2016-2017学年度第二学期七年级数学期末试题 (1)

合集下载

2016-2017学年度北师大版七年级下册数学期末试卷及答案

2016-2017学年度北师大版七年级下册数学期末试卷及答案

2016-2017学年度北师大版七年级下册数学期末试卷及答案2016-2017学年度七年级下册数学期末试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列各组长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.1cm,1cm,2cmC.1cm,2cm,2cm;D.1cm,3cm,5cm;2.下面是一位同学做的四道题:①a+a=a;②(xy)=xy;③x•x=x;④(﹣a)÷a=﹣a.其中做对的一道题是()A①.3.下列乘法中,能运用完全平方公式进行运算的是()A.(x+a)(x-a)B.(b+m)(m-b)。

C.(-x-b)(x-b)。

D.(a+b)(-a-b)4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△XXX的是()A.∠A=∠CB.AD=CBCC.BE=DFD.AD∥BC5.如图,一只蚂蚁以均匀的速度沿台阶A1A2A3A4A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A.tOB.tOC.tOD.t6.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.计算(2)3=_______88.如图有4个冬季运动会的会标,其中不是轴对称图形的有2个9.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为16.10.已知:a b22,a b=11,则2a2b6311.如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=90°.12.如图所示,∠XXX∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是1,2,3,4.13.XXX是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是∠2和∠3.14.如果 $a+b+2c+2ac-2bc=0$,求 $xxxxxxxa+b$ 的值。

