x,a,b均为任意实数,且(a+2)2+(b-3)2=1,则(x-a)2+(ln x-b)2的最小值为( )(A)3(B)18(C)3-1 (D)19-6(3)(2018·天津部分区质量调查二)曲线y=ae x+2的切线方程为2x-y+6=0,则实数a的值为.解析:(1)由f(x)=2f(2-x)-x2+8x-8,可得f(2-x)=2f(x)-(2-x)2+8-8x,即f(2-x)=2f(x)-x2-4x+4,将其代入f(x)=2f(2-x)-x2+8x-8,可得f(x)=4f(x)+8-8x-2x2-x2+8x-8,即f(x)=x2,故f'(x)=2x,因为f(1)=1,所以切线方程为y-1=2(x-1),即y=2x-1.故选D.(2)由题意可得,其结果应为曲线y=ln x上的点与以C(-2,3)为圆心,以1为半径的圆上的点的距离的平方的最小值,可以求曲线y=ln x上的点与圆心C(-2,3)的距离的最小值,在曲线y=ln x上取一点M(m,ln m),曲线y=ln x在点M处的切线的斜率为k'=,从而有k CM·k'=-1,即·=-1,整理得ln m+m2+2m-3=0,解得m=1,所以点(1,0)满足条件,其到圆心C(-2,3)的距离为d==3,故其结果为(3-1)2=19-6,故选D.(3)根据题意,设曲线y=ae x+2与2x-y+6=0的切点的坐标为(m,ae m+2),其导数y'=ae x+2,则切线的斜率k=ae m+2,又由切线方程为2x-y+6=0,即y=2x+6,则k=ae m+2=2,则切线的方程为y-ae m+2=ae m+2(x-m),又由ae m+2=2,则切线方程为y-2=2(x-m),即y=2x-2m+2,则有-2m+2=6,可解得m=-2,则切点的坐标为(-2,2),则有2=a×e(-2)+2,所以a=2.答案:(1)D (2)D (3)2导数研究函数的单调性考向1 确定函数的单调性【例2】(2018·河南洛阳第三次统一考试)已知函数f(x)=(x-1)e x-x2,其中t∈R.(1)函数f(x)的图象能否与x轴相切?若能,求出实数t,若不能,请说明理由;(2)讨论函数f(x)的单调性.解:(1)由于f'(x)=xe x-tx=x(e x-t).假设函数f(x)的图象与x轴相切于点(x0,0),则有即显然x0≠0,将t=>0代入方程(x0-1)-=0中,得-2x0+2=0.显然此方程无实数解.故无论t取何值,函数f(x)的图象都不能与x轴相切.(2)由于f'(x)=xe x-tx=x(e x-t),当t≤0时,e x-t>0,当x>0时,f'(x)>0,f(x)单调递增,当x<0时,f'(x)<0,f(x)单调递减;当t>0时,由f'(x)=0得x=0或x=ln t,①当0<t<1时,ln t<0,当x>0时,f'(x)>0,f(x)单调递增,当ln t<x<0时,f'(x)<0,f(x)单调递减,当x<ln t,f'(x)>0,f(x)单调递增;②当t=1时,f'(x)≥0,f(x)单调递增;③当t>1时,ln t>0,当x>ln t时,f'(x)>0,f(x)单调递增,当0<x<ln t时,f'(x)<0,f(x)单调递减,当x<0时,f'(x)>0,f(x)单调递增.综上,当t≤0时,f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;当0<t<1时,f(x)在(-∞,ln t),(0,+∞)上是增函数,在(ln t,0)上是减函数;当t=1时,f(x)在(-∞,+∞)上是增函数;当t>1时,f(x)在(-∞,0),(ln t,+∞)上是增函数,在(0,ln t)上是减函数.确定函数单调性就是确定函数导数为正值、为负值的区间,基本类型有如下几种:(1)导数的零点是确定的数值,只要根据导数的零点划分定义域区间,确定在各个区间上的符号即可得出其单调区间;(2)导数零点能够求出,但含有字母参数时,则需要根据参数的不同取值划分定义域区间,再确定导数在各个区间上的符号;(3)导数存在零点,但该零点无法具体求出,此时一般是根据导数的性质、函数零点的存在定理确定导数零点的大致位置,再据此零点划分定义域区间,确定导数在各个区间上的符号.考向2 根据单调性求参数范围【例3】(1)(2018·吉林大学附中四模)已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a的取值范围是( )(A)0,(B),(C),+∞(D)0,(2)(2018·云南昆明5月适应考)已知函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,则a的最大值是( )(A)-e (B)e (C)-(D)4e2(3)(2018·安徽合肥三模)若函数f(x)=x+-aln x在区间[1,2]上是非单调函数,则实数a 的取值范围是( )(A),(B),+∞(C),+∞(D),解析:(1)因为f(x)=(x2-2ax)e x,所以f'(x)=(2x-2a)e x+(x2-2ax)e x=e x(x2+2x-2ax-2a).因为f(x)在[-1,1]上是单调减函数,所以f'(x)=e x(x2+2x-2ax-2a)≤0.即x2+2x-2ax-2a≤0.法一设g(x)=x2+2x-2ax-2a,根据二次函数的图象可知,只要即可,解得a≥,所以实数a的取值范围是,+∞.故选C.法二由x2+2x-2ax-2a≤0,得x2+2x≤2a(x+1).当x=-1时,-1≤0恒成立,当(-1,1]时,a≥,a≥,a≥(x+1)-,令h(x)=(x+1)-,可知h(x)=(x+1)-在(-1,1]上为增函数,所以h(x)max=h(1)=,即a≥,所以实数a的取值范围是,+∞.故选C.(2)因为函数f(x)=(x2-2x)e x-aln x(a∈R),所以f'(x)=e x(x2-2x)+e x(2x-2)-=e x(x2-2)-.