《一元二次方程解法》复习课教案设计

合集下载

人教版九年级数学上册《一元二次方程(复习课)》教学设计

人教版九年级数学上册《一元二次方程(复习课)》教学设计
教学
环节
内 容(或 知 识 点)
时间
纵轴
师 生 活 动
设计意图
创设情景引课




这节课我们系统的复习一元二次方程的概念,解法及一元二次方程根的判别式及根与系数的关系。
知识清单
知识结构
(1)
(2)
(3)
1
4
师:口述提出问题引入新课.
生:认真倾听后,带着问题进入新课的学习和探究.
师: 布置任务:让学生在组内交流自主学习情况,并组织学生展示收获,提出困惑。 检查学生存在问题,并给予指导.
生:在组内交流学习,并展示收获提出困惑.同时积极参与对其他小组收获给予补充,困惑给予解答。
师:进一步明确本节课复习的知识结构,展示结构图
激发学生的学习兴趣和探究的欲望.
培养学生的自主学习能力,主动学习的意识,、合作交流的意识及互帮学习的热情,勇于质疑的精神。
教学
环节
内容(或知识点)
时间
纵轴
师 生 活 动
难点:一元二次方程的解法及其简单的应用
设计意图








小结归纳
布置作业
例1
例2
例3
例4
一、针对训练
二、矫正训练
通过今天的学习,你学会了哪些知识?还有哪些困惑?
练习册21页1—7题
6
20
10
3
师:组织学生先独立完成后
组内再合作探究,并让各小组提出存在的问题。
生:组内合作探究,展示结果,或对某些问题质疑,对其他小组的展示给予补充或提出质疑。
组织学生组独立完成, 1—5题找代表说答案,并简要说明理由。师给予必要的补充。6题找各小组不同层次学生展示过程。师生共同评价,最后对不同题型解法进行总结。7题小组内交流结果,师生评价。

一元二次方程复习课集体备课教案

一元二次方程复习课集体备课教案
西桥学校教师教学设计
教者姓名
科目
数学
年级
9
复习课第1课时
课题
复习《一元二次方程》
课型
复习
备课时间
教学目标
①掌握一元二次方程的概念、一般形式和解法




ax2+bx+c=0 (a≠0)
根的判别式
②一元二次方程的求根公式和根的判别式
③转化思想、分类讨论思想
重点目标
1、2
难点目标
2、3
教具、学具
多媒体、导学案
当b2-4ac=0时,方程有实数根.
当b2-4ac<0时,方程实数根.
【思想方法】
1.常用解题方法——换元法
2.常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想
【例题精讲】
例1.选用合适的方法解下列方程:
(1)(x-15)2-225=0;(2) 3x2-4)x2+ x=0
例2.已知一元二次方程 有一个根为零,求 的值.
例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?
例4.已知关于x的方程x2―(2k+1)x+4(k-0.5)=0
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为a=4,另两边的长b.c恰好是这个方程的两个根,求△ABC的周长.
6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是__________.
7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.
二、选择题:
8.对于任意的实数x,代数式x2-5x+10的值是一个( )

一元二次方程复习课教案

一元二次方程复习课教案

一元二次方程复习课教案(二)目标:1、让学生进一步掌握解一元二次方程的四种方法;并能灵活选择方法;2、通过典型例子让学生感受到选择适当方法的重要性。

3、进一步探索实际问题中的数量关系及其变化规律,体会数学建模思想,体会数学在应用中的价值4、会根据具体问题中数量关系列出一元二次方程并求解,能根据问题的实际意义检验所得结果是否合理。

教学重难点:重点:掌握解一元二次方程的四种方法。

难点:灵活选择方法解一元二次方程、根据具体问题中数量关系列出一元二次方程并求解是难点。

教学过程:一、典型例题讲解:(一)、一元二次方程的概念1、已知关于x的方程(m²-1)x²+(m-1)x-2m+1=0,当m 时是一元二次方程,当m=时是一元一次方程,当m= 时,x=0。

2、若(m+2)x2 +(m-2)x -2=0是关于x的一元二次方程则m 。

(二)、一元二次方程的解法你还记得吗?请你选择最恰当的方法解下列一元二次方程1、3x² -1=02、x (2x +3)=5(2x +3)3、x² - 3 x +2=04、2 x ² -5x+1=0点评:1、形如(x-k )²=h 的方程可以用直接开平方法求解2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式,因为这样能把方程的一个根丢失了,要利用因式分解法求解。