2016--2017学年度下期末七年级数学试题及答案

2016--2017学年度下期末七年级数学试题及答案

2016~2017学年度第二学期期末考试七年级数学试卷一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.64的算术平方根是( ) A .8 B .-8 C .4 D .-4 2.在平面直角坐标系中,点P (-3,-4)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列调查中,适宜采用全面调查方式的是( )A .调查春节联欢晚会在武汉市的收视率B .调查某中学七年级三班学生视力情况C .调查某批次汽车的抗撞击能力D .了解一批手机电池的使用寿命 4.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A .x >2 B .x ≤4 C .2≤x <4 D .2<x ≤45.如图,若CD ∥AB ,则下列说法错误的是( ) A .∠3=∠A B .∠1=∠2 C .∠4=∠5 D .∠C +∠ABC =180°6.点A (﹣1,4)关于y 轴对称的点的坐标为( ) A .(1,4) B .(﹣1,﹣4) C .(1,﹣4) D .(4,﹣1) 7.若x >y ,则下列式子中错误的是( ) A .31+x >31+y B . x -3>y -3 C .3x >3yD .-3x >-3y 8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”若设有鸡x 只,有兔y 只,则可列方程组正确的是( ) A .⎩⎨⎧=+=+942235y x y xB .⎩⎨⎧=+=+942435y x y xC .⎩⎨⎧=+=+944235y x y xD .⎩⎨⎧=+=+94235y x y x9.下列说法:① 3.14159是无理数;② -3是-27的立方根;③ 10在两个连续整数a 和b 之间,那么a +b =7;④如果点P (3-2n ,1)到两坐标轴的距离相等,则n =1;其中正确说法的个数为( )A .1个B .2个C .3个D .4个 10.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则12+m的值为( )A .5或50B .49C .4或49D . 5二.填空题(共6小题,每小题3分,共18分) 11.若x +2有意义,则x 的取值范围是 .12.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°, 则∠DOE =__________13.如图,将王波某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .33%43%4%长途话费短信费本地话费月基本费14.一艘轮船从长江上游的A 地匀速驶到下游的B 地用了10h , 从B 地匀速返回A 地用了不到12h ,这段江水流速为3km /h ,轮船在静水里的往返速度vkm /h 不变,则v 满足的条件是 . 15.如图, AB ∥CD ,直线EF 与直线AB ,CD 分别交于点E ,F , ∠BEF <150°,点P 为直线EF 左侧平面上一点,且 ∠BEP =150°,∠EPF =50°,则∠DFP 的度数是 .16.在等式c bx ax y ++=2中,当x =-1时,y =0;当x =2时,y =3;当x =5时,y =60;则a +b +c 的值分别为_______.三.解答题(共8小题,共72分) 17.(本题10分)解方程组:(1)⎩⎨⎧=--=1376y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+312612174332y x y x18.(本题8分)解不等式332-x ≤153+-x ,并在数轴上表示其解集.19.(本题8分)某校为了调查学生书写汉字能力,从八年级400名学生中随机抽选50名学生参加测试,这50名学生同时听写50个常用汉字,每正确听写出一个汉字得1分.根据测试成绩绘制频数分布图表. 频数分布表 频数分布直方图请结合图表完成下列各题:(1)表中a 的值为 ;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为合格,请你估计该校八年级汉字书写合格的人数为 .Cx20.(本题7分)养牛场原有15头大牛和5头小牛,每天约用饲料325kg ;两周后,养牛场决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需多少饲料?21.(本题8分)如图,线段CD 是线段AB (1)若点A 与点C 、点B 与点D 是对应点. 在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示)(2)若点A 与点D 、点B 与点C 、是对应点,在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示) (3)连接BD ,AC ,直接写出四边形ABDC 的面积为22. (本题9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,经调查:购买一套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m 、n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,有哪几种购买方案?为了节约资金,请你为公司设计一种最省钱的购买方案.图2 x y M C B A 12345–1–2–3–4–512345–1o x y123456–1–2123456–1–2o 23.(本题10分)如图1,将线段AB 平移至CD ,使点A 与点D 对应,点B 与点C 对应,连AD 、BC (1) 填空:AB 与CD 的位置关系为__________,BC 与AD 的位置关系为__________; (2) 点G 、E 都在直线DC 上,∠AGE =∠GAE ,AF 平分∠DAE 交直线CD 于F . ①如图2,若G 、E 为射线DC 上的点,∠F AG =30°,求∠B 的度数;②如图3,若G 、E 为射线CD 上的点,∠F AG =α,求∠C 的度数.24.(本题12分)如图,点A 的坐标为(4,3),点B 的坐标为(1,2),点M 的坐标为(m ,n ).三角形ABM 的面积为3.(1)三角形ABM 的面积为3.当m=4时,直接写出点M 的坐标 ; (2)若三角形ABM 的面积不超过3.当m=3时,求n 的取值范围;(3)三角形ABM 的面积为3.当1≤m ≤4时,直接写出m 与n 的数量关系 .图3 图1y 123456–1–2123456–1–2o 备用图硚口2016—2017学年度下学期期末考试七年级数学答案11.x ≥-2 12.55° 13.72° 14.v >33 15.100°或160° 16.-4. 17.(1)解:把①代入②得:6y -7-y =13 y =4 ……3分把y =4代入①得:x =17 ………………………………………4分 ∴原方程组的解是⎩⎨⎧==417y x ………………………………………5分(2)解:原方程组可化为: ⎩⎨⎧-=-=+231798y x y x ………7分∴原方程组的解是⎩⎨⎧==11y x ………10分18.解:去分母得: 5(2x -3)≤3(x -3)+15 ………………2分去括号得: 10x -15 ≤3x -9+15 ………………3分 移项得: 10x -3x ≤15-9+15 ………………4分 合并同类项得:7x ≤21 ………………5分 系数化为1得:x ≤ 3 ………………6分………………8分19.(1) a=12 …………………………………………………2分 (2)16,12 (图略)作出一个正确的条形给2分 ………………… 6分 (3)304人 …………… …… …………… ……………………8分 20.(1)解:设每头大牛1天需饲料x kg ,每头小牛1天需饲料y kg . ………1分 依题意得:⎩⎨⎧=+++=+550)515()1015(325515y x y x ……2分解方程组得:⎩⎨⎧==520y x …………3分答: 每头大牛1天需饲料20 kg ,每头小牛1天需饲料5 kg . …………4分(2) 解:设大牛购进a 头,小牛购进b 头. ………. . …………………………5分 根据题意可列方程: 20a +5b =110b =22-4a ………. . ………………………7分∵根据题意a 与 b 为非负整数,∴b ≥0 ∴22-4a ≤0 ∴a ≤5.5∴a 最大取5 ………. . …………………………8分 答: 大牛最多还能购进5头. ………. . …………………………9分 21.(1)(m -5,n -5);…2分 (2)(-m ,-n );……4分 (3)10 .………8分 22.(1)解:根据题意可列方程组:{nm n m =-=+6103,解方程组得:{71==m n ……………3分答:m 的值为7,n 的值为1. …………………………4分 (2) 解:设购买甲型设备x 套,购买乙型设备)10(x -套, ……………5分根据题意列不等式组:{26)10(71020)10(100120≤-+≥-+x x x x , ……………6分解不等式组得:381≤≤x∵x 为整数,∴x 为1或2 ……………7分所以购买方案有:方案1、甲型设备1套,乙型设备9套;方案2、甲型设备2套,乙型设备8套.……8分所需费用:方案1、7+9=16万元,方案2、14+8=22万元, 方案1最省钱.………………9分 23.(1)AB ∥ CD, BC ∥ AD ………………………………………………………2分 (2)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………3分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠EAF +∠GAE )=∠EAD +∠BAE =∠BAD ……………………5分 又∵∠F AG =30° ∴∠BAD =60°又∵BC ∥ AD ∴∠B+∠BAD =180° ∴∠B =120°………………6分 (3)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………7分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠GAE —∠EAF )=∠BAE —∠EAD =∠BAD又∵∠F AG =α ∴∠BAD =2α …………………………………9分 ∵BC ∥ AD ∴∠B+∠BAD =180° ∵AB ∥ CD ∴∠B+∠C =180° ∴ ∠C =∠BAD =2α …………10分24.(1) (4,5)或(4,1) ………………………………………………………2分(2)作AD ⊥x 轴于D ,作BC ⊥x 轴于C ,作ME ⊥x 轴于E 交AB 于F ,设F 点坐标为(3,a ) 则点E 为(3,0)、点D 为(4,0),∴BC =2, EF =a , AD =3,CE =2,DE =1,CD =3,又∵FEDA BCEF S S S 梯形梯形梯形+=ABCD ∴ )38,3(,38)32(321)3(121)2(221F a a a =+⨯⨯=+⨯++⨯……………6分作AP ⊥MF 于P ,作BQ ⊥MF 于Q ,23)(213≤≤+≤+=∆∆∆MF MF AP BQ S S S MFA MFB MAB …………7分∵点M 的坐标为(3,n ), 点F 的坐标为(3,38) ∴238≤-n , ∴n -38≤2且-(n -38)≤2,三点共线,(舍去),,时,当M B A 38=n∴当32≤n ≤314且n ≠38时,三角形ABM 的面积不超过3 ………………………………9分(3)当1≤m ≤4时,直接写出m 与n 的数量关系为:3n -m =11或3n -m =-1. …………12分。