因为函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,所以f'(x)=e x(x2-2)-≥0在区间(0,+∞)上恒成立,即≤e x(x2-2),亦即a≤e x(x3-2x)在区间(0,+∞)上恒成立,令h(x)=e x(x3-2x),所以h'(x)=e x(x3-2x)+e x(3x2-2)=e x(x3-2x+3x2-2)=e x(x-1)(x2+4x+2), 因为x∈(0,+∞),所以x2+4x+2>0.因为e x>0.所以令h'(x)>0,可得x>1.所以函数h(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 所以h(x)min=h(1)=e1(1-2)=-e.所以a≤-e,则a的最大值为-e.故选A.(3)因为f(x)=x+-aln x,所以f'(x)=1--=,因为f(x)在区间[1,2]上是非单调函数,所以f'(x)=0在[1,2]上有解,即x2-ax-a=0在[1,2]上有解,所以x2=a(x+1)在[1,2]上有解,令g(x)=x2,x∈[1,2],h(x)=a(x+1),x∈[1,2],由图象易知,两函数图象在[1,2]上有交点时,≤a≤,即≤a≤.故选D.函数f(x)在区间D上单调递增(减),等价于在区间D上f'(x)≥0(≤0)恒成立;函数f(x)在区间D上不单调,等价于在区间D上f'(x)存在变号零点.考向3 函数单调性的简单应用【例4】(1)(2018·东北三省三校二模)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f(x)+1,则下列正确的是( )(A)f(2 018)-ef(2 017)>e-1(B)f(2 018)-ef(2 017)<e-1(C)f(2 018)-ef(2 017)>e+1(D)f(2 018)-ef(2 017)<e+1(2)(2018·辽宁省大连八中模拟)设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f'(x)+<4x.若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是( )(A)-,+∞ (B)-,+∞(C)[-1,+∞) (D)[-2,+∞)(3)(2018·湖南永州市一模)已知定义在R上的可导函数f(x)的导函数为f'(x),若对于任意实数x有f'(x)+f(x)>0,且f(0)=1,则不等式e x f(x)>1的解集为( )(A)(-∞,0)(B)(0,+∞)(C)(-∞,e)(D)(e,+∞)解析:(1)法一设g(x)=,则g'(x)=.因为f'(x)>f(x)+1,所以f'(x)-f(x)-1>0,所以g'(x)>0在R上恒成立,所以g(x)=在R上单调递增.所以g(2 018)>g(2 017),所以>,所以f(2 018)+1>ef(2 017)+e,所以f(2 018)-ef(2 017)>e-1.故选A.法二构造特殊函数f(x)=e x-2,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-2)-e(e2 017-2)=2e-2,结合2e-2>e-1可知f(2 018)-ef(2 017)>e-1,排除B选项,结合2e-2<e+1可知f(2 018)-ef(2 017)<e+1,排除C选项,构造特殊函数f(x)=e x-100,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-100)-e(e2 017-100)=100e-100,结合100e-100>e+1可知f(2 018)-ef(2 017)>e+1,排除D选项,故选A.(2)令F(x)=f(x)-2x2,则F(-x)=f(-x)-2x2,所以F(x)+F(-x)=f(x)-[4x2-f(-x)]=0,故F(x)为奇函数.当x<0时,F'(x)=f'(x)-4x<-<0,所以F(x)在(-∞,0)上是减函数,而f(0)=0-f(-0),所以f(0)=0.故F(x)为减函数.因为f(m+1)=F(m+1)+2(m+1)2,f(-m)=F(-m)+2m2,所以F(m+1)+2(m+1)2≤F(-m)+2m2+4m+2,所以F(m+1)≤F(-m),所以m+1≥-m,所以m≥-.故选A.(3)令g(x)=e x f(x),故g'(x)=e x[f(x)+f'(x)],由f'(x)+f(x)>0可得,g'(x)>0,所以函数g(x)在R上单调递增,又f(0)=1,所以g(0)=1,所以不等式e x f(x)>1的解集为(0,+∞).故选B.函数单调性的简单应用主要有两个方面:(1)根据函数的单调性,比较函数值的大小;(2)根据函数的单调性解函数不等式.解题的基本思路是根据已知条件和求解目标,构造函数,通过构造的函数的单调性得出结论.常见的构造函数类型为乘积型h(x)g(x)和商形,具体的如xf(x),e x f(x),,tan x·f(x)等,视具体情况而定.热点训练2:(1)(2018·安徽江南十校二模)y=f(x)的导函数满足:当x≠2时,(x-2)[f(x)+2f'(x)-xf'(x)]>0,则( )(A)f(4)>(2+4)f()>2f(3)(B)f(4)>2f(3)>(2+4)f()(C)(2+4)f()>2f(3)>f(4)(D)2f(3)>f(4)>(2+4)f()(2)(2018·河北石家庄二模)定义在(0,+∞)上的函数f(x)满足xf'(x)ln x+f(x)>0(其中f'(x)为f(x)的导函数),若a>1>b>0,则下列各式成立的是( )(A)a f(a)>b f(b)>1 (B)a f(a)<b f(b)<1(C)a f(a)<1<b f(b)(D)a f(a)>1>b f(b)(3)(2018·黑龙江哈师大附中三模)若函数f(x)=2x+sin x·cos x+acos x在(-∞,+∞)上单调递增,则a的取值范围是( )(A)[-1,1] (B)[-1,3](C)[-3,3] (D)[-3,-1](4)(2018·天津河北区二模)已知函数f(x)=x2-ax+(a-1)ln x,其中a>2.