血液流变学PPT精品课程课件讲义
合集下载
《血液流变学》PPT课件

•1. 为疾病的早期诊断提供帮助 •2. 为疾病的治疗、预防提供新的途径 •3. 对药物学研究具有重要意义 •4. 有助于了解疾病发生和发展机制
上一页 下一页 返 1回4
第二节 血液流变学常见参数测 定
• 一、血液粘度测定 • 二、红细胞变形性测定 • 三、红细胞聚集性测定
15
血液流变学常见参数
上一页 下一页 返 2回0
一、血液粘度测定
•(一)全血粘度测定 •【影响因素】 • 2.外在因素 • 温度 • 渗透压 • pH值 • 输液
上一页 下一页 返 2回1
一、血液粘度测定
• (二)血浆粘度测定 • 【基本结构】 • 已知尺寸的毛细管 • 加热装置 • 控温装置 • 测量电极 • 显示装置
4.53±0.46 9.31±1.48 1.76±0.04
4.22±0.41 8.37±1.22 1.78±0.06
上一页 下一页 返 2回6
(三)血液粘度测定理因素 ② 多个因素改变引起的全血粘度增高 ③ 血浆蛋白异常所致的血液粘度增高 ④ Hct增高所致血液粘度增高 ⑤ 红细胞异常所致的血液粘度增高
• 全血粘度 • 血浆粘度 • 血细胞比容 • 红细胞变形性 • 红细胞聚集性及其有关参数 • 血小板粘附率及聚集率
上一页 下一页 返 1回6
一、血液粘度测定
•(一)全血粘度测定 • 设备 旋转式粘度计 • 【原理】 • 当平板以一定的速度旋转时,由于血液的粘 滞性,与圆锥相连的弹簧则产生一个复原扭矩, 血液粘度的大小与复原扭矩呈正相关,复原扭矩 通过一个测力传感器检测并经计算机处理后,将 表观粘度值显示在仪器的屏幕上。
• 研究血液及其有形成分流动与形变规 律的学科称为血液流变学
上一页 下一页 返 回4
上一页 下一页 返 1回4
第二节 血液流变学常见参数测 定
• 一、血液粘度测定 • 二、红细胞变形性测定 • 三、红细胞聚集性测定
15
血液流变学常见参数
上一页 下一页 返 2回0
一、血液粘度测定
•(一)全血粘度测定 •【影响因素】 • 2.外在因素 • 温度 • 渗透压 • pH值 • 输液
上一页 下一页 返 2回1
一、血液粘度测定
• (二)血浆粘度测定 • 【基本结构】 • 已知尺寸的毛细管 • 加热装置 • 控温装置 • 测量电极 • 显示装置
4.53±0.46 9.31±1.48 1.76±0.04
4.22±0.41 8.37±1.22 1.78±0.06
上一页 下一页 返 2回6
(三)血液粘度测定理因素 ② 多个因素改变引起的全血粘度增高 ③ 血浆蛋白异常所致的血液粘度增高 ④ Hct增高所致血液粘度增高 ⑤ 红细胞异常所致的血液粘度增高
• 全血粘度 • 血浆粘度 • 血细胞比容 • 红细胞变形性 • 红细胞聚集性及其有关参数 • 血小板粘附率及聚集率
上一页 下一页 返 1回6
一、血液粘度测定
•(一)全血粘度测定 • 设备 旋转式粘度计 • 【原理】 • 当平板以一定的速度旋转时,由于血液的粘 滞性,与圆锥相连的弹簧则产生一个复原扭矩, 血液粘度的大小与复原扭矩呈正相关,复原扭矩 通过一个测力传感器检测并经计算机处理后,将 表观粘度值显示在仪器的屏幕上。
• 研究血液及其有形成分流动与形变规 律的学科称为血液流变学
上一页 下一页 返 回4
血液流变学PPT课件

二、血液的流变学特性:
红细胞的聚集性:在血液静止或切变率很低 时,红细胞会聚集成网络状空间结构,导致 血液具有屈服应力。红细胞具有能形成聚集 体的性质称为红细胞的聚集性。红细胞的聚 集性是血液非牛顿流变性的主要原因。红细 胞聚集体的形成和解聚主要取决于血浆蛋白 、剪应力和红细胞表面电荷三个因素。
二、血液的流变学特性:
1.血液在血管中的流动形式