2016-2017学年七年级下学期期末考试数学试题(有全等)(解析版)

2016-2017学年七年级下学期期末考试数学试题(有全等)(解析版)

17. 如图,将△ABC 沿 DE、EF 翻折,顶点 A,B 均落在点 O 处,且 EA 与 EB 重合于线段 EO,若∠CDO+
∠CFO=88°,则∠C 的度数为=___________.
【答案】46°
【解析】如图,连接 AO、BO,由题意得 EA=EB=EO ,∴∠AOB=90°,∠OAB+∠OBA=90°, ∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO, ∵∠CDO+∠CFO=88°,∴2∠DAO+2∠FBO=88°,∴∠DAO+∠FBO=44°, ∵∠CAB+∠CBA=∠DAO+∠FBO+∠OAB+∠OBA=134°,∴∠C=180°-134°=46°.
规律进行计算即可.
26. 9 岁的小芳身高 1.36 米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表
姐先去北京旅游一趟,对北京有所了解.他们四人 7 月 31 日下午从无锡出发,1 日到 4 日在北京旅游,8
月 5 日上午返回无锡.
无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票 524 元,身高 1.1~1.5 米的儿童享
棒,故选 B.
点睛:本题主要考查三角形三边的关系,能正确地应用“两边之和大于第三边,两边之差小
于第三边”是解题的关键.
7. 下列命题是真命题的是(

A. 同旁内角互补 B. 三角形的一个外角等于两个内角的和 C. 若 a2=b2,则 a=b D. 同角的余角相等
【答案】D
【解析】A. 同旁内角互补,错误;如图
18. 若二元一次方程组
的解 , 的值恰好是一个等腰三角形两边的长, 且这个等腰三角