①讨论函数f(x)的单调性;②若对于任意的x1,x2∈(0,+∞),x1≠x2,恒有>-1,求a的取值范围.(1)解析:令g(x)=,则g'(x)=,因为当x≠2时,(x-2)[f(x)-(x-2)f'(x)]>0,所以当x>2时,g'(x)<0,即函数g(x)在(2,+∞)上单调递减,则g()>g(3)>g(4),即>>,即2(+2)f()>2f(3)>f(4).故选C.(2)解析:构造函数g(x)=x f(x),x∈(0,+∞),两边取自然对数得ln g(x)=f(x)ln x,求导得g'(x)=f'(x)ln x+,得g'(x)=[xf'(x)ln x+f(x)].因为x>0,所以x f(x)>0,即g(x)>0,所以g'(x)>0.即g(x)在(0,+∞)上单调递增.又因为a>1>b>0,所以g(a)>g(1)>g(b),所以a f(a)>1>b f(b).故选D.(3)解析:因为f(x)=2x+sin x·cos x+acos x,所以f'(x)=2+cos 2x-asin x=-2sin2x-asin x+3,设sin x=t,-1≤t≤1,令g(t)=-2t2-at+3,因为f(x)在(-∞,+∞)上递增,所以g(t)≥0在[-1,1]上恒成立,因为二次函数图象开口向下,所以⇒-1≤a≤1,a的取值范围是[-1,1].故选A.(4)解:①由题意得函数f(x)的定义域为(0,+∞),因为f(x)=x2-ax+(a-1)ln x,所以f'(x)=x-a+=,令f'(x)=0,得x=1或x=a-1,因为a>2,所以a-1>1.由f'(x)>0,解得0<x<1或x>a-1,由f'(x)<0,解得1<x<a-1.所以函数f(x)的单调递增区间为(0,1),(a-1,+∞),单调递减区间为(1,a-1).②设x1>x2,则不等式>-1等价于f(x1)-f(x2)>x2-x1.即f(x1)+x1>f(x2)+x2,令g(x)=f(x)+x=x2-(a-1)x+(a-1)ln x,则函数g(x)在x∈(0,+∞)上为增函数.所以g'(x)=x-(a-1)+≥0在(0,+∞)上恒成立,而x+≥2,当且仅当x=,即x=时等号成立.所以2≥a-1,因为a>2,所以4(a-1)≥(a-1)2,即a2-6a+5≤0,所以1≤a≤5,而a>2,所以2<a≤5.所以实数a的取值范围是(2,5].导数研究函数的极值、最值考向1 导数研究函数极值【例5】(1)(2018·河南中原名校质检二)已知函数f(x)=2f'(1)ln x-x,则f(x)的极大值为( )(A)2 (B)2ln 2-2 (C)e (D)2-e(2)(2018·黑龙江哈三中一模)设函数f(x)=ln x+ax2+bx,若x=1是函数f(x)的极大值点,则实数a的取值范围是( )(A)-∞,(B)(-∞,1)(C)[1,+∞)(D),+∞(3)(2018·河南高三最后一模)若函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,则a的取值范围为( )(A)(-e2,-e) (B)-∞,-(C)-∞,- (D)(-∞,-e)解析:(1)f(x)=2f'(1)ln x-x,则f'(x)=2f'(1)-1,令x=1得f'(1)=2f'(1)-1,所以f'(1)=1,则f(x)=2ln x-x,f'(x)=-1=,所以函数在(0,2)上单调递增,在(2,+∞)上单调递减,则f(x)的极大值为f(2)=2ln 2-2,故选B.(2)f'(x)=+2ax+b=(x>0),因为x=1是函数f(x)的极大值点,所以f'(1)=0即b=-(2a+1),所以f'(x)==,当a≤0时,因为2ax-1<0,所以若0<x<1,则f'(x)>0,若x>1时,则f'(x)<0,所以x=1是函数f(x)的极大值点,符合题意; 当a>0时,若x=1是函数f(x)的极大值点,则需1<,即0<a<,综上a<.故选A.(3)因为f(x)=e x-aln x+2ax-1,所以f'(x)=e x-+2a,令e x-+2a=0,得a=,再令g(x)=(x>0),因为函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,所以g(x)=a有两个零点,又g'(x)=-(x>0),令g'(x)>0,得0<x<1,且x≠;令g'(x)<0,得x>1,所以函数g(x)在0,,,1上单调递增,在(1,+∞)上单调递减,由于g(1)=-e,因为y=g(x)与y=a有两个交点,根据数形结合法可得,a<-e,即a∈(-∞,-e).故选D.(1)可导函数的极值点是其导数的变号零点,在零点处“左负右正”的为极小值点、“左正右负”的为极大值点;(2)根据极值点的个数确定参数范围的问题可以转化为其导数零点个数的问题讨论.考向2 导数研究函数最值【例6】(1)(2018·陕西榆林四模)设实数m>0,若对任意的x≥e,不等式x2ln x-m≥0恒成立,则m的最大值是( )(A)(B)(C)2e (D)e(2)(2018·河北武邑中学质检二)已知函数f(x)=ax-cos x+b的图象在点,f处的切线方程为y=x+.①求a,b的值;②求函数f(x)在-,上的最大值.