3、当我们不能利用上边的方法求解的时候就就可以用公式法求解,公式法是万能的。

(三)、巩固提高:1、用配方法解方程2x² +4x +1 =0,配方后得到的方程是 。

2、一元二次方程ax² +bx +c =0,若x=1是它的一个根,则a+b+c= ,若a -b+c=0,则方程必有一根为 。

3、 4.已知方程:5x 2+kx-6=0的一个根是2,则k=_____它的另一个根______.5、方程2 x ²-mx-m² =0有一个根为 – 1,则m= ,另一个根为 。

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

北师大版数学九年级上册第二章《一元二次方程》复习教案

北师大版数学九年级上册第二章《一元二次方程》复习教案
北师大版数学九年级上册第二章《一元二次方程》复习教案
一、教学内容
北师大:
1.一元二次方程的定义与一般形式;
2.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法;
3.一元二次方程根的判别式及其应用;
4.一元二次方程的根与系数的关系;
5.实际问题中的一元二次方程及其应用。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量物体的高度,通过一元二次方程来计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”(如面积和边长关系等)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾一元二次方程的奥秘。
此外,小组讨论环节中,学生们能够积极参与,相互交流,分享自己的观点。但在讨论过程中,我也观察到有些学生过于依赖他人,缺乏独立思考。为了培养学生的独立思考能力,我将在今后的教学中,多设置一些开放性问题,引导学生自主探究,提高他们的问题解决能力。
在实践活动方面,学生们对实验操作表现出浓厚兴趣,能够积极参与。但在操作过程中,部分学生还显得有些手忙脚乱,对实验原理的理解不够深入。针对这一问题,我将在后续的教学中,加强对实验原理的讲解,让学生们在操作前能够充分理解实验的目的和步骤。
(二)新课讲授(用时10分钟)

《一元二次方程解法复习课》课件(新人教版)

《一元二次方程解法复习课》课件(新人教版)

一元二次方程的解法复习课教案一.教学目标:掌握了解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点选用恰当的方法,从而准确、快速地解一元二次方程。

二.教学重点:会根据不同方程的特点选用恰当的方法,准确、快速地解一元二次方程。

三.教学难点:通过揭示各种解法的本质联系,渗透降次化归的数学思想。

四. 教学过程:(一)、介绍本节课的重要性,出示教学目标。

同学们,我们本节课一起来复习一元二次方程的解法。

一元二次方程在中考中占有比较重要的地位,通过本节课的复习,我们要掌握解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点,选用恰当的方法,从而准确、快速地解一元二次方程。

(二)、检查课前练习完成情况,并讨论,讲解课前练习题让五名同学分别回答课前练习题1――5小题的答案。

若有错误,让学生进行指正。

(三)、讲解四种解法的特点(1)提问一名学生是如何来完成课前练习第2题的。

易化为方程X2=a(a≥0)(其中X代表未知数或含有未知数的一次代数式,a代表常数)适合用直接开平方法来解。

用此法解方程时,一边整理成未知数的平方X2=a(a≥0)或含有未知数的一次代数式的平方的形式(mx+n)2=p(p≥0),另一边为常数,常数不能小于0,然后利用开平方根的定义进行开方,开方时,应注意 X=±a,不要丢掉正负号。

为了方便学生记忆,总结了一个顺口溜:直接开方不万能,条件符合也能行,一边开方一边常,然后开方就能行,开方时,要注意,正负符号要弄清。

(2)提问学生如何来完成课前练习第3题,在学生回答的基础上,指出配方法是直接开方法的“升级版”, 1、先把二次项系数化为1,再把常数项移到等号的另一端。

2、接着在方程的两边同时加上一次项系数一半的平方进行配方。

3、最后进行开方。

(3)提问学生如何完成课前练习第4题、在学生回答的基础上,回顾推导求根公式的过程,让“公式法”:请填写出求根公式公式法是“盗”用了配方法的结果,在应用公式法来解一元二次方程的过程中: 1、应先把一元二次方程化为一般式, 2、再求出判别式的值,判别式的值大于或等于零时才有实数解,要强调熟记公式。

一元二次方程的解法(复习课)

一元二次方程的解法(复习课)教案一、复习目标:1、进一步熟练掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法求解方程。

2、在方程求解过程中注重方式、方法的引导,注重特殊到一般、整体代入等数学思想方法的渗透。

3、培养学生概括、归纳总结能力。

二、重点、难点:1、重点:会根据不同的方程特点选用恰当的方法,使解题过程简单合理。

2 、难点:通过揭示各种解法的本质联系,渗透降次化归的思想。

三、教学过程:1、引例:给下列方程选择较简便的方法⑴5x2-3x=0 运用因式分解法⑵3x2-2=0 运用直接开平方法⑶x2-4x=6 运用配方法⑷2x2+7x-7=0 运用公式法(二)复习提问:我们学了一元二次方程的哪些解法?练习一:按括号中的要求解下列一元二次方程:(1)4(1+x)2=9(直接开平方法);(2)x2+4x+2=0(配方法);(3)3x2+2x-1=0(公式法)(4)(2x+1)2= -3 (2x+1) (因式分解法)概括四种解法的特点及步骤:1.直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法,这是最基础的方法,与此前解一元一次方程类似。