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。

16-17七年级数学期末测试卷

16-17七年级数学期末测试卷

2016—2017学年第二学期期末初中质量检测七年级 数学试题(考试时间:90 分钟;满分:100 分; 考试形式:闭卷考试) 友情提示:所有答案都必须填在答题卡相应的位置上,答在试卷上一律无效.一、选择题(每题3分,共10题,计30分) 1.下列实数中,属于无理数的是( ).A .3.141B .32C .3D .16 2.下列调查中,适合用全面调查方式的是 ( ). A .了解一批电视机的使用寿命B .了解我市居民家庭一周内丢弃塑料袋的数量C .了解我县中学生的近视率D .了解我班同学最喜爱的体育项目3.如图,在平面直角坐标系中,点P 的坐标为( ).A .(3,-2)B .(-2,3)C .(-3,2)D .(2,-3) 4. 将不等式3x <3的解集表示在数轴上,正确的是( )A . B. C.D.5.方程组⎩⎨⎧1012=-,=+y x y x 的解是( ).A .⎩⎨⎧x =10y =2B .⎩⎨⎧x =11y =1C .⎩⎨⎧x =9y =-1D .⎩⎨⎧x =1y =116. 如图,AB //CD ,EF 分别为交AB 、CD 于点E 、F ,∠1=50°,则∠2的度数为( ). A .50° B .120° C .130° D .150°7.下列运算中,正确的是( ).A .(-4)2= -4B .9=±3C .25= 5D .38=28.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( ).(第2题)(第6题)21EF C D AB(1) A . B . C . D .9.已知实数a >b ,则下列命题结论正确的是( ).① -a <-b ;② 2a >2b ;③ 3+a >3+b ;④ 8|a |>5|b |.A .②③B .①②③C .②③④D .①③④10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( ).A .2B .3C .4D .5 二、填空题(每题2分,共8题,计16分) 11.4= .12.一元一次不等式x +1 > 3的解集为: .13.已知二元一次方程2x +y =4,用含x 代数式表示y ,则y = . 14.命题“两直线平行,同位角相等”中,题设是 . 15.如图,晓岚同学统计了她家5月份的长途电话明细清单,按通话时间画出频数分布直方图,则从图中的信息可知,她家通话时间不足10分钟的有 次. 16.小强准备用自己节省的零花钱购买一台复读机来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少..有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为 . 17.已知点M 坐标为(2-a ,3a + 6),且M 点到两坐标轴的距离相等,则点的M 坐标是 .18.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数为s .按此规律推断,以s 、n 为未知数的二元一次方程为 .三、解答题(共8小题,共54分) 19.(每题3分,共6分)计算: (1)3( 3 + 13); (2)|3-2|+ 22.20.(4分)如图,直线AB 、CD 、EF 相交于点O ,且AB ⊥CD ,∠DOE =70°,求∠BOF 的度数.OC F BE A (第18题)n =2 n =3 n =4…()每组中只含最小分钟值,但不含最大分钟值(第15题)21.(6分)用合适的方法解方程组: ⎩⎨⎧x + y =3, ①3x -8y =20. ②22.(6分)解不等式组⎩⎪⎨⎪⎧x -12<x 3, ①x +4≤3(x +2).②,并在数轴上表示其解集.23.(6分)已知△ABC 中,点A (2,4),B (-1,2),C (2,-2). (1)在直角坐标系中,画出△ABC ;(2)画出△ABC 向左平移4个单位后的图形△A′B′C′;(3)填空:△ABC 的面积为_________.24.(5分)填空或填理由,完成下面的证明.已知:如图,CD 分别交AD 、AE 、BE 于点D 、F 、C ,连接AB 、AC ,AD ∥BE ,∠1=∠2,∠3=∠4.求证AB ∥CD .证明:∵AD ∥BE (已知) ∴∠3=∠CAD ( ) ∵∠3=∠4(已知)∴∠4= (等量代换)∵∠1=∠2(已知) ∴∠1+∠CAE =∠2+∠CAE (等式的基本性质) 即∠BAE =∴∠4= (等量代换)∴AB ∥CD ( )(第24题) 4 32D FE C 1B A25.(10分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下: 请你根据图中提供的信息,回答下列问题: (1)图1中,“电脑”部分所对应的圆心角为 度; (2)共抽查了 名学生;(3)在图2中,将“体育”部分的条形图补充完整;(4)爱好“音乐”的人数占被调查人数的百分比为 ;(5)根据此次调查,估计该中学现有学生中,有 人爱好“书画”.26.(11分)某旅游景点的一个商场为了抓住国庆节长假这一旅游旺季的商机,决定购进甲,乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元. (1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品共100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时甲种纪念品又不能超过60件,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?(第25题)12音乐体育电脑 35%书画 图1图2。

