《电机与拖动》课程设计_小型单相变压器设计[文档在线提供][1].

合集下载

电机与拖动基础电子教案 第一篇变压器

电机与拖动基础电子教案 第一篇变压器

2、其他部件:除器身外,典型的油锓电力变压 器中还有油箱、变压器油、绝缘套管及继电保护 装置等部件。 二、变压器的分类: 变压器的种类很多,可按其用途、结构、相数、 冷却方式等不同来进行分类。 1、按用途分类,可分为电力变压器(主要用在输 配电系统中,又分为升压变压器、降压变压器、 联络变压器和厂用变压器)、仪用互感器(电压 互感器和电流互感器)、特种变压器(如调压变 压器、试验变压器、电炉变压器、整流变压器、 电焊变压器等)。
1、额定容量SN 额定容量是指额定运行时的视在功率。以 VA、kVA或MVA表示。由于变压器的效率很 高,通常一、二次侧的额定容量设计成相 等。 2、额定电压U2N和U2N 正常运行时规定加在一次侧的端电压称为 变压器一次侧的额定电压 U2N。二次侧的额 定电压U2N 是指变压器一次侧加额定电压时 二次侧的空载电压。额定电压以V或kV表示。 对三相变压器,额定电压是指线电压。 3、 额定电流I2N和I2N
2)磁通的正方向与产生它的电流的正方向符 合右手螺旋定则 3)感应电动势的正方向与产生它的磁通的正方 向符合右手螺旋定则 电压u1,u2的正方向表示电位降低,电动势e1,e2的正 方向表示电位升高。在原方, u1 由首端指向末端, 1从首端流入。当u1与1同时为正或同时为负时,表 示电功率从原方输入,称为电动机惯例。在副方, u2和2的正方向是由 e2的正方向决定的,即2沿e2的 正方向流出。当u2和2同时为正或同时为负时,电 功率从副方输出,称为发电机惯例。
3.正方向的规定: 从理论上讲,正方向可以任意选择,因各 物理量的变化规律是一定的,并不依正方 向的选择不同而改变。但正方向规定不同, 列出的电磁方程式和绘制的相量图也不同。 在电机方向的学科中通常按习惯方式规定 正方向,称为惯例。具体原则如下: 1)在负载支路,电流的正方向与电压降的 正方向一致,而在电源支路,电流的正方 向与电动势的正方向一致

《电机与拖动》变压器---单相变压器实验

《电机与拖动》变压器---单相变压器实验

《电机与拖动》变压器---单相变压器实验一、实验目的1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。

二、预习要点1.变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3.如何用实验方法测定变压器的铁耗及铜耗?三、实验项目1.空载实验测取空载特性U O=f(I O),P O=f(U O)。

2.短路实验测取短路特性U K=f(I K),P K=f(I)。

3.负载实验保持U1=U1N,cos =1的条件下,测取U2=f(I2)。

2四、实验设备及仪器1.交流电压表、电流表、功率、功率因数表(NMCL-001)2.三相可调电阻器900Ω(NMEL-03)3.旋转指示灯及开关板(NMEL-05B)4.单相变压器Array五、实验方法1.空载实验实验线路如图2-1。

图2-1 空载实验接线图实验时,变压器低压线圈2U1、2U2接电源,高压线圈1U1、1U2开路。

A、V1、V2分别为交流电流表、交流电压表。

其中用一只电压表,交替观察变压器的原、副边电压读数。

W为功率表,需注意电压线圈和电流线圈的同名端,避免接错线。

a.未上主电源前,将调压器旋钮逆时针方向旋转到底。

并合理选择各仪表量程。

变压器T U1N/U2N=220V/110V,I1N/I2N=0.4A/0.8A。

b.合上交流电源总开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=1.2U N。

c.然后,逐次降低电源电压,在1.2~0.5U N的范围内;测取变压器的U0、I0、P0,共取6~7组数据,记录于表2-1中。

其中U=U N的点必须测,并在该点附近测的点应密些。

为了计算变压器的变化,在U N以下测取原方电压的同时测取副方电压,填入表2-1中。

e.测量数据以后,断开三相电源,以便为下次实验作好准备。

表2-12.短路实验实验线路如图2-2。

电机与拖动课程设计报告

电机与拖动课程设计报告

电机与拖动课程设计报告电机与拖动课程设计报告一、引言电机与拖动课程是电气工程专业的一门重要课程,主要涉及电机的基本原理、结构和控制方法,以及电机在工程实际中的应用。