(1)解析:不等式x2ln x-m≥0⇔x2ln x≥m⇔xln x≥⇔ln xe ln x≥,设f(x)=xe x(x>0),则f'(x)=(x+1)e x>0,所以f(x)在(0,+∞)上是增函数,因为>0,ln x>0,所以≤ln x,即m≤xln x对任意的x≥e恒成立,此时只需m≤(xln x)min,设g(x)=xln x(x≥e),g'(x)=ln x+1>0(x≥e),所以g(x)在[e,+∞)上为增函数,所以g(x)min=g(e)=e,所以m≤e,m的最大值为e.故选D.(2)解:①因为f(x)=ax-cos x+b,所以f'(x)=a+sin x.又f'=a+1=,f=a+b=×+,解得a=,b=3.②由①知f(x)=x-cos x+.因为f'(x)=+sin x,由f'(x)=+sin x>0,得-<x≤,由f'(x)=+sin x<0得,-≤x<-,所以函数f(x)在-,-上单调递减,在-,上单调递增.因为f-=,f=π,所以f(x)max=f=π.(1)闭区间[a,b]上图象连续的函数其最值在极值和端点值的比较中找到;(2)在区间D上如果f(x)有唯一的极大(小)值点,该点也是函数的最大(小)值点.热点训练3:(1)(2018·福建南平5月质检)若函数g(x)=mx+在区间(0,2π)上有一个极大值和一个极小值,则实数m的取值范围是( )(A)(-e-2π,) (B)(-e-π,e-2π)(C)(-eπ,) (D)(-e-3π,eπ)(2)(2018·黔东南州一模)若函数f(x)=xln x-a有两个零点,则实数a的取值范围为( )(A)-,1(B),1(C)-,0(D)-,+∞(3)(2018·河北唐山三模)已知a>0,f(x)=,若f(x)的最小值为-1,则a等于( )(A)(B)(C)e (D)e2解析:(1)函数g(x)=mx+,求导得g'(x)=m+.令f(x)=m+,f'(x)=.易知,在0,上,f'(x)<0,f(x)单调递减;在,上,f'(x)>0,f(x)单调递增;在,2π上,f'(x)<0,f(x)单调递减.且f(0)=m+1,f=m-,f=m+,f(2π)=m+e-2π.有f<f(2π),f(0)>f.根据题意可得解得-e-2π<m<.故选A.(2)函数定义域为(0,+∞),由f(x)=xln x-a=0得xln x=a,令g(x)=xln x,则g'(x)=ln x+1,由g'(x)>0得x>,由g'(x)<0得,0<x<,所以函数g(x)在0,上单调递减,在,+∞上单调递增,所以当x=时,g(x)取得极小值即最小值,g=-,又当x→0时,g(x)→0,作出g(x)的图象如图,所以要使f(x)=xln x-a有两个零点,即方程xln x=a有两个不同的根,即函数g(x)和y=a有两个交点,所以-<a<0,选C.(3)由f(x)=,得f'(x)==,令g(x)=e x+ax+a,则g'(x)=e x+a>0,则g(x)在(-∞,+∞)上为增函数,又g(-1)=>0,所以存在x0<-1,使g(x0)=0,即f'(x0)=0,所以+ax0+a=0,①函数f(x)在(-∞,x0)上为减函数,在(x0,+∞)上为增函数,则f(x)的最小值为f(x0)==-1,即x0=--a,②联立①②可得x0=-2,把x0=-2代入①,可得a=.故选A.【例1】(1)(2018·河南高三最后一模)已知函数f(x)=4x2的图象在点(x0,4)处的切线为l,若l也与函数g(x)=ln x(0<x<1)的图象相切,则x0必满足( )(A)<x0<(B)0<x0<(C)<x0<1 (D)1<x0<(2)(2018·广西三市第二次调研)若曲线C1:y=x2与曲线C2:y=(a>0)存在公共切线,则a的取值范围为( )(A)(0,1) (B)1,(C),2(D),+∞(3)(2018·重庆綦江区5月调研)设函数f(x)=|e x-e2a|,若f(x)在区间(-1,3-a)内的图象上存在两点,在这两点处的切线相互垂直,则实数a的取值范围为( )(A)-,(B),1(C)-3,-(D)(-3,1)解析:(1)由于f'(x)=8x,f'(x0)=8x0,所以直线l的方程为y=8x0(x-x0)+4=8x0x-4.因为l也与函数g(x)=ln x(0<x<1)的图象相切,令切点为(m,ln m),g'(x)=,所以l的方程为y=x+ln m-1,因此有又因为0<m<1,所以1-4<0,x0>,4=1+ln x0+ln 8,令h(x)=4x2-ln x-ln 8-1x>,h'(x)=8x-=>0,所以h(x)=4x2-ln x-ln 8-1是,+∞上的增函数. 因为h=1-ln 4<0,h(1)=3(1-ln 2)>0,所以x0∈,1.故选C.(2)C1在点(x1,y1)处的切线为y-=2x1(x-x1),即y=2x1x-,①C2在点(x2,y2)处的切线为y=x+(1-x2),②设①②是同一条切线,则④÷③,得=1-x2,所以x1=2(x2-1),代入③得a=,因为a>0,所以x2>1,以下求函数u(x2)=的值域:u'(x2)==, 令u'(x2)=0得x2=2,在x2∈(1,2)内,u'(x2)<0,u(x2)单调递减, 在x2∈(2,+∞)内,u'(x2)>0,u(x2)单调递增,所以u(x2)min=u(2)=,当x2→+∞时,u(x2)→+∞,所以u(x2)的值域为,+∞,所以a≥.故选D.(3)f(x)=|e x-e2a|=f'(x)=若存在x1<x2,使得f'(x1)f'(x2)=-1,则必有-1<x1<2a<x2<3-a,由-1<2a<3-a得-<a<1,由-1<x1<2a<x2<3-a得2a-1<x1+x2<a+3,由f'(x1)f'(x2)=-1得x1+x2=0,所以2a-1<0<a+3,得-3<a<,综上可得-<a<.故选A.