16-17第二学期南海区七年级数学期末卷

16-17第二学期南海区七年级数学期末卷

南海区2016~2017学年度第二学期期末考试七 年 级 数 学 试 卷试卷说明:本试卷共6页,满分120分,考试时间100分钟.答题前,学生务必将自己的姓名等信息按要求填写在答题..卡.上;答案必须写在答题..卡.各题目指定区域内;考试结束后,只需将答题..卡.交回. 一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确) 1. 下列运算中,正确的是A. 2x x xB. 236x x x ⋅=C. 236()x x =D. 222()x y x y -=-2. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,它能较长时间悬浮于空气中,且在空气中含 量浓度越高,就代表空气污染越严重.其中2.5微米=0.0000025米,用科学记数法表示为 A. 0.25×10-5米 B. 2.5×10-5米 C. 2.5×10-6米D. 25×10-7米3. 下列四个图案中,不是轴对称图形的是A BC D4. 如图,能判断AB ∥CE 的条件是A. ∠B =∠ACEB. ∠B =∠ECDC. ∠A =∠ACDD. ∠A =∠ACB5. 通过计算几何图形面积可以表示一些整式乘法的式子,如图表示的式子是A. 22()()a b a b a b -=+- B.2222a b a ab b -=+()-C. 222))(2(b ab a b a b a -+=-+D.2222a b a ab b +=++() 6. 如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短7. “长为3cm ,5cm ,9cm 的线段首尾相接,能围成一个三角形”这一事件是 A. 必然事件 B. 不确定事件 C. 随机事件 D. 不可能事件8 . 在△ABC 中,画出边AC 上的高,下面4幅图中画法正确的是ADBC ABDC ABCD C ABD DC AB(第5题) (第6题)(第4题)9. 如图1,用正方形纸片剪出一副七巧板,并将其拼成如图2的“温暖小屋”,则阴影部分的面积是原 正方形面积的A. 18B.83 C.14D.3410. 如图,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,下列各图象中能正确表示y 与x 的关系的是A B C D二、填空题(本大题6小题,每小题4分,共24分) 11. 计算:23-= .12. 化简:(1)(1)x x x x +--= .13. 如图,已知AB =AE ,AC =AD ,若满足 (添加一个条件即可), 就可得△ABC ≌△AED .14. 一个角的补角比它的余角的3倍多20度,则这个角的度数为 . 15. 等腰△ABC 的两边长为2和5,则第三边长为 .16. 观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律, 第2017个单项式是 .三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 先化简,再求值:),3(])())(2[(2x y x y x y x ÷-+-+其中2,2015.x y(第9题) (第10题)(第13题)18. 如图所示, B、D、C、F四点在同一条直线上,BD=CF,AC//ED,AC=ED。