本次课程设计旨在通过模拟实验的方式,加深对电机与拖动的理论知识的理解,提高实践操作能力。

二、设计目标本次课程设计的目标是设计一个电机拖动系统,其中包括电机驱动电路的设计、传感器采集电路的设计和控制系统的设计。

主要实现以下功能:1. 实现电机的正、反转控制,可以通过开关或按键控制电机的运行方向。

2. 实现电机的调速控制,可以通过旋钮或模拟信号输入控制电机的转速。

3. 实现电机位置的闭环控制,可以通过编码器或位置传感器获取电机的位置反馈信号,并控制电机按照指定位置运行。

三、系统设计1. 电机驱动电路设计电机驱动电路采用H桥电路,可以实现电机的正、反转控制。

根据电机的额定电流和电源电压确定H桥电路的功率。

并根据电机的类型(直流电机还是交流电机)选择相应的调速控制方法。

2. 传感器采集电路设计传感器采集电路主要包括电机的转速传感器和位置传感器。

转速传感器可以采用光电编码器或霍尔传感器,用于测量电机的转速。

位置传感器可以采用位移传感器或光电编码器,用于测量电机的位置。

3. 控制系统设计控制系统采用微处理器或单片机作为核心控制器,实现对电机的控制。

根据输入的控制信号,经过处理后输出控制信号给电机驱动电路,实现电机的正、反转、调速和位置控制。

四、实验步骤1. 搭建电机驱动电路,连接电机和电源,测试电机的正、反转控制功能。

2. 设计传感器采集电路,将传感器连接到微处理器或单片机上,测试传感器的采集功能。

3. 设计控制系统,编写控制程序,实现电机的正、反转、调速和位置控制。

4. 进行系统调试和性能测试,验证设计的功能是否符合要求。

五、实验设备1. 直流电机或交流电机2. 电源3. H桥电路4. 光电编码器或霍尔传感器5. 位移传感器或光电编码器6. 微处理器或单片机七、总结通过本次课程设计,我对电机与拖动的原理和实际应用有了更深入的理解。

《电机与拖动》课程设计_小型单相变压器设计

《电机与拖动》课程设计_小型单相变压器设计

小型单相变压器设计小型单相变压器简介变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。

实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。

小型变压器指的是容量1000V.A 以下的变压器。

最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。

这类变压器在生活中的应用非常广泛。

一、 变压器的工作原理变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。

变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。

变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。

一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。

原绕组各量用下标1表示,副绕组各量用下标2表示。

原绕组匝数为1N ,副绕组匝数为2N 。

图(1)变压器结构示意图理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。

(1) 电压变换当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通φ。

(1-1)(1-2)(1-3)(1-4)说明只要改变原、副绕组的匝数比,就能按要求改变电压。

(2) 电流变换变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。

2211I U I U = 又(1-5)K II U U I 22121==∴(1-6)说明变压器在改变电压的同时,亦能改变电流。

小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。

二、 变压器的基本结构1、 铁心:铁心是变压器磁路部分。

课程设计 任务书1 《小型单相变压器设计》

课程设计 任务书1 《小型单相变压器设计》

题目:小型单相变压器设计
1.设计任务:
设计一个小型单相变压器,能够满足不同小型设备的电源要求。

小型变压器的一次侧/二次侧电压为220V/24V(或48V)。

2.设计要求:
1)根据变压器的基本原理,设计出变压器的基本结构
2)选定铁芯尺寸、绕组匝数以及导线规格
3)完成单相变压器的参数测定,并分析运行特性
4)撰写设计报告、总结以及心得
3.设计用设备和器件:
功率表、万用表、交流电流表、交流电压表
4.设计计划安排:
5.主要参考文献:
1)《电机与拖动》,戴文进编著,清华大学出版社,2008
2)《电机与拖动基础》,杨文焕编著,西安电子科技大学出版社,2008
3)《电机与拖动》,杨天明编著,中国林业出版社出版社,2008。