血液在血管中的运动是一种表现为中央流速快, 周边流速慢的"套管式"流动。
"套管式"流动实际上是一种分层运动,又称层流
血液在血管中是一层一层流动的,靠近 中央的液体层流速快,靠近周边的液体层流 速慢。这样就在快慢两层液体之间形成了流 速差,快的一层给慢的一层以拉力;而慢的 一层给快的一层以阻力。 因而在流速不同 的两液层的接触面上产生了摩擦,称内摩擦 力
二、血液的流变学特性:
引起血小板的聚集有两大因素:一是剪切作用可诱 导血小板聚集;二是许多物质可诱导血小板聚集, 如二磷酸腺苷,在高剪切力作用下,红细胞会发生 破裂,会释放出二磷酸腺苷,促进血小板黏附和聚 集。 血小板黏附性:血小板黏附于异物、血管内皮损伤 处或粗糙表面的现象,称为血小板黏附。血小板的 这种特性称血小板的黏附性。当血管损伤后,流经 此处的血小板被血管内皮下组织激活,黏附于暴露 出来的胶原纤维上,形成一个附壁栓子,起到止血 作用。
血管临界半径不是固定不变的,受红
细胞变形性和聚集性的影响。在病理情况下,
红细胞变形性降低或聚集性增高,均可导致
临界半径显著增大,甚至高达正常的几十倍。
此时,由于多数微血管内血液黏度急骤增高,
必将导致微循环的严重障碍。
二、血液的流变学特性:
4.红细胞变形性 红细胞变形性是指红细胞在流动过程中的变形
血液的流变性医学PPT

血液的流变性
血液的流变特性
一、速度梯度与剪变率
(一)速度梯度
1.概念:在流体中某处, 速度正在其垂直方向 上的变化率称为该处 的速度梯度。
如果在X方向的微小距离 △X上,流速增量为 △V,则速度梯度为 △V /△X。 单位:s-1(1/秒)
微分学中
lim v dv x0 x dx
2.物理意义 描述速度随空间变化程度的 物理量。空间某点附近流速不 同,该处就存在速度梯度。
粘弹性流体从管内自由流出时,通常可以看 到射流膨胀现象,这种现象称为挤出物膨胀(如 图)。例如,聚苯乙烯在175~200℃条件下 较快挤出时,直径膨胀达2.8倍。以上现象都是 由于粘弹性流体受剪切时产生法向应力差的结 果。
(二)粘弹体的特点
(1).应力松弛:当粘
应变
弹体突然发生应变时,
若保持应变恒定,则应
生物流体具有粘弹性的原因:
细胞膜中磷脂分子的排列
蛋白质分子图像
水有粘性也是因为水分子是链状的
“隔年陈水有毒,隔夜陈水莫喝。”科学研究 证明,水分子是链状结构,水在漫长岁月中, 如不经常流动,这种链状结构会不断扩大延伸, 即成衰老之水。衰老之水,活力极差,进入动 植物体内,会使细胞的新陈代谢减缓,影响生 长发育。古人说:“流水不腐。”死水、陈水 中尘埃会增多,细菌增加,有害成分比例上升, 极易致病。
r0
v
各层的流速呈抛物线分布。
r
流体要流动,必须有外力抵消内 摩擦力,即管子两端L存在压强差 (⊿p)。
Q r04 p 8l
泊肃叶流动 的速度分布
适用条件:牛顿流体,流体作定常流动,均匀的水平圆管。
泊肃叶定律应用 它是设计竖直毛细粘度计 的理论依据。
Q r04 p 8l
血液的流变特性
一、速度梯度与剪变率
(一)速度梯度
1.概念:在流体中某处, 速度正在其垂直方向 上的变化率称为该处 的速度梯度。
如果在X方向的微小距离 △X上,流速增量为 △V,则速度梯度为 △V /△X。 单位:s-1(1/秒)
微分学中
lim v dv x0 x dx
2.物理意义 描述速度随空间变化程度的 物理量。空间某点附近流速不 同,该处就存在速度梯度。
粘弹性流体从管内自由流出时,通常可以看 到射流膨胀现象,这种现象称为挤出物膨胀(如 图)。例如,聚苯乙烯在175~200℃条件下 较快挤出时,直径膨胀达2.8倍。以上现象都是 由于粘弹性流体受剪切时产生法向应力差的结 果。
(二)粘弹体的特点
(1).应力松弛:当粘
应变
弹体突然发生应变时,
若保持应变恒定,则应