浙教版2016-2017学年七年级数学下册期末测试卷含答案

浙教版2016-2017学年七年级数学下册期末测试卷含答案

2016-2017学年七年级(下)期末数学试卷一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80° C.∠4=80°D.∠4=100°3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+46.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A .8B .10C .12D .147.关于x 的方程=有增根,则k 的值是( )A .2B .3C .0D .﹣3 8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是( )A .B .C .D . 9.已知a ﹣b=3,b ﹣c=﹣4,则代数式a 2﹣ac ﹣b (a ﹣c )的值为( ) A .4 B .﹣4 C .3 D .﹣310.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数;③当a=1时,方程组的解也是方程x +y=4﹣a 的解;④x ,y 的都为自然数的解有4对.其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= .12.分解因式:2x 3﹣8xy 2= .13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有件.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=度.15.已知﹣=3,则分式的值为.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共人.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)18.解方程或方程组:(1)(2)+=1.19.先化简代数式,再选择一个你喜欢的数代入求值.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=度.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c【考点】因式分解的意义.【分析】利用因式分解的定义判断即可.【解答】解:列各式从左到右的变形中,是因式分解的为x2+4x+4=(x+2)2,故选C2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80° C.∠4=80°D.∠4=100°【考点】平行线的判定.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;据此判断即可.【解答】解:∵∠2=100°,∴根据平行线的判定可知,当∠4=100°,或∠3=100°,或∠1=80°时,AB∥CD.故选(D)3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法等知识点进行作答.【解答】解:A、底数不变指数相减,故A错误;B、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故B正确;C、底数不变指数相加,故C错误;D、负整指数幂与正整指数幂互为倒数,故D错误.故选:B.4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢【考点】函数的图象.【分析】根据图象即可确定男生在13岁时身高增长速度是否最快;女生在10岁以后身高增长速度是否放慢;11岁时男女生身高增长速度是否基本相同;女生身高增长的速度是否总比男生慢.【解答】解:A、依题意男生在13岁时身高增长速度最快,故选项正确;B、依题意女生在10岁以后身高增长速度放慢,故选项正确;C、依题意11岁时男女生身高增长速度基本相同,故选项正确;D、依题意女生身高增长的速度不是总比男生慢,有时快,故选项错误.故选D.5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+4【考点】整式的除法.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加;12x3÷(﹣4x)=﹣3x2,﹣8x2÷(﹣4x)=2x,16x÷(4x)=﹣4.【解答】解:(12x3﹣8x2+16x)÷(﹣4x)=﹣3x2+2x﹣4;故选A.6.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故选:C7.关于x的方程=有增根,则k的值是()A.2 B.3 C.0 D.﹣3【考点】分式方程的增根.【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,列方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:,故选C.9.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值为()A.4 B.﹣4 C.3 D.﹣3【考点】因式分解的应用.【分析】先分解因式,再将已知的a﹣b=3,b﹣c=﹣4,两式相加得:a﹣c=﹣1,整体代入即可.【解答】解:a2﹣ac﹣b(a﹣c),=a(a﹣c)﹣b(a﹣c),=(a﹣c)(a﹣b),∵a﹣b=3,b﹣c=﹣4,∴a﹣c=﹣1,当a﹣b=3,a﹣c=﹣1时,原式=3×(﹣1)=﹣3,故选D.10.已知关于x、y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的都为自然数的解有4对.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】二元一次方程组的解.【分析】①将x=5,y=﹣1代入检验即可做出判断;②将x和y分别用a表示出来,然后求出x+y=3来判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④有x+y=3得到x、y都为自然数的解有4对.【解答】解:①将x=5,y=﹣1代入方程组得:,由①得a=2,由②得a=,故①不正确.②解方程①﹣②得:8y=4﹣4a解得:y=将y的值代入①得:x=,所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故②正确.③将a=1代入方程组得:解此方程得:将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故③正确.④因为x+y=3,所以x、y都为自然数的解有,,,,.故④正确.则正确的选项有②③④,故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= 1.36×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000136=1.36×10﹣6,故答案为:1.36×10﹣6.12.分解因式:2x3﹣8xy2=2x(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再根据平方差公式进行二次分解即可求得答案.【解答】解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有48件.【考点】频数(率)分布直方图;频数与频率.【分析】由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率计算作品总数.【解答】解:从左至右各长方形的高的比为2:3:4:6:1,即频率之比为2:3:4:6:1;第二组的频率为,第二组的频数为9;故则全班上交的作品有9÷=48.故答案为:48.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=70度.【考点】翻折变换(折叠问题).【分析】由矩形的性质可知AD∥BC,可得∠CEF=∠EFG=55°,由折叠的性质可知∠GEF=∠CEF,再由邻补角的性质求∠BEG.【解答】解:∵AD∥BC,∴∠CEF=∠EFG=55°,由折叠的性质,得∠GEF=∠CEF=55°,∴∠BEG=180°﹣∠GEF﹣∠CEF=70°.故答案为:70.15.已知﹣=3,则分式的值为.【考点】分式的值.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共45或529人.【考点】分式方程的应用.【分析】设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人,依题意有22m+1=n(m﹣1)然后确定m、n的值,进而可得答案.【解答】解:设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n 人.依题意有22m+1=n(m﹣1).所以n==22+,因为n为自然数,所以为整数,因此m﹣1=1,或m﹣1=23,即m=2或m=24.当m=2时,n=45,n(m﹣1)=45×1=45(人);当m=24时,n=23,n(m﹣1)=23×(24﹣1)=529(人).故答案为:45或529.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)【考点】多项式乘多项式;完全平方公式;零指数幂;负整数指数幂.【分析】(1)首先计算负整数指数幂、零次幂、乘方,然后再计算有理数的加减即可;(2)利用完全平方公式计算)(2m﹣3)2,利用多项式乘以多项式法则计算(4m+1)(m﹣2),然后再合并同类项即可.【解答】解:(1)原式=9+1﹣8=2;(2)原式=4m2﹣12m+9﹣(4m2﹣8m+m﹣2),=4m2﹣12m+9﹣4m2+8m﹣m+2,=﹣5m+11.18.解方程或方程组:(1)(2)+=1.【考点】解分式方程;解二元一次方程组.【分析】(1)根据等式的性质把原方程组变形,利用加减消元法解方程组即可;(2)方程两边同乘以(x﹣3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【解答】解:(1)原方程组变形为:,①﹣②得,﹣3n=6,解得,n=﹣2,把n=﹣2代入②得,m=,则方程组的解为:;(2)方程两边同乘以(x﹣3),得5﹣x﹣1=x﹣3,整理得,﹣2x=﹣7,解得,x=,检验:当x=时,(x﹣3)≠0,∴x=是原方程的解.19.先化简代数式,再选择一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的运算法则进行化简,再代入a的值求值即可.【解答】解:=÷(﹣)=÷=×=,取a=3,代入可得==2.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子2400个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用C品牌粽子的个数除以C品牌粽子所占百分比可得商场今年端午节共销售粽子数;(2)首先利用粽子总数减去A、C品牌粽子数可算出B品牌粽子数,然后再画图即可;(3)利用A品牌粽子所占比例乘以360°即可;(4)利用样本估计总体的方法可得今年端午节期间销售B品牌粽子所占比例为,然后再乘以120000即可.【解答】解:(1)商场今年端午节共销售粽子数:1200÷50%=2400(个),故答案为:2400;(2)B品牌粽子数:2400﹣400﹣1200=800(个),如图所示;(3)A品牌粽子所对应的圆心角的度数:×360°=60°;(4)120000×=40000(个),答:估计B品牌粽子售出40000个.21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=170度.【考点】平行线的性质;多边形内角与外角.【分析】(1)如图1,根据平角定义表示∠ECB=180°﹣α,由角平分线定义得:∠DCB=90°﹣α,最后根据平行线性质得结论;(2)作平行线,根据平行线的性质得:∠BAE=∠ABH=90°和∠1+∠CBH=180°,所以∠1+∠2=∠1+∠CBH+∠ABH=270°;(3)作辅助线,根据外角定理和四边形的内角和360°列式后可得结论.【解答】解:(1)如图1,∵∠ACE=α,∴∠ECB=180°﹣α,∵CD平分∠ECB,∴∠DCB=∠ECB==90°﹣α,∵FG∥CD,∴∠GFB=∠DCB=90°﹣α;(2)如图2,过B作BH∥AE,∵BA⊥AE,∴∠BAE=∠ABH=90°,∵CD∥AE,∴BH∥CD,∴∠1+∠CBH=180°,∴∠1+∠2=∠1+∠CBH+∠ABH=180°+90°=270°;(3)延长图中线段,构建如图所示的三角形和四边形,由外角定理得:∠9=∠1+∠2,∠BAC=∠9+∠8=∠1+∠2+∠8,∵∠5=50°,∠7=80°,∴∠6+∠GDH=130°,∵∠3=40°,∴∠AFE=140°,∵∠BAC+∠4+180°﹣∠GDH+140°=360°,∴∠BAC+∠4﹣∠GDH=40°,∴∠1+∠2+∠4+∠8﹣130°+∠6=40°,∴∠1+∠2+∠4+∠6+∠8=170°,故答案为为:170.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.【考点】完全平方公式的几何背景.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据完全平分公式解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,得到等式:4ab=(a+b)2﹣(a﹣b)2,说明:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.(2)(a﹣b)2=(a+b)2﹣4ab==4﹣3=1,∴a﹣b=±1.(3)根据(1)中的结论,可得:,∵x2﹣3x+1=0,方程两边都除以x得:,∴,∴.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.【考点】分式方程的应用;二元一次方程的应用.【分析】(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.【解答】解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.2017年4月18日。