电机与变压器教 案2 (小型单相变压器的制作)

电机与变压器教 案2 (小型单相变压器的制作)

教案正页序号2教案附页2、小型变压器的设计四、课题所需的相(一)自耦变压器1、单相自耦变压器2、三相自耦变压器自压仅降压,只要入、输出对下,就变成压器。

入低压侧,这是很不安全的,所以低压侧应有防止过电压的保护措施。

2)如果在自耦变压器的输入端把相线和零线接反,虽然二次侧输出电压大小不变,仍可正常工作,但这时输出“零线”已经为“高电位”,是非常危险的。

(3). 自耦变压器输出功率S2=U2I2=U2(I+I1)=U2 I +U2I1=S’2+S’’2S’2为绕组之间电磁感应传递的能量,而S’’2为电路直接从一次侧传递的能量。

从U2I1= S’’2可导出:S’’2=S2/K通常,自耦变压器变比K=1.2~2的状态下,优点明显。

(二)仪用互感器1、电流互感器工作原理电流互感器结构上与普通双绕组变压器相似,也有铁心和一次侧、二次侧绕组,但它的一次侧绕组匝数很少,只有一匝到几匝,导线都很粗。

电流互感器的二次侧绕组匝数较多,它与电流表或功率表的电流线圈串联成为闭合电路,由于这些线圈的阻抗都很小,所以二次侧近似于短路状态。

由于二次侧近似于短路,所以互感器的一次侧的电压也几乎为零,因为主磁通正比于一次侧输入电压,总磁势为零。

2、电压互感器工作原理路中,流电流,被电压互感器的原理和普通降压变压器是完全一样的,不同的是它的变压比更准确;电压互感器的一次侧接有高电压,而二次侧接有电压表或其他仪表(如功率表、电能表等)的电压线圈。

因为这些负载的阻抗都很大,电压互感器近似运行在二次侧开路的空载状态, U2为二次侧电压表上的读数,只要乘变比K就是一次侧的高压电压值。

仪用互感器的结构和使用注意事项比较比较内容电流互感器电压互感器结构一次绕组匝数很少,只有一匝到几匝,导线都很粗,串联在被测的电路中; 二次绕组匝数较多,二次侧近似于短路状态。

运行中二次侧不得开路。

一次侧接有高电压,而二次侧近似开路状态,运行中,二次侧不能短路。

左右(即电弧上电压)。

电机及拖动基础课程设计

电机及拖动基础课程设计

电机及拖动基础课程设计一、教学目标本课程的教学目标是使学生掌握电机及拖动基础的基本概念、原理和应用,培养学生具备电机的设计、制造、维护和故障诊断的能力。

具体目标如下:1.知识目标:(1)了解电机的基本原理、结构和工作特点;(2)掌握电机的分类、性能和参数;(3)熟悉电机拖动系统的运行原理和控制方法;(4)了解电机及拖动技术在工程中的应用。

2.技能目标:(1)能够运用电机及拖动基础理论分析实际问题;(2)具备电机选型、安装和调试的基本技能;(3)掌握电机运行维护和故障诊断的方法。

3.情感态度价值观目标:(1)培养学生对电机及拖动技术的兴趣和热情;(2)增强学生的工程意识,提高创新能力和团队合作精神;(3)培养学生遵守纪律、严谨治学的学术态度。

二、教学内容本课程的教学内容主要包括电机的基本原理、结构和工作特点,电机的分类、性能和参数,电机拖动系统的运行原理和控制方法,以及电机及拖动技术在工程中的应用。

具体安排如下:1.电机的基本原理、结构和工作特点;2.电机的分类、性能和参数;3.电机拖动系统的运行原理和控制方法;4.电机及拖动技术在工程中的应用;5.电机的设计、制造、维护和故障诊断。

三、教学方法为了实现本课程的教学目标,我们将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握电机及拖动基础的基本概念、原理和应用;2.讨论法:引导学生分组讨论,提高学生分析问题和解决问题的能力;3.案例分析法:分析实际案例,使学生了解电机及拖动技术在工程中的应用;4.实验法:进行电机实验,培养学生的动手能力和实践能力。