生物流体具有粘弹性的原因:
细胞膜中磷脂分子的排列
蛋白质分子图像
水有粘性也是因为水分子是链状的
“隔年陈水有毒,隔夜陈水莫喝。”科学研究 证明,水分子是链状结构,水在漫长岁月中, 如不经常流动,这种链状结构会不断扩大延伸, 即成衰老之水。衰老之水,活力极差,进入动 植物体内,会使细胞的新陈代谢减缓,影响生 长发育。古人说:“流水不腐。”死水、陈水 中尘埃会增多,细菌增加,有害成分比例上升, 极易致病。
r0
v
各层的流速呈抛物线分布。
r
流体要流动,必须有外力抵消内 摩擦力,即管子两端L存在压强差 (⊿p)。
Q r04 p 8l
泊肃叶流动 的速度分布
适用条件:牛顿流体,流体作定常流动,均匀的水平圆管。
泊肃叶定律应用 它是设计竖直毛细粘度计 的理论依据。
Q r04 p 8l
血流变与血流动力学 PPT课件

2、粘性 特点:给力——变形;撤力——继续变形
物理量度:粘度
牛顿流体(血浆、血清、水) 非牛顿流体(血液)
F/A r F/A x
con
τ ηa con γ
γ˙
dx dr
tgφ=1/η
dv dr
φ
25
τ
第二章 生物体的粘弹性
3.牛顿型流体与非牛顿型流体
G
F/A 应力 应变
张应变 dl/l
切应变 dx/dr
G为材料的切变模量 特点:给力——变形;撤力——恢复
22
第二章 生物体的粘弹性
几乎所有的生物体都是粘弹性体 §1 粘弹性的力学特征 1、弹性——胡克定律
单位面积作用力 =物体力学性质 相对形变(效果)
23
第二章 生物体的粘弹性
几乎所有的生物体都是粘弹性体 §1 粘弹性的力学特征
12
血液流变学检测指标分类 及相互关系
血液流变学指标是相应的血液流变性的数值表达 目前开发的血液流变学指标很多,可归纳为五类
浓稠性、粘滞性、聚集性、凝固性、红细胞刚性 反映 浓、 粘、 聚、 凝、 刚 五方面性质
3、聚集性指标:主要反映血细胞间聚集的难易程度。包括RBC的聚集指 数,电泳率,血沉,血沉方程K值,血小板粘附率,聚集率,最大聚集率 有效解聚率,WBC聚集率、黏附率,血液触变性指标等。 此类型疾病:缺血性脑中风;冠心病;心肌梗塞;血栓闭塞性脉管炎 糖尿病;重症肺炎;雷诺氏病;妊娠;脂肪肝等。
1970
1980
1990
2000
血液流变学分类
1 2 3
宏观血液流变学 微观血液流变学 临床血液流变学
5
1.宏观血液流变学
物理量度:粘度
牛顿流体(血浆、血清、水) 非牛顿流体(血液)
F/A r F/A x
con
τ ηa con γ
γ˙
dx dr
tgφ=1/η
dv dr
φ
25
τ
第二章 生物体的粘弹性
3.牛顿型流体与非牛顿型流体
G
F/A 应力 应变
张应变 dl/l
切应变 dx/dr
G为材料的切变模量 特点:给力——变形;撤力——恢复
22
第二章 生物体的粘弹性
几乎所有的生物体都是粘弹性体 §1 粘弹性的力学特征 1、弹性——胡克定律
单位面积作用力 =物体力学性质 相对形变(效果)
23
第二章 生物体的粘弹性
几乎所有的生物体都是粘弹性体 §1 粘弹性的力学特征
12
血液流变学检测指标分类 及相互关系
血液流变学指标是相应的血液流变性的数值表达 目前开发的血液流变学指标很多,可归纳为五类
浓稠性、粘滞性、聚集性、凝固性、红细胞刚性 反映 浓、 粘、 聚、 凝、 刚 五方面性质
3、聚集性指标:主要反映血细胞间聚集的难易程度。包括RBC的聚集指 数,电泳率,血沉,血沉方程K值,血小板粘附率,聚集率,最大聚集率 有效解聚率,WBC聚集率、黏附率,血液触变性指标等。 此类型疾病:缺血性脑中风;冠心病;心肌梗塞;血栓闭塞性脉管炎 糖尿病;重症肺炎;雷诺氏病;妊娠;脂肪肝等。
1970
1980
1990
2000
血液流变学分类
1 2 3
宏观血液流变学 微观血液流变学 临床血液流变学