(在降次时注意正负两个值)2.配方法:配方法就是把方程配成一个完全平方式,再用直接开平法求解,配方时,方程左右两边同时【加上一次项系数一半的平方】。

(方法:先移项,再化二次项系数为一,然后配方,最后利用直接开平法求解。

)3.公式法:用公式法解一元二次方程时首先要将方程化成一般形式,也就是ax2+bx+c=0的形式,然后才能做。

在用公式法解一元二次方程中,先算b2-4ac的值。

4.因式分解法:因式分解法就是利用所学过的分解因式的知识来求解。

一般步骤:①将方程右边化为零;②将方程左边分解为两个一次因式乘积;③令每个因式分别等于零,得到两个一元一次方程;④解这两个一元一次方程练习二:选用适当的方法解下列方程(1)2(1-x)2-6=0 (3)3(1-x)2=2-2x (2)(2x-1)2+3(2x-1)+2=0;(4)(x+2)(x+3)=6交流讨论:1 与同桌或邻桌同学比较,看谁的解法更简单。

第21章 一元二次方程——一元二次方程的解法(复习课) 2022—2023学年人教版数学九年级上册

课题:《一元二次方程的解法》复习教案一、教材分析:解一元二次方程是人教版九年级上册第21章第二节的内容,本节的主要内容是一元二次方程的解法(直接开方法、因式分解法、配方法、公式法)。

解一元二次方程在课标中的要求是:理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。

一元二次方程的解法是中学方程教学的重要环节,又是后续内容学习解决实际问题的基础和工具。

一元二次方程是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备。

学好这部分内容,对增强学生学习代数的信心具有十分重要的意义。

二、学情分析:学生已经学习了一元二次方程的解法:直接开方法、配方法、公式法、因式分解法后的一节复习课,已经掌握了学生的薄弱点:1.易错点:直接开平方法中,学生容易只取正的这一个根;2.配方法中,学生容易把一次项系数不除以2直接平方,个别学生会忘记平方,方程左边加了常数项,右边忘记加;公式法中,学生容易把公式中的-b记错成b,个别学生再代入系数的时候会忘记前面的负号;等等。

2.不能灵活选择解法,由于不会根据方程系数的特征找到最优解法,造成错误率提高,用时过长的弊端,从而影响到了少数学生对数学的自信心。

三、教学目标:(一)知识与技能:1.掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法解方程。

2.避免易错点,提高解方程的正确率。

(二)过程与方法通过观察方程的特征选择不同解法,培养学生的观察猜想、归纳总结、分析问题、解决问题等能力,同时还培养学生化归的思想。

(三)情感态度价值观通过对一元二次方程解法的复习,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

通过小组合作的形式,培养合作的习惯,提高分析的能力。

四、教学重点:掌握解一元二次方程的四种方法。

五、教学难点:会根据方程的特征灵活选用适当的方法解方程。

六、教学过程:(一)全班纠错,激发热情:教材P17习题21.2 6(3)3(1)2(1)x x x -=-作业完成中的不同解法展示:A :解:32x =∴ 23x = ∴原方程的解是:23x = B :解:23322x x x -=- C :解: 23322x x x -=-235+2=0x x - 235+2=0x x -252=33x x -- 252=33x x -- 22552+()=363x x -- 2225525+()=+()3636x x -- 252()=63x -- 251()=636x - ∴原方程无解 51=66x -∴=1x∴原方程的解为:=1xD :解:23322x x x -=-235+2=0x x -3,5,2a b c ==-=224(5)4321b ac ∆=-=--⨯⨯=21,2451223b b ac x a ±--±==⨯ ∴12213x x =-=-, ∴原方程的解是:12213x x =-=-,E :解:3(1)2(1)0x x x ---= (1)(32)0x x --=12213x x ==, ∴原方程的解是:12213x x ==, 提出问题,小组讨论:1.以上几位同学的解法是否正确,如果不正确请指出并改正,并小组内总结出哪些地方是易错点。

2023最新-一元二次方程的解法【优秀8篇】

一元二次方程的解法【优秀8篇】只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

它山之石可以攻玉,以下内容是壶知道为您带来的8篇《一元二次方程的解法》,如果能帮助到您,壶知道将不胜荣幸。

数学《一元二次方程》教案设计篇一一、出示学习目标:1.继续感受用一元二次方程解决实际问题的过程;2.通过自学探究掌握裁边分割问题。

二、自学指导:(阅读课本P47页,思考下列问题)1.阅读探究3并进行填空;2.完成P48的思考并掌握裁边分割问题的特点;3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。