四、教学资源为了支持本课程的教学内容和教学方法,我们将准备以下教学资源:1.教材:选用权威、实用的教材,如《电机及拖动基础》等;2.参考书:提供相关领域的参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的课件、视频等多媒体资料,提高学生的学习兴趣;4.实验设备:配备齐全的实验设备,为学生提供动手实践的机会。

电机与拖动课程设计

电机与拖动课程设计

电机与拖动课程设计背景本篇文档将介绍一个针对电机和拖动的课程设计,旨在通过理论与实践相结合的方式,帮助学生加深对于电机和拖动系统的理解,以及培养其解决问题的能力。

目标通过本次课程设计,学生将能够:1.掌握电机的基础知识,包括工作原理、类型、参数等;2.熟悉拖动系统的组成和原理;3.锻炼学生应用所学知识解决问题的能力;4.提高学生的实验设计和实验技能。

设计内容电机理论部分1.介绍电机的分类和工作原理;2.详细介绍直流电机和交流电机的特点和差异;3.解析电机参数,如电压、电流、功率、效率等;4.简述电机的控制方法,如调速和保护策略。

拖动部分1.介绍拖动的基本组成结构;2.分析各种拖动系统的构成和工作原理;3.讲解拖动系统的性能参数和变量;4.简述拖动系统的控制方法,如速度和力矩控制。

实验设计部分在理论学习的基础上,设计以下实验,让学生通过实践了解并理解所学知识:1.用万用表测试直流电机的电压、电流和转速,进而得出电机的性能参数;2.测试不同直流电压对直流电机的转速的影响;3.构建一个简单的拖动系统,测量系统的性能参数,如速度、功率、效率等;4.让学生自己设计一个拖动系统,测量系统的性能参数,运用所学知识进行调节和控制。

教学方法本课程设计既有理论学习,也有实验操作。

在理论部分,推荐使用PPT,讲解电机和拖动系统的基础知识,让学生熟悉系统的组成和工作原理。

在实验操作中,老师可以带领学生完成实验设计和操作,提高学生的实验技能。

考核方式本课程设计是一个综合性的项目,考核方式主要包括以下环节:1.课堂参与和出席率(10%);2.实验报告(20%),要求学生在报告中详细说明实验的目的、方法、结果和分析;3.仿真设计报告(30%),要求学生自己设计一个拖动系统,并利用仿真软件进行仿真设计和模拟;4.大作业(40%),要求学生在实验室或者工厂的场景中,自主设计控制电机和拖动系统的方案,并实现控制效果。

总结本次课程设计旨在帮助学生加深对于电机和拖动系统的理解,培养其应用所学知识解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小型单相变压器设计小型单相变压器简介变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。

实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。

小型变压器指的是容量1000V.A 以下的变压器。

最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。

这类变压器在生活中的应用非常广泛。

一、 变压器的工作原理变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。

变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。

变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。

一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。

原绕组各量用下标1表示,副绕组各量用下标2表示。

原绕组匝数为1N ,副绕组匝数为2N 。

图(1)变压器结构示意图理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。

(1) 电压变换当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通φ。

(1-1)(1-2)()(1-3)(1-4)说明只要改变原、副绕组的匝数比,就能按要求改变电压。

(2) 电流变换变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。

2211I U I U = 又 (1-5)K II U U I 22121==∴ (1-6)说明变压器在改变电压的同时,亦能改变电流。

小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。

二、 变压器的基本结构1、 铁心:铁心是变压器磁路部分。

为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅量较高的、厚度为0.35或0.5mm 、表面 涂有绝漆的热轧或冷轧硅钢片叠装而成。

铁心分为铁柱和铁轭两部分,铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。

铁心结构有两种基本形式:心式和壳式。

2、 绕组:绕组是变压器的电路部分。

一般采用绝缘纸包的铝线或铜线绕成。

为了节省铜材,我国变压器线圈大部分是采用铝线。

图(2)3、 其它结构部件:储油柜、气体继电器、油箱。

图(3)单相心式变压器1—铁柱;2—铁轭;3—高压线圈;4—低压线圈三、 设计内容计算内容有四部分:额定容量的确定;铁心尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁心尺寸的最后确定。