5
1.宏观血液流变学
血液流变学课件

发展
近年来,随着生物医学工程和分子生物学技术的进步,血液流变学的研究领域不断拓展,涉及的疾病范围和应用领域也在不断扩大。未来,血液流变学将与更多学科交叉融合,为医学研究和临床应用提供更深入的理论和技术支持。
血液流变学的研究历史与发展
02
CHAPTER
血液流变学基础知识
血液由血浆和血细胞组成,其中血浆约占血液总量的55%,血细胞约占45%。血浆中含有多种蛋白质、无机盐、营养物质等,而血细胞则包括红细胞、白细胞和血小板。
通过制定相关标准和指南,促进血液流变学在临床实践中的规范化和普及推广。
临床转化与普及推广
THANKS
感谢您的观看。
要点一
要点二
详细描述
血液流变学通过研究血液的流动性、粘滞性和变形性,帮助医生了解心血管系统的功能状态,对于冠心病、高血压、心肌梗死等心血管疾病的诊断具有指导意义。同时,通过改善血液流变学指标,可以降低心血管疾病的发生风险。
心血管疾病
总结词
血液流变学在脑血管疾病的诊断和预防中具有指导意义。
详细描述
血液流变学指标的异常与脑血管疾病的发生和发展密切相关,如脑血栓、脑栓塞等。通过监测和改善血液流变学指标,有助于预防脑血管疾病的发生和复发。
预防性治疗
03
对于有高危因素的人群,如高血压、糖尿病等,应采取预防性治疗措施,如药物治疗、生活方式的调整等,以降低心脑血管疾病的发生风险。
定期检测与预防性治疗
个体化评估与干预措施
个体化评估
根据个体的年龄、性别、家族史、生活习惯等因素,对个体进行全面的评估,了解其疾病风险和血液循环状况。
制定个体化干预措施
定义与特性
特性
定义
血液流变学异常可以作为某些疾病的诊断指标,如血栓形成、动脉粥样硬化、高血压等。
近年来,随着生物医学工程和分子生物学技术的进步,血液流变学的研究领域不断拓展,涉及的疾病范围和应用领域也在不断扩大。未来,血液流变学将与更多学科交叉融合,为医学研究和临床应用提供更深入的理论和技术支持。
血液流变学的研究历史与发展
02
CHAPTER
血液流变学基础知识
血液由血浆和血细胞组成,其中血浆约占血液总量的55%,血细胞约占45%。血浆中含有多种蛋白质、无机盐、营养物质等,而血细胞则包括红细胞、白细胞和血小板。
通过制定相关标准和指南,促进血液流变学在临床实践中的规范化和普及推广。
临床转化与普及推广
THANKS
感谢您的观看。
要点一
要点二
详细描述
血液流变学通过研究血液的流动性、粘滞性和变形性,帮助医生了解心血管系统的功能状态,对于冠心病、高血压、心肌梗死等心血管疾病的诊断具有指导意义。同时,通过改善血液流变学指标,可以降低心血管疾病的发生风险。
心血管疾病
总结词
血液流变学在脑血管疾病的诊断和预防中具有指导意义。
详细描述
血液流变学指标的异常与脑血管疾病的发生和发展密切相关,如脑血栓、脑栓塞等。通过监测和改善血液流变学指标,有助于预防脑血管疾病的发生和复发。
预防性治疗
03
对于有高危因素的人群,如高血压、糖尿病等,应采取预防性治疗措施,如药物治疗、生活方式的调整等,以降低心脑血管疾病的发生风险。
定期检测与预防性治疗
个体化评估与干预措施
个体化评估
根据个体的年龄、性别、家族史、生活习惯等因素,对个体进行全面的评估,了解其疾病风险和血液循环状况。
制定个体化干预措施
定义与特性
特性
定义
血液流变学异常可以作为某些疾病的诊断指标,如血栓形成、动脉粥样硬化、高血压等。
临床(血流变)PPT演示课件

锥板流变仪特性
由于间隙高度与半径成正比, 速度也与半径成正比,而切变 率为速度与高度之比,从而使 切变率与半径无关,处处相等, 使得对应于确定的转速就得到 确定的切变率。该仪器能在确 定的切变率下测量各种液体粘 度,故既适用于牛顿流体,更 适用于测量特定切变率下非牛 顿流体的表观粘度。