探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。

9﹕7设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:由中下层学生口答书中填空,老师再给予补充。

思考:如果换一种设法,是否可以更简单?设正中央的长方形长为9acm,宽为7acm,依题意得9a·7a=(可让上层学生在自学时,先上来板演)2.P48-49第8、9题中下层学生在自学完之后先板演效果检测时,由同座的同学给予点评与纠正9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)注意点:要善于利用图形的平移把问题简单化!三、当堂训练:1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画。

如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?(只要求设元、列方程)2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。

一元二次方程的解法复习课

一元二次方程的解法(复习)学案复习目标能掌握解一元二次方程的四种方法以及各种解法的要点。

会根据不同方程的特点选用恰当的方法,使解题过程简单合理,通过揭示各种解法的本质联系,渗透降次化归的思想方法。

重难点关键1.重点:会根据不同方程的特点选用恰当的方法,使解题过程简单合理。

2.难点:通过揭示各种解法的本质联系,渗透降次化归的思想。

学习过程【课前检测】1.一元二次方程的四种解法是①________②________③________④________.2. 一元二次方程ax2+bx+c=0(a≠0)的求根公式是:_____________________.3.因式分解法主要有__________法_________法和十字相乘法三种方法,如4x2-9可利用________法分解因式;3x2-3x可利用________法分解因式;x2-3x+2可利用________法分解因式。

4.利用配方法解一元二次方程时一般先把二次项系数___________然后_______再两边同时加上____________________________________.自主探究:用合适的方法解下列方程1.(x+1) 2 =9 2. y 2-6y=6 3. 3x2-1=4x 4. 3x2-5x=0填一填:(相信自己一定能填写得最好)①x2-3x+1=0 ②3x2-1=0 ③3t2+t=0④ x 2-4x=2 ⑤ 2x 2-x=0 ⑥ 5(m+2)2=8⑦ 3y 2-y-1=0 ⑧ 2x 2+4x-1=0 ⑨ (x-2)2=2(x-2)适合运用直接开平方法—————————————————— 适合运用因式分解法———————————————————— 适合运用公式法 ————————————————适合运用配方法 ————————————————————阅读材料,解答问题解方程(y²-1)² -3(y²-1)+2=0,我们将y²-1视为一个整体,解:设y²-1=a , 则 (y²-1)²=a²,a² - 3a+2=0, (1)a 1=1,a 2=2当a=1时,y² -1=1,y =±2 ,当a=2时,y²-1=2,y=±3所以y 1=2 ,y 2 =-2, y 3=3 , y 4=-3解答问题:1、在由原方程得到方程(1)的过程中,利用了 法达到了降次的目的,体现了 的数学思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程解法》复习课教案设计复习目标:
、能说出一元二次方程及其相关概念。

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

复习重难点:一元二次方程的解法
教学过程
一、情景导入
前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节课我们就一起来复习一元二次方程的解法(板书课题)
二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。


复习提纲
.-元二次方程的定义:只含有_______叫做一元二次方程。

2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b
是_______,c叫做_______项。

3.一元二次方程的解法:
用直接开平方法解方程(2x+1)2=9
形如x2=p的方程的根为________。

用配方法解方程x2+2x=3
用配方法解方程步骤:


,。

用求根公式法解方程x2-3x-5=0,x2-3x+5=0。

一元二次方程ax2+bx+c=0的根的判别式△=________,根x=。

当△>0时,方程有两个_______的实数根。

当△=0时,方程有两个_______的实数根。

当△<0时,_______。

三、展示归纳
、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。

2、教师发动全班学生进行评价,补充,完善。

3、教师画龙点睛的强调。

四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:可用直接开平方法;用配方法或公式法;可用公式法;方程都有共同的因式,故可用因式分解法。


、判断下列哪些方程是一元二次方程?
(1)4x2-16x+15=0
(2)2x2-3=0(3)ax2+bx+c=0
2、请将方程=1化为一般形式_______。

3、解下列方程:
2-9=0;
x2-2x=5;
x2-4x+2=0;
2(x-3)=3x(x-3)。

4、不解方程,判断下列方程根的情况。

(1)2x2-5x-3=0
(2)x2+6x+9=0
(3)x2-4x+5=0
五、课堂总结
请谈谈本节课的收获与困惑。

(学生自主小结归纳,将本章知识内化为自己的东西,并提高归纳小结的能力。


六、布置作业。

相关文档
最新文档