小学奥数教师版(合辑):5-2-4 整数分拆之最值应用.教师版

合集下载

六年级奥数试题-分数裂项与分拆(教师版)

六年级奥数试题-分数裂项与分拆(教师版)

第十三讲 分数裂项与分拆1. “裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

①对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- ②对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+③对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++ ()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222h h n n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h h n n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭ 2. 裂差型裂项的三大关键特征:①分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

小学奥数数论讲义 3-整数分拆之分类与计数强化篇

小学奥数数论讲义 3-整数分拆之分类与计数强化篇

整数分拆之分类与计数整数的加法拆分加法拆分定义:把一个自然数拆分成两个或几个连续自然数的和(如3=1+2),或拆分成几个不相同的数的和,这类题目统称为整数的拆分。

加法拆分目的:拆分不是目的,目的是通过分类枚举进行拆分然后进行统计计数。

要求同学不但能够通过拆分解决相关的最大最小问题,同时也能通过拆分解决一些应用问题。

【例1】小兵和小军用玩具枪做打靶游戏,见下图所示。

他们每人打了两发子弹。

小兵共打中6环,小军共打中5环。

又知没有哪两发子弹打到同一环带内,并且弹无虚发。

你知道他俩打中的都是哪几环吗?例1图【巩固】强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象)。

强强两发共打了12环,明明两发共打了8环。

又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?巩固图【例2】有多少种方法可以把1994表示为两个自然数之和?【巩固】将12拆分成三个不同的自然数相加之和,共有多少种不同的拆分方式,请把它们一一列出。

【例3】有多少种方法可以把6表示为若干个自然数之和?【巩固】按下面的要求,把自然数6进行拆分。

⑴把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?⑵把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?⑶把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【例4】按下面的要求,把15进行拆分。

⑴将15拆分成不大于9的三个不同的自然数之和,有多少种不同拆分方式,请一一列出。

⑵将15拆分成三个不同的自然数相加之和,共有多少种不同的拆分方式,请一一列出。

【巩固】将15拆分成四个不同的自然数相加之和,共有多少种不同的拆分方式,请把它们一一列出。

【例5】有七个盘子,每个盘子中分别装有1个、2个、3个、5个、6个、7个和9个梨。

要从这些盘子中取出15个梨,但要求每个盘子中的梨要么都拿,要么都不拿。

【教师版】小学奥数5-3-4 分解质因数(一).专项练习及答案解析

【教师版】小学奥数5-3-4 分解质因数(一).专项练习及答案解析

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分例题精讲知识点拨教学目标5-3-4.分解质因数(一)【解析】 原式323753=⨯⨯⨯【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

三年级数学奥数讲义-整数的分拆(PDF,通用版,无答案)

三年级数学奥数讲义-整数的分拆(PDF,通用版,无答案)

【例1】(★★) 将12分拆成三个不同的正整数相加之和,共有多少种不同的分拆 方式,请把它们一一列出。
【例2】(★★ ★) 将15分拆成不大于9的三个不同的自然数【0除外】之和有多少种 不同分拆方式,请一一列出。
【例3】(★★★) 古代有孔融让梨的佳话,现在乐乐老师准备在七个装有梨的盘子 中取梨,每个盘子中分别装有1个、2个、3个、5个、6个、7个和9 个梨.她要从这些盘子中取出15个梨,但要求每个盘子中的梨要么 都拿,要么都不拿。共有多少种不同的拿法?
【本讲总结】 一、概念 整数的拆分: 把一个自然数(0 除外)拆分成几个自然数相加的形式 核心思想: 有序、全面 二、基本型
三、告知最大数
四、求加数的最多个数
五、拆成两个数
1.和一定,差小积大
2.积一定,差小和小
六、拆成多个数,乘积最大
1.相同:3,少2,无1
2.不相同:
2
1
【例4】(★★★) 100这个数最多能写成多少个不同的正整数之和?
【例5】(★★★★) ⑴两个非零自然数的和是14,这两个数分别是多少时,它们的积 最大?最大是多少? ⑵两个自然数的积为40,这两个数分别为多少时,它 们的和最小? 最小为多少?这两个数分别为多时, 它们的和最大,最大是多 少?
【拓展】(★★★) 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互 不相等,则该电视连续剧最多可以播几天?
【例6】(★★★★★) ⑴将10分成若干个自然数的和(允许有相同的),使得 这些自然数 的乘积达到最大,这个乘积是什么? ⑵将10分成若干个自然数的和(不允许有相同的),使得这些自然 数的乘积达到最大,这个乘积是什么? ⑶将13分成若干个自然数的和(不允许有相同的),使得这些自然 数的乘积达到最大,这个乘积是什么?