天津市部分区2016-2017学年度七年级第二学期期末考试数学试卷试题及答案(含解析)

天津市部分区2016-2017学年度七年级第二学期期末考试数学试卷试题及答案(含解析)

天津市部分区2016~2017学年度第二学期期末试卷七年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1、在,,,,,,,,中是无理数的个数有()A.2个B.3个C.4个D.5个【参考答案】B【考查内容】无理数【解析思路】无理数包括三方面的数:①化简之后含的式子;②开方开不尽的方根;③无限不循环小数2、如果a>b,那么下列结论一定正确的是()A. a-5<b-5B. 5-a<5-bC.>D.>【参考答案】B【考查内容】不等式的性质【解析思路】①不等式的两边同时加上或减去同一个数或同一个式子,不等号的方向不变;②不等式的两边同时乘以一个不为0的正数,不等号方向不变;③不等式的两边同时乘或除以一个不为0的负数,不等号的方向改变。

3、下列四个命题中是真命题的是()A.内错角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线相互垂直【参考答案】C【考查内容】命题与定理【解析思路】利用学习过的有关性质、定义及定理进行判断后即可得到正确的结论。

4、如果P(m,1-3m)在第四象限,那么m的取值范围是()A.0<m<B.<<C.m<0D.>【参考答案】D【考查内容】坐标、不等式组【解析思路】根据点P在第四象限内横坐标为正,纵坐标为负,列出不等式组求解即可。

5.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班45名学生身高情况的调查D.对某批灯泡使用寿命的调查【参考答案】C【考查内容】全面调查与抽样调查【解析思路】由普查得带的调查结果比较准确,但所费人力、物力和时间比较多,而抽样调查的到的调查结果比较近似。