h
q
V. = r ω h = r tan q
反映血液粘滞的指标:全血粘度,血浆粘度,还 原粘度
反映血液聚集的指标:全血低切变率粘度,血沉, 血小板聚集率
反映血液凝固的指标:纤维蛋白原,血小板粘附率
三、血液流变学的临床应用
高粘度血症和血液高粘滞综合症 血液流变学疾病的新概念 血液高粘滞综合症的几种常见病 血液流变学异常的纠正
(2)、挤压式蠕动泵不会产生管路变形拉长,进样量准确。
7、血液流变试验前常规质控要求
(1)、样品采集:清晨空腹安静状态下,肘前静脉采血,尽量 缩短压脉带的压迫时间,针头刺入血管后,松开压脉带 后至少5秒以上才能抽取血液。最好用7号以上针头,避 免用力快速抽血。
(2)、样品抗凝:测量粘度的血液抗凝剂通常采用肝素。其浓
3、血流变仪的切变率测试范围对质量控制的重要性
在保证测量精确度和重复性的前提下,应采用全量程 逐点测量方式。
a、根据国际血流变学标准化委员会建议:
血流变学的全血测量应参考切变率200s-1∽1s-1的粘度的 变化, 即:全量程测量。因为高切变率200s-1和低切变 率 1s-1时的粘度能充分反映出红细胞的变形性和聚集性 以及非牛顿流体—全血的非线性。否则,对临床的应用 价值就非常局限。
.
.
.
5
..
.
.
. ..
..
血液流变学检验ppt课件

• 单位面积上的切变力称为切变应力,简 称切应力,用τ表示,单位为毫帕 〔mPa〕。
• 轴流:血液在血管流动时,血液中的 有构成分如红细胞等有向血管轴线集 中的倾向。
• 在实践的血液流动中,血细胞处于血 管的中央,其周围是血浆层,这样构 成两个相即流速较快的中央相和流速 较慢的边缘相。二者合称两相系统 (Two phase system),这种流动方式 具有重要的生理意义(压迫、 分枝)。
•
女性1.73~1.85(mPa·s)。
• 3.血清粘度:男性1.61~1.69(mPa·s);
•
女性1.63~1.71(mPa·s)。
• 4.血清比粘度:男性1.62~1.70(mPa·s);
• [临床意义] 一切引起血浆(血清)蛋白质异常增高的
疾病均可导致血浆(血清)粘度升高,如巨 球蛋白血症、多发性骨髓瘤、纤维蛋白原 增多症、某些结缔组织性疾病;此外,冠 心病、急性缺血性中风、血管闭塞性脉管 炎、慢性肺气肿、肝脏疾病、糖尿病及精 神分裂症等也可见血浆〔血清〕粘度升高。
〔四〕红细胞变形性和聚集性
• 1、红细胞变形性 是指红细胞在流动过 程中的变形才干。
• 变形的大小和取向的一致性随切变率的 添加而添加→血流阻力↓→全血黏度↓
• 是决议血液黏度的重要要素之一,也是 决议本身寿命的重要要素。
• 变形↓——→表观黏度↑
难经过血-脑屏障
变形↓
→寿命↓
易被脾破坏
影响红细胞变形性的要素:
5、血液流变学:血液及其有构成分 的流动与形变规律的学科
血液流变学检验主要包括:
宏观:全血黏度、血浆黏度 微观:红细胞:变形性、聚集性
血小板:黏附性、聚集性 白细胞流变性 分子:红细胞膜的构造特性
• 轴流:血液在血管流动时,血液中的 有构成分如红细胞等有向血管轴线集 中的倾向。
• 在实践的血液流动中,血细胞处于血 管的中央,其周围是血浆层,这样构 成两个相即流速较快的中央相和流速 较慢的边缘相。二者合称两相系统 (Two phase system),这种流动方式 具有重要的生理意义(压迫、 分枝)。
•
女性1.73~1.85(mPa·s)。
• 3.血清粘度:男性1.61~1.69(mPa·s);
•
女性1.63~1.71(mPa·s)。
• 4.血清比粘度:男性1.62~1.70(mPa·s);
• [临床意义] 一切引起血浆(血清)蛋白质异常增高的