【例2】(1)(2018·江西重点中学协作体二联)已知定义在[e,+∞)上的函数f(x)满足f(x)+xln xf'(x)<0且f(2 018)=0,其中f'(x)是函数f(x)的导函数,e是自然对数的底数,则不等式f(x)>0的解集为( )(A)[e,2 018) (B)[2 018,+∞)(C)(e,+∞)(D)[e,e+1)(2)(2018·江西六校联考)已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f'(x)<2f(x),则f(1)∶f(2)的取值范围为( )(A)(e,2e) (B),(C)(e,e3) (D),(3)(2018·陕西咸阳二模)已知定义在R上的函数 f(x) 的导函数为f'(x),且f(x)+f'(x)>1,设a=f(2)-1,b=e[f(3)-1],则a,b的大小关系为( )(A)a<b (B)a>b(C)a=b (D)无法确定解析:(1)设g(x)=ln x·f(x),当x∈[e,+∞)时,g'(x)=+ln xf'(x)=<0,所以g(x)在[e,+∞)上是减函数,又g(2 018)=ln 2 018f(2 018)=0,所以g(x)>0的解集为[e,2 018),又此时ln x≥1,所以f(x)>0,即f(x)>0的解集为[e,2 018).故选A.(2)令g(x)=,h(x)=,则g'(x)=>0,h'(x)=<0,所以g(1)<g(2),h(1)>h(2),所以<,>,所以<<.选D.(3)令g(x)=e x f(x)-e x,则g'(x)=e x[f(x)+f'(x)]-e x=e x[f(x)+f'(x)-1]>0.即g(x)在R上为增函数.所以g(3)>g(2),即e3f(3)-e3>e2f(2)-e2,整理得e[f(3)-1]>f(2)-1,即a<b.故选A.【例3】(2018·华大新高考联盟4月质检)设函数f(x)=x-,a∈R且a≠0,e为自然对数的底数.(1)求函数y=的单调区间;(2)若a=,当0<x1<x2时,不等式f(x1)-f(x2)>恒成立,求实数m的取值范围. 解:(1)y=1-,y'==-,->0⇔<0.①当a>0时,<0⇒<0⇒0<x<2;②当a<0时,<0⇒>0⇒x<0或x>2.综上,①当a>0时,函数y=的增区间为(0,2),减区间为(-∞,0),(2,+∞);②当a<0时,函数y=的增区间为(-∞,0),(2,+∞),减区间为(0,2).(2)当0<x1<x2时,f(x1)-f(x2)>⇔f(x1)-f(x2)>-⇔f(x1)->f(x2)-,即函数g(x)=f(x)-=x-·-在(0,+∞)上为减函数,g'(x)=1-+=≤0,em≤(x-1)e x-ex2,令h(x)=(x-1)e x-ex2,h'(x)=e x+(x-1)e x-2ex=xe x-2ex=x(e x-2e)=0⇒e x=2e⇒x=ln 2e.当x∈(0,ln 2e)时,h'(x)<0,h(x)为减函数;当x∈(ln 2e,+∞)时,h'(x)>0,h(x)为增函数.h(x)的最小值为h(ln 2e)=(ln 2e-1)·e ln 2e-eln22e=2eln 2-e(ln 2+1)2=-eln22-e.所以em≤-eln22-e⇒m≤-1-ln22,所以m的取值范围是(-∞,-1-ln22].【例4】(2018·陕西西工大附中六模)若存在两个正实数x,y,使得等式3x+a(2y-4ex)(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围是( )(A)(-∞,0)(B)0,(C),+∞(D)(-∞,0)∪,+∞解析:因为3x+a(2y-4ex)(ln y-ln x)=0,所以3x+a(2y-4ex)ln =0,所以3+2a-2e ln =0,令t=,则t>0,所以3+2a(t-2e)ln t=0,所以(t-2e)ln t=-,设g(t)=(t-2e)ln t,则g'(t)=ln t+1-,而[g'(t)]'=+.故g'(t)为增函数,因为g'(e)=0,所以当t=e时,g(t)min=g(e)=-e,所以-≥-e,即≤e.当a<0时,不等式成立;当a>0时,得a≥;当a=0时,由原等式易知不符合题意.所以a<0或a≥.故选D.(对应学生用书第13页)【典例】(2018·全国卷Ⅲ,文21)(12分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.评分细则:(1)解:f'(x)=,2分f'(0)=2.3分因此曲线y=f(x)在点(0,-1)处的切线方程是2x-y-1=0.5分(2)证明:当a≥1时,f(x)+e≥(x2+x-1+e x+1)e-x.6分令g(x)=x2+x-1+e x+1,7分则g'(x)=2x+1+e x+1.9分当x<-1时,g'(x)<0,g(x)单调递减;当x>-1时,g'(x)>0,g(x)单调递增.11分所以g(x)≥g(-1)=0.因此f(x)+e≥0.12分【答题启示】(1)导数解答题的基础是正确求出函数的导数,这是解题的起始,一定要细心处理,不要“输在起跑线上”.(2)导数证明不等式基本技巧是构造函数、利用函数的单调性、最值得出所证不等式.。
高考数学二轮复习 专题一 函数与导数、不等式 第4讲 导数与函数的切线及函数零点问题训练 文(20
创新设计(全国通用)2017届高考数学二轮复习专题一函数与导数、不等式第4讲导数与函数的切线及函数零点问题训练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(全国通用)2017届高考数学二轮复习专题一函数与导数、不等式第4讲导数与函数的切线及函数零点问题训练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(全国通用)2017届高考数学二轮复习专题一函数与导数、不等式第4讲导数与函数的切线及函数零点问题训练文的全部内容。
专题一函数与导数、不等式第4讲导数与函数的切线及函数零点问题训练文一、选择题1。
曲线y=x e x+1在点(0,1)处的切线方程是( )A。