6.在扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的区域占总体区域的()A.10%B.20%C.30%D.50%【参考答案】B【考查内容】扇形统计图【解析思路】利用扇形的圆心角是72°,这个扇形所表示的占总体面积的百分比就是圆心角所占的百分比,即可求出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016——2017学年度第二学期
七年级数学科期末考试卷
(考试时间:100分钟满分:120分)
一、选择题:(每小题3分,共42分)
下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把认
为正确的答案前面的字母编号写在相应的题号下。

1.下列长度的3条线段,能首尾依次相接组成三角形的是
A.1,3,5 B.3,4,6 C.5,6,11 D.8,5,2
2.已知方程3x+a=2的解是5,则a的值是
A.—13 B.—17 C.13 D.17
3.下面有4个汽车标志图案,其中是轴对称图形的为
①②③④
A.①②③
B.①②④
C.①③④
D.②③④
4.下列四种正多边形中,用同一种图形不能铺满平面的是
A.正三角形
B.正方形
C.正五边形
D.正六边形
5.等腰三角形的腰长是4cm,则它的底边长不可能是
A.1 cm
B.3 cm
C.6 cm
D.9 cm
6.△ABC中,∠C=80°,∠A-∠B=20°,则∠A的度数是
A.60°
B.40°
C.30°
D.20°
7. 一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于
M、N,那么∠CME+∠BNF是
A.135° B.180° C.150° D.不能确定
8. 已知x y
>,则-3x+5( )-3y+5,那么括号里应填入
A.= B.> C.< D.不能确定
9.一个十边形的每个内角都相等,则每个内角的度数为
A.18° B.36° C.90° D.144°
10.如图,∠A=32°,∠B=45°,∠C=38°,则∠DFE等于
A.120° B.110° C.115°D.105°
11. 某商店有2个进价不同的计算器都卖了80元,其中一个
盈利60%,另一个亏本20%,在这笔买卖中,这家商店
A.赚了8元 B.赚了10元 C.不赚不赔 D.赔了10
12.不等式2(2)1
x
x-≤-的非负整数解的个数为
A.1个 B.2个 C.3个 D.4个
13.方程组



=
+
+
=
+
3
2
,
1
2
y
x
m
y
x
中,若未知数x、y满足x+y>0,则m的取值范围是
A.m≥-4 B.m>-4 C.m≤-4 D.m<-4
14.如图,将正方形ABCD的一角折叠,折痕为AE,∠B′AD比∠B′AE大48°,
设∠B′AE和∠B′AD的度数分别为x、y,那么x、y所适合的一个方程组是
A.
48
90
y x
y x
-=


+=

B.
48
2
y x
y x
-=


=

C.
48
290
y x
y x
-=


+=

D.
48
290
x y
y x
-=


+=

二、填空题:(每小题4分,共16分)
15.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数为,
则电子表的实际时刻是。

16.如果一个多边形的内角和是其外角和的5倍,则这个多边形是边形
17.如图,平面上两个正方形与正五边形都有一条公共边,则∠α=____度.
18.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,
若∆PMN的周长为8厘米,则CD长为厘米。


















































线


















得分
E
第14题图
A
C
D
B
E
F
第10题图
第17题图
α
三、解答题:(共62分)
19.(每小题5分,共10分) 解下列方程: (1)5(5)24x x -+=- (2)16
1
242=--+y y
20.(8分)解这个不等式组,并将解集在数轴上表示出来:⎪⎩⎪
⎨⎧≥+-+<-②
041
5
2①322x x x
x
21.(12分)如图,在正方形网格中,△ABC
顶点都在格点上,按要求解答下列问题: (1)将△ABC 向右平移5个单位长度,画出平移后 的△A 1B 1C 1

(2)画出△ABC 关于直线EF 对称的△A 2B 2C 2; (3)画出△ABC 关于点O 成中心对称的△A 3B 3C 3;(4)在△A 1B 1C 1、△A 2B 2C 2、△A 3B 3C 3中,
△________与△________成轴对称;△________与△________成中心对称.
22.(10分)定安县服装厂第二车间的人数比第一车间的人数的2倍少10人。

如果从第二车间调5人到第一车间后,两个车间的人数一样多。

问这两个车间各有多少人?
23.(10分)如图,在△ABC 中,∠B =∠C ,AD 平分∠BAC ,∠CAD =26°,∠AED = ∠ADE ,求∠BDE 的度数。

24.(12分)如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC . (1)若∠B =72°,∠C =30°,
求:①∠BAE 的度数;②∠DAE 的度数;
(2)探究:如果只知道∠B =∠C +42°,也能求出∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.。

相关文档
最新文档