疾病均可导致血浆(血清)粘度升高,如巨 球蛋白血症、多发性骨髓瘤、纤维蛋白原 增多症、某些结缔组织性疾病;此外,冠 心病、急性缺血性中风、血管闭塞性脉管 炎、慢性肺气肿、肝脏疾病、糖尿病及精 神分裂症等也可见血浆〔血清〕粘度升高。
〔四〕红细胞变形性和聚集性
• 1、红细胞变形性 是指红细胞在流动过 程中的变形才干。
• 变形的大小和取向的一致性随切变率的 添加而添加→血流阻力↓→全血黏度↓
• 是决议血液黏度的重要要素之一,也是 决议本身寿命的重要要素。
• 变形↓——→表观黏度↑
难经过血-脑屏障
变形↓
→寿命↓
易被脾破坏
影响红细胞变形性的要素:
5、血液流变学:血液及其有构成分 的流动与形变规律的学科
血液流变学检验主要包括:
宏观:全血黏度、血浆黏度 微观:红细胞:变形性、聚集性
血小板:黏附性、聚集性 白细胞流变性 分子:红细胞膜的构造特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1930年,Binhan首先提出流变的概念,即在应力的作用下,物体可
产生流动与变形。
1951年,提出研究血液及其有形成分的流动性与形变规律的流
变叫血液流变学(hemorheology)。
目前研究全血在各切变率下的表现粘度称为宏观流变学,而研究血液有形
成分的流变学特性,如红细胞的变形、聚集、表面电荷等,称为血细胞流变 学(cellular hemorheology)。近年来,发展到从分子水平研究血液成分的流变特 性,如红细胞膜中骨架蛋白、膜磷脂对红细胞流变性的影响,血浆分子成分 对血浆粘度的影响等,这些属于分子血液流变学(molecullar hemorheology)。
于高分子熔体或浓溶液,其值大得多,甚至可超过10。一般来说,
模片胀大率是流动速率与毛细管长度的函数。模片胀大现象,在 口模设计中十分重要。聚合物熔体从一根矩形截面的管口流出时, 管截面长边处的胀大,比短边处的胀大更加显著。尤其在管截面
的长边中央胀得最大。因此,如果要求生产出的产品的截面是矩
形的,口模的形状就不能是矩形,而必须是四边中间都凹进去的 形状。
都不要,将装满该液体的烧杯微倾,使液体流下,该过程一
旦开始,就不会中止,直到杯中液体都流光。这种无管虹吸 的特性,是合成纤维具备可纺性的基础。
湍流减阻
非牛顿流体显示出的另一奇妙性质,是湍流减阻。人们 观察到,如果在牛顿流体中加入少量聚合物,则在给定的速 率下,可以看到显著的压差降低。湍流一直是困扰理论物理 和流体力学界未解决的难题。然而在牛顿流体中加入少量高 聚物添加剂,却出现了减阻效应。有人报告:在加入高聚物
牛顿流体。人身上血液、淋巴液、囊液等多种体液,以及像细
胞质那样的“半流体”都属于非牛顿流体。
非牛顿流体的特性
A
射流胀大(也称Barus效应,或Merrington效应)
B
爬杆效应(也称为Weissenberg效应)
C
无管缸吸或开口虹吸
D
湍流减阻(也称Toms效应)
2018/7/19
射流胀大
如果非牛顿流体被迫从一个大容器,流进一根毛细管,再从 毛细管流出时,可发现射流的直径比毛细管的直径大。射流的直 径与毛细管直径之比,称为模片胀大率(或称为挤出物胀大比)。 对牛顿流体,它依赖于雷诺数,其值约在0.88~1.12之间。而对
检测原理
2018/7/19
血流变学之粘度测定方法
血粘度的测定是血流变学检验的重点, 也是难点。目前测定血粘度的方法主要 有两种:毛细管法和旋转法。两者测定 的原理和理论依据也不相同。
• 毛细管法是最初的血粘度测定方法,毛细管法测 血粘度的测定的理论依据是泊肃叶定律:流量与 管道两端的压力差、管道半径成正比,并与管道 长度和流体粘度成反比。
PPT内容可自行编辑
血液流变学
主讲:XX XX
凡大医治病,必当安神
定志,无欲无求,先发大慈恻 隐之心,誓愿普救含灵之苦。
- - 孙思邈
PPT内容可自行编辑
开始上课!