x-y+1=0 B.2x-y+1=0C.x-y-1=0D.x-2y+2=0解析y′=e x+x e x=(x+1)e x,y′|x=1,∴所求切线方程为:x-y+1=0。
=0答案A2。
(2016·昆明诊断)曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为( )A.错误!B.错误! C。
错误! D。
1解析因为y′=-2e-2x,∴曲线在点(0,2)处的切线斜率k=-2,∴切线方程为y=-2x+2,该直线与直线y=0和y=x围成的三角形如图所示,其中直线y=-2x+2与y=x的交点为A错误!,所以三角形面积S=错误!×1×错误!=错误!。
答案A3。
(2016·洛阳模拟)曲线y=x ln x在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为( )A.2 B。
-2 C.错误! D.-错误!解析依题意得y′=1+ln x,y′|x=e=1+ln e=2,所以-错误!×2=-1,所以a=2,故选A。
2023高考数学二轮复习专项训练《导数的计算》(含答案)
2023高考数学二轮复习专项训练《导数的计算》一、单选题(本大题共12小题,共60分)1.(5分)已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A. f(a)>eaf(0)B. f(a)>f(0)C. f(a)<f(0)D. f(a)<eaf(0)2.(5分)直线y=kx+1与曲线y=x3+bx2+c相切于点M(1, 2),则b的值为()A. −1B. 0C. 1D. 23.(5分)设f(x)=x3,f(a-bx)的导数是()A. 3(a-bx)B. 2-3b(a-bx)2C. 3b(a-bx)2D. -3b(a-bx)24.(5分)已知函数f(x)=2lnx+f′(2)x2+2x+3,则f(1)=()A. −2B. 2C. −4D. 45.(5分)设f0(x)=sin2x+cos2x,f1(x)=f0′(x),f2(x)=f1′(x),…,f1+n(x)=fn′(x),n∈N*,则f2013(x)=()A. 22012(cos2x-sin2x)B. 22013(sin2x+cos2x)C. 22012(cos2x+sin2x)D. 22013(sin2x+cos2x)6.(5分)曲线y=2sinx+cosx在点(π,−1)处的切线方程为()A. x−y−π−1=0B. 2x−y−2π−1=0C. 2x+y−2π+1=0D. x+y−π+1=07.(5分)若函数f(x)=x3−tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()] B. (−∞,3]A. (−∞,518,+∞) D. [3,+∞)C. [5188.(5分)[2021湖南省郴州市月考]随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设在放射性同位素钍−234的衰变过程中,其含量N(单位:贝克)与时间t(单位:天)满足函数关系N(t)=N02−124,其中N0为t=0时针-234的含量.已知t=24时,钍−234含量的瞬时变化率为−8ln2,则N(96)=A. 12B. 12ln2C. 24D. 24ln29.(5分)设(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,则|a1|+2|a2|+3|a3|+4|a4|+5|a5|+6|a6|+7|a7|=()A. 10206B. 5103C. 729D. 72810.(5分)函数f(x)=2f′(1)·x+xlnx在x=1处的切线方程为()A. y=2x−2B. y=2x+1C. y=−x−1D. y=x−111.(5分)设f(x)=sin2x,则f′(x)等于()A. cos2xB. 2cos2xC. -sin2xD. 2(sin2x-cos2x)12.(5分)函数y=cos(1+x2)的导数是()A. 2xsin(1+x2)B. -sin(1+x2)C. -2xsin(1+x2)D. 2cos(1+x2)二、填空题(本大题共5小题,共25分)13.(5分)函数f(x)=xsin(2x+5)的导数为____.14.(5分)已知f(x)=ekx,则f′(x)=____.15.(5分)设函数f(x)=x3+(a−1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(1,f(1))处的切线方程为__________.16.(5分)若函数f(x)满足f(x)=2lnx−xf′(1),则f′(1)=__________.17.(5分)写出一个同时具有下列性质①②③的函数f(x):_______.①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=ae x lnx+be xx.(1)求导函数f′(x);(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x+1),求a,b的值. 19.(12分)求下列函数在给定点的导数.(1)f(x)=x14,x=5;(2)f(x)=3(x+1)x2,x=1.20.(12分)已知函数f(x)=12x2−x+lnx.(1)求y=f(x)的导数;(2)求曲线y=f(x)在点(1,f(1))处的切线方程.21.(12分)求下列函数的导数.(1)y=(2+3x)(3−5x+x2);(2)y=(2x−1)2(2−3x)3;(3)y=(3x+2)sin5x;(4)y=e2x cos3x.22.(12分)已知函数f(x)=−13x3−a−12x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.