1、 额定容量的确定变压器的容量又称表现功率和视在功率,是指变压器二次侧输出的功率,通常用KVA 表示。

(1) 二次侧总容量小容量单相变压器二次侧为多绕组时,若不计算各个绕组的等效的阻抗及其负载阻抗的幅角的差别,可认为输出总视在功率为二次侧各绕组输出视在功率之代数和,即I U IU I U S nn +++= (3)3222(3-1)式中 S 2——二次侧总容量(V ·A )U 2,U3,……U n ——二次侧各个绕组电压的有效值(V );I 2,I3,……I n —— 二次侧各个绕组的负载电流有效值(A )。

(2) 一次绕组的容量对于小容量变压器来说,我们不能就认为一次绕组的容量等于二次绕组的总容量,因为考虑到变压器中有损耗,所以一次绕组的容量应该为S 1=η2S (单位为V ·A ) (3-2)式中 S 1——变压器的额定容量;η——变压器的效率,约为0.8~0.9,表3-1 所给的数据是生产时间的统计数据,可供计算时初步选用。

(3) 变压器的额定容量由于本次设计为小型单相变压器,所以不考虑在三相变压器中的情况,只考虑在小型单相变压器的情况。

小型单相变压器的额定容量取一、二绕组容量的平均值,S=21*(S 1+S 2)(单位为V·A ) (3-3)(4) 一次电流的确定11)2.1~1.1(U SI = (3-4)式中(1.1~1.2)考虑励磁电流的经验系数,对容量很小的变压器应取大的系数。

2、 铁心尺寸的选定(1) 计算铁心截面积A为了减小铁损耗,变压器的铁心是用彼此绝缘的硅钢片叠成或非晶材料制成。

其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,变压器铁心在叠装时相临两层硅钢片的接缝要相互错开。

小容量变压器铁心形式多采用壳式,中间心柱上套放绕组,铁心的几何尺寸如图(4)所示。

图(4)小容量心柱截面积A大小与其视在功率有关,一般用下列经验公式计算(单位为㎝2)。

=SA K0(3-5)A——铁心柱的净面积,单位为cm2K0——截面计算系数,与变压器额定容量S n有关,按表3-2选取,当采用优质冷轧K0可取小些截面积计算系数K0硅钢片时K0的估算值表3-2截面积计算系数K c==A'abab(3-6)式中a——心柱的宽度(mm);b——心柱的净叠厚(mm);'b——心柱的实际厚度(mm);K c——叠片系数,是考虑到铁心叠片间的绝缘所占空间引起铁心面积的减小K c=0.93;对于0.35mm厚两面所引入的。

对于0.5mm厚,两面涂漆绝缘的热轧硅钢片,K c =0.91;对于0.35mm厚,不涂漆的冷轧钢片,K c=0.95。

涂漆绝缘的热轧硅钢片,按A的值,确定a和b的大小,答案是很多的,一般取b=(1.2~2.0)a,,并尽可能选用通用的硅钢片尺寸。

表3-3列出了通用的小型变压器硅钢片尺寸。

(1) 计算每伏电压应绕的匝数从变压器的电势公式E=4.44fNB m A,若频率f=50Hz,可得出每伏所需的匝数AA f E NB B N m m 380105.444.410⨯=== (3-7)式中0N ——对应于每伏电压的匝数,单位:匝/VB m ——铁心柱内工作磁密最大值,单位:T A ——铁心柱截面积,单位:cm 2当铁心材料国热轧硅钢片时,取B m =1.0~1.2T ;采用冷轧硅钢片时,可取B m =1.2~1.5T 然后根据N 和各线圈额定电压求出各线圈的匝数U N N 11= (3-8)202)10.1~05.1(U N N = (3-9)U N N303)10.1~05.1(= (3-10)式中N 1、N 2 ……N n ——各线圈的匝数。