Hale Waihona Puke 内容• 基本概念 • 检测原理 • 临床意义
• 结果判读
基本概念
2018/7/19
一、牛顿流体和非牛顿流体
牛顿流体:
任一点上的剪应力都同剪切变形速率呈线性函数关 系的流体称为牛顿流体。最简单的牛顿流体流动是两个 无限平板以相对速度U相互平行运动时,两板间粘性流 体的低速定常剪切运动(或库埃特流动)。自然界中许 多流体是牛顿流体。水、酒精等大多数纯液体、轻质油、 低分子化合物溶液以及低速流动的气体等均为牛顿流体。
血液粘度对切变率的依赖关系
一般来说,在一定的切变率(shear rate)范围内(200S/1以下),血液粘度 (blood viscosity)随切变率增高而降低,表现出非牛顿型流体的粘度特性,这主 要是因为随着切变率增高、流速加快,聚集的红细胞团块在不断增大的切应 力(shear stress)作用下逐渐分散、变形和向轴集中以及血浆大分子蛋白质的分 子取向(所谓取向,是指分子的长轴与血液流动的方向一致),这些变化都能减 小流动阻力,使血液粘度降低。但是,当切变率超过200S-1时,上述变化已经 达到最大限度,不可能再随切变率增高而继续改变,此时,血液粘度不再降 低,呈现出牛顿型流体的粘度特征。此外,血浆内虽然含有各种大分子蛋白 质,但由于其含量相对较少,尚不足以使血浆粘度对切变率产生依赖关系, 因此血浆粘度只具有牛顿型流体的粘度特征。
必须考虑爬杆效应的影响。同样,在设计非牛顿流体的输 运泵时,也应考虑和利用这一效应。
无管缸吸或开口虹吸
对于牛顿流体来说,在虹吸实验时,如果将虹吸管提离液 面,虹吸马上就会停止。但对高分子液体,如聚异丁烯的汽 油溶液和百分之一的POX水溶液,或聚醣在水中的轻微凝肢体 系等,都很容易表演无管虹吸实验。将管子慢慢地从容器拨 起时,可以看到虽然管子己不再插在液体里,液体仍源源不 断地从杯中抽出,继续流进管里。甚至更简单些,连虹吸管
式中
为剪应力;
为剪切变形速率; μ 为
流体动力粘性系数(即粘度)。这就是著名的牛 顿粘性定律。凡是符合此定律的流体称为牛顿流 体,否则是非牛顿流体
非牛顿流体
是指不满足牛顿黏性实验定律的流体,即其剪应力与剪切
生产和大自然之中。绝大多数生物流体都属于现在所定义的非
应变率之间不是线性关系的流体。非牛顿流体广泛存在于生活、
添加剂后,测得猝发周期加大了,认为是高分子链的作用。
虽然湍流减阻效应的道理尚未弄得很清楚,却己有不错的应 用。在消防水中添加少量聚乙烯氧化物,可使消防车龙头喷 出的水的扬程提高一倍以上。应用高聚物添加剂,还能改善 气蚀发生过程及其破坏作用。
二、血液流变学
血液流变学是一门新兴的生物力学及生物流变学 分支,是研究血液宏观流动性质,人和动物体内血液 流动和细胞变形,以及血液与血管、心脏之间相互作 用,血细胞流动性质及生物化学成分的一门科学。它 是近二十年来才发展成为一门独立的新兴的边缘学科。
爬杆效应
1944年Weissenberg在英国伦敦帝国学院,公开表演了 一个有趣的实验:在一只有黏弹性流体(非牛顿流体的一
种)的烧杯里,旋转实验杆。对于牛顿流体,由于离心力
的作用,液面将呈凹形;而对于黏弹性流体,却向杯中心 流动,并沿杆向上爬,液面变成凸形,甚至在实验杆旋转
速度很低时,也可以观察到这一现象。在设计混合器时,