(1)若存在x<0,使得f′(x)=−9,求a的最大值;(2)当a>0时,求函数f(x)的零点个数.23.(12分)求下列函数在指定x处的导数值.(1)y=xsinx,x=π4;(2)y =xe x ,x =1.四 、多选题(本大题共5小题,共25分)24.(5分)若(1+2x)+(1+2x)2+⋅⋅⋅+(1+2x)n =a 0+a 1x +a 2x 2+⋅⋅⋅+a n x n (n ∈N ∗),a 0=6,则下列结论中正确的是()A. n =6B. a 1=42C. ∑ai n i=0=64D. ∑n i=1(−1)i iai =625.(5分)下列说法中正确的有()A. (sin π4)′=cos π4B. 已知函数f(x)在R 上可导,且f ′(1)=1,则limΔx→0f(1+2Δx)−f(1)Δx=2C. 一质点的运动方程为S =t 2,则该质点在t =2时的瞬时速度是4D. 已知函数f(x)=cosx ,则函数y =f ′(x)的图象关于原点对称 26.(5分)下列求导错误的是()A. (log 23)′=13ln2 B. (ln2x)′=12x C. (sin 2x)′=sin2x D. (cosx x)′=−cosx+sinxx 227.(5分)下列选项正确的有( )A. 若f(x)= x sin x +cos2x , 则f′(x) =sin x −x cos x +2sin2xB. 设函数f(x)=x ln x ,若f′(x 0)=2,则x 0=eC. 已知函数f(x)=3x 2e 2x ,则f′(1) =12e 2D. 设函数f(x)的导函数为f′(x ),且f(x)=x 2+3xf ′(2)+ln x ,则f′(2)=−94 28.(5分)设b 为实数,直线y =3x +b 能作为曲线f(x)的切线,则曲线f(x)的方程可以为()A. f(x)=−1xB. f(x)=12x 2+4lnxC. f(x)=x 3D. f(x)=e x答案和解析1.【答案】A;【解析】解:∵对任意实数x,f′(x)>f(x),令f(x)=-1,则f′(x)=0,满足题意显然选项A成立故选A.2.【答案】A;【解析】y=x3+bx2+c的导数为y′=3x2+2bx,可得切线的斜率为3+2b,由条件可得k=3+2b,1+b+c=2,1+k=2,解得k=1,b=−1,c=23.【答案】D;【解析】解;因为f(x)=x3,所以y=f(a-bx)=(a-bx)3,所以y′=3(a-bx)2(a-bx)′=-3b(a-bx)2故选D.4.【答案】D;【解析】此题主要考查导数的运算,属于基础题.先求出f′(2),再求f(1)即可.+f′(2)·2x+2,解:由题意,f′(x)=2x故f′(2)=1+4f′(2)+2,∴f′(2)=−1,∴f(1)=2ln1+f′(2)×12+2×1+3=4,故选D.5.【答案】A;【解析】解:∵f0(x)=sin2x+cos2x,∴f1(x)=f0′(x)=2(cos2x-sin2x),f2(x)=f1′(x)=22(-sin2x-cos2x),f3(x)=f2′(x)=23(-cos2x+sin2x),f4(x)=f3′(x)=24(sin2x+cos2x),…通过以上可以看出:f n(x)满足以下规律,对任意n∈N,fn+4(x)=24fn(x).∴f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2x-sin2x).故选:B.6.【答案】C;【解析】设f(x)=2sinx+cosx,则f′(x)=2cosx−sinx,∴f′(π)=2cosπ−sinπ=−2,∴切线方程为:y+1=−2(x−π),即2x+y−2π+1=0,故选C.7.【答案】C;【解析】解:∵函数f(x)=x3−tx2+3x,∴f′(x)=3x2−2tx+3,若函数f(x)=x3−tx2+3x在区间[1,4]上单调递减,则f′(x)⩽0即3x2−2tx+3⩽0在[1,4]上恒成立,∴t⩾32(x+1x)在[1,4]上恒成立,令y=32(x+1x),则函数在[1,4]为增函数,当x=4时,函数取最大值518,∴t⩾518,即实数t的取值范围是[518,+∞),故选:C.由题意可得f′(x)⩽0即3x2−2tx+3⩽0在[1,4]上恒成立,由函数的单调性可知t的范围.这道题主要考查函数的单调性和导数符号间的关系,属于中档题.8.【答案】C;【解析】由N(t)=N02−t24方得N′(t)=N02−t24×ln2×(−124),当t=24时,N′(24)=N02−2424×ln2×(−124)=−8ln2,解得N0=384,所以N(t)=384·2−t24,则N(96)=384·2−9624=384·2−4=24.故选C.9.【答案】A;【解析】此题主要考查二项式定理的运用,属于中档题.将(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7两边求导,令x=−1,即可得到答案.解:将(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7两边求导,可得14(2x−1)6=a1+2a2x+3a3x²+……+7a7x6,可得x的奇次方的系数为负数,令x=−1可得14(−2−1)6=a1−2a2+3a3+……+7a7,故|a1|+2|a2|+3|a3|+4|a4|+5|a5|+6|a6|+7|a7|=14×36=10206.故选A.10.【答案】C;【解析】此题主要考查曲线的切线方程的求法,导数的几何意义,属于基础题.先求出f′(1)=−1,再求出f(1)=−2,由此可解.解:因为f′(x)=2f′(1)+lnx+1,所以f′(1)=2f′(1)+1,即f′(1)=−1,所以f(1)=2f′(1)=−2,所以切线方程为y=−(x−1)−2=−x−1.故选C.11.