为补偿负载时漏阻抗压降,副边各线圈的匝数均增加了5%~10%。

(2) 计算导线直径d小型变压器的线圈多采用漆包圆铜线(QZ 型或QQ 型)绕制。

为限制铜损耗及发热,按各个绕组的负载电流,选择导线截面,如选的小,则电流密度大,可节省材料,但铜耗增加,温升增高。

小容量变压器是自然冷却的干式变压器,容许电流密度较低,根据实践经验,通过导线的电流密度J 不能过大,对于一般的空气自然冷却工作条件,J=2—3A/mm 2。

对于连续工作时可取J=2.5A/mm 2导线的截面积:A c =I/j.导线的直径:mm j Ij I d 13.14==π导线直径可根据工作电流计算 ,式中: d —原、副边各线圈导线直径,单位:mm ;I —原、副边各线圈中的工作电流,单位:A ;根据算出的直径查电工手册或表3-4选取相近的标准线径。

当线圈电流大于10A 时,可采用多根导线并联或选用扁铜线。

绕组的匝数和导线的直径确定后,可作绕组排列。

绕组每层匝数为')]4~2([9.0d h N c -=(3-11)式中 d '—绝缘导线外径(mm );h ——铁心窗高(mm );0.9——考虑绕组框架两端厚度的系数; (2~4)——考虑裕度系数。

各绕组所需层数为c Nm N =(3-12)各绕组厚度为()i i i i t m d δγ'=++ (3-13)i=1,2,…,n式中 σ——层间绝缘厚度(mm ),导线较细(0.2mm 以下),用一层厚度为0.02~0.04mm 白玻璃纸,导线较粗(0.2mm 以上),用一层厚度为0.05~0.07mm 的电缆纸(或牛皮纸),更粗的导线,可用厚度为0.12mm 的青壳纸;γ——绕组间的绝缘厚度(mm ),当电压不超过500V 时,可用2~3层电缆纸夹1~2层黄蜡布等。

绕组总厚度为)2.1~1.1()...(210⨯++++=t t t t n t (3-14)式中 t 0——绕组框架的厚度(mm );1.1~1.2——考虑裕度的系数。

计算所得的绕组总厚度t 必须略小于铁心窗口宽度c ,若t>c,可加大铁心叠装厚度,减小绕组匝数或重选硅钢片的尺寸,按上述步骤重复计算和核算,至合适时为止。

四、 实例计算如上图所示,取V U 2201= V U 3002= V U 503= A I 2.02= A I 1.03= 计算变压器的主要参数,并选择可行的材料。

解:1、计算变压器的额定容量S N1)计算副边的容量:S 2=U 2 I 2 + U 3 I 3=300*0.2+50*0.1=65(V·A )2)计算原边的容量:21S S =/η根据表1:小型单相变压器的效率η的估算值可以取η=0.82 因此,21S S =/η=65/0.82=79.3(V·A )3)计算变压器的额定容量N S =1/2(21S S +)=0.5*(65+79.3)=72.2(V·A ) 考虑到存在着一定的损耗,故可以定变压器的额定容量近似取75V·A 2、 铁心尺寸的选定1)计算铁心截面积AA =κ0N S根据表2. 截面积计算系数K0的估算值可以取K0=1.40因此,A =κ0N S(cm2) 2)铁心中柱宽度a 与铁心叠厚b 的计算根据表3.参数a 、b 的选取可以近似取a=28mm 因此,b=110F/a=110*12.1/28=47.5 mm.此时b/a=47.5/28=1.7满足b=(1.2~2)a 的通常要求。

3、计算绕组线圈匝数1)求出每伏电压应绕的匝数mm AB A fB E N N 45000044.41030====3.4(匝/V ) 式中的m B =1.1T (铁心材料国热轧硅钢片)2) 根据0N 和各线圈额定电压求出各线圈的匝数 1N =0N U1=3.4*220=7482N =(1.05~1.10)0N U 2=1.10*3.4*300=11223N =(1.05~1.10)0N U 3=1.10*3.4*50=187 4、计算导线直径d导线的截面积:Ac=I/j.11)2.1~1.1(U SI = =1.15*79.3/220=0.415(A)Ac1=0.415/2.5=0.17 mm 21d ==同理:Ac2=0.08 mm 2 2d =0.32 mmAc3=0.04 mm 2 3d =0.23 mm根据所求解的数据:可以取原边的材料为高强度聚酯包线QZ0.06副边的材料为高强度聚酯包线QZ0.05五、结论在本次的课程设计也是以《电机与拖动》我们的教材为主线,我们基本能按照设计任务书、指导书、技术条件的要求进行。

相关文档
最新文档