【答案】B;【解析】解:因为设f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.故选B.12.【答案】C;【解析】解:y′=-sin(1+x2)•(1+x2)′=-2xsin(1+x2)故选C13.【答案】sin(2x+5)+2xcos(2x+5);【解析】解:f′(x)=x′sin(2x+5)+x(sin(2x+5))′=sin(2x+5)+2xcos(2x+5),故答案为:sin(2x+5)+2xcos(2x+5),14.【答案】k e kx;【解析】解:∵f(x)=e kx,∴f′(x)=e kx•(kx)′=k e kx,故答案为:k e kx.15.【答案】4x−y−2=0;【解析】此题主要考查函数奇偶性,利用导数研究曲线上某点切线方程,属于基础题.由奇函数的定义求出a的值,然后利用导数的几何意义求出切线的斜率,进而写出切线方程.解:因为函数f(x)=x3+(a−1)x2+ax为奇函数,所以f(−x)=−f(x),所以(−x)3+(a−1)(−x)2+a(−x)=−[x3+(a−1)x2+ax],所以2(a−1)x2=0.因为x∈R,所以a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(1)=4,f(1)=2,所以曲线y=f(x)在点x=1处的切线方程为4x−y−2=0,故答案为:4x−y−2=0.16.【答案】1;【解析】此题主要考查导数的加法与减法的法则,解决此题的关键是对f(x)进行正确求导,属于基础题.利用求导公式对f(x)进行求导,再把x=1代入,即可求解.解:∵函数f(x)的导函数为f′(x),且满足f(x)=2lnx−xf′(1),−f′(1),把x=1代入f′(x)可得f′(1)=2−f′(1),∴f′(x)=2x解得f′(1)=1.故答案为:1.17.【答案】f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足);【解析】本题是开放性问题,合理分析所给条件找出合适的函数是关键,属于中档题.根据幂函数的性质可得所求的f(x).解:取f(x)=x4,则f(x1x2)=(x1x2)4=x14x24=f(x1)f(x2),满足①,f′(x)=4x3,x>0时有f′(x)>0,满足②,f′(x)=4x3的定义域为R,又f′(−x)=−4x3=−f′(x),故f′(x)是奇函数,满足③.故答案为:f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)18.【答案】略。
【精编】高考数学二轮复习第二部分高考22题各个击破专题二函数与导数2.4.3导数与函数的零点及参数范围课件
以 f'(x)在(0,+∞)单调递增.又 f'(a)>0,当 b 满足 0<b<���4���且 b<14时,f'(b)<0,
故当 a>0 时,f'(x)存在唯一零点.
-3-
(2)证明 由(1),可设f'(x)在(0,+∞)的唯一零点为x0,当x∈(0,x0)
时,f'(x)<0;当x∈(x0,+∞)时,f'(x)>0.
f(a)=aln a+1a2-(a+1)a=aln a-1a2-a.
2
2
当0<a<1时,f(a)<0,即在x∈(0,1)时,f(x)<0.
而f(x)在x∈(1,+∞)时为增函数,且x→+∞时,f(x)→+∞,
所以此时f(x)有一个零点.
-13-
③当 a=1 时,f'(x)=(������-���1��� )2≥0 在(0,+∞)内恒成立,
-6-
解题策略二 分类讨论法
例2已知函数f(x)=x3+ax+
1 4
,g(x)=-ln
x.
(1)当a为何值时,x轴为曲线y=f(x)的切线;
(2)用min{m,n}表示m,n中的最小值,设函数
h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.
难点突破 (1)设切点(x0,0),依题意f(x0)=0,f'(x0)=0,得关于a,x0的方 程组解之.
4
若 a<-54,则 f(1)<0,h(1)=min{f(1),g(1)}=f(1)<0,故 x=1 不是 h(x)的零 点.
导数与函数的零点课件高考二轮考前复习数学文科
由题意知
f(2)
8a-2b 4 -4 , 3
解得
a
1 3
,
b 4,
故所求的解析式为f(x)= 1x3-4x+4;
3
(2)由(1)可得f′(x)=x2-4=(x-2)(x+2), 令f′(x) =0,得x=2或x=-2,列表如下:
所以当x=-2时,f(x)有极大值f(-2)= 2,8当x=2时,f(x)有极小值f(2)=- ; 4
m
所以当m>e时,h(m)单调递增,h(m)>h(e)>0.
所以f(2ln m)=m2-2mln m=m(m-2ln m)>m(e-2)>0,
又因为f(0)=1>0,
所以f(x)在R上恰有两个零点, 综上所述,当0≤m<e时,函数f(x)没有零点; 当m<0或m=e时,函数f(x)恰有一个零点; 当m>e时,f(x)恰有两个零点.
高考演兵场·检验考试力
1.(参数范围)若函数f(x)=ax3-bx+4(a,b∈R),当x=2时,函数f(x)有极值- 4 .
3
(1)求函数的解析式; (2)求函数的极值; (3)若关于x的方程f(x)=k有三个零点,求实数k的取值范围.
1.【解析】(1)f′(x)=3ax2-b,
f (2) 12a-b 0,
同理,减区间是(-∞,ln m),
所以f(x)min=m(1-ln m).
(ⅰ)若0<m<e,则f(x)min=m(1-ln m)>0,f(x)在R上没有零点; (ⅱ)若m=e,则f(x)=ex-ex有且仅有一个零点;
(ⅲ)若m>e,则f(x)min=m(1-ln m)<0. f(2ln m)=m2-2mln m=m(m-2ln m), 令h(m)=m-2ln m,则h′(m)=12- ,