奥数二年级讲义小二教案第九讲整数的分拆

奥数二年级讲义小二教案第九讲整数的分拆

第九讲整数的分拆例 1 小兵和小军用玩具枪做打靶游戏,见以下图所示.他们每人打了两发子弹.小兵共打中 6 环,小军共打中 5 环.又知没有哪两发子弹打到同一环带内,而且百步穿杨.你知道他俩打中的都是哪几环吗 ?解:已知小兵两发子弹打中 6 环,要求每次打中的环数,可将 6 分拆 6= 1+5= 2+4 ;同理,要求小军每次打中的环数,可将 5 分拆 5= l+l = 2+3.由题意:没有哪两发子弹打到同一环带内而且百步穿杨,只可能是:小兵打中的是l 环和 5 环,小军打中的是 2 环和 3 环.例 2某个外星人到达地球上,随身带有本星球上的硬币 1 分、 2 分、 4 分、 8 分各一枚,如果他想买7 分钱的一件商品,他应如何付款?买 9 分、 10 分、 13 分、 14 分和 15 分的商品呢?他又将如何付款?1、 2、 4、 8 进行分拆.解:这道题目的实质是要求把7、 9、 10、 13、 14、 15 各数按7= 1+2+49= 1+810= 2+813= 1+4+814=2+4+815= 1+2+4+8∴外星人可按以上方式付款.例 3有人认为8 是个吉利数字,他们获得的东西的数目都能要够用“8”表示才好.现有200块糖要散发给一些人,请你帮助想一个吉利的分糖方案.解:能够这样想:因为200 的个位数是 0,又知只有 5 个 8相加才能使和的个位数字为0,这就是说,能够把 200 分红 5 个数,每个数的个位数字都应是8.这样由 8× 5= 40 及 200- 40= 160,可知再由两个8 作十位数字可得80× 2= 160 即可.最后获得下式:88+88+8+8+8 = 200 .例 4 试将 100 之内的完整平方数分拆成从 1 开始的一串奇数之和.2)特例1-1(解:1=l× l=2==1+3 24=2× 2=21+3+5=3×3==3=921+3+5+7=4= 4×4=16.2=51+3+5+7+925=5× 5=2= 6=61+3+5+7+9+1136=6× 2 =71+3+5+7+9+11+13 49= 7×7=2=8×8=864= 1+3+5+7+9+11+13+152 =9×9=981= 1+3+5+7+9+11+13+15+172= 10× 10= 101001+3+5+7+9+11+13+15+17+19 .=察看上述各式,可得出以下猜想:这个平方数就等于奇数个数的l 开始的若干连续奇数之和,一个完整平方数能够写成从 ) .自乘积 ( 平方,两个完整平方数分拆,看其能否切合上述猜14412111 × 11=,和 12×12 =查验:把想.121=1+3+5+7+9+11+13+15+17+19+2l144=1+3+5+7+9+11+13+15+17+19+21+23两个完整平方数是正确的.121和 144结论:上述猜想对? 有多少种不一样的写法将1l写成两个不一样的自然数之和,从l ~9九个数中选用,例 5的九个自然数从小到大排成一列:~91解:将., 96, 7, 8 1,2,3,4,5, 10相加之和为不切合要求.先看最小的 1 和最大的 9剖析2+9 . 11 切合要求,得 11=但用次大的 2 和最大的 9 相加,和为5+6 ., 11= 11 = 3+8, 1l=4+7逐一做下去,可得种不一样的写法.可见共有4分拆成三个不一样的自然数相加之和,共有多少种不一样的分拆方式,请把它126将例们一一列出.分拆成三个不一样的自然数之和,三个数中最小的数应为12解:能够做以下考虑:若将.= 1+2+92,那么第三个数就应是 9 得: 121,其次是 2 上, 1 下边进行变化,如从9 中取加到1+3+8.又得 12=持续按近似方法变化,可得以下各式:, 1+4+7= 2+3+7=12 ,= 2+4+61+5+612=.= 3+4+512、共有 7 种不一样的分拆方式.中选用,问~ 9l例 7 将 21 分拆成四个不一样的自然数相加之和,但四个自然数只好从共有多少种不同的分拆方式,请你一一列出.,因此接着只好(9+8)=4 - 21,算一算8 考虑选用,其次选9 解:也能够先从最大的数选 3 和 1.这样就能够得出第一个分拆式:21= 9+8+3+1,以这个分拆式为基础按次序进行调整,就能够得出所有的不一样分拆方式:以 9开头的分拆方式有 6 种以 8开头的分拆方式有 4 种21 = 7+6+5+3}以 7 开头的分拆方式有 1 种∴共有 11 种不一样的分拆方式.例 8从 1~ 12 这十二个自然数中选用,把26 分拆成四个不一样的自然数之和.解:以 12 开头的分拆方式共10 种种 10 开头的分拆方式共ll以.以 10 开头的分拆方式共8 种以 9 开头的分拆方式共 4 种26= 8+7+6+5} 以 8开头的分拆方式共 1 种不一样的分拆方式总数为:10+10+8+4+1= 33 种.总结:由例 4 显然看出,欲求出所有的不一样的分拆方式,一定使分拆过程按必定的次序进行.习题九1 .把 15 分拆成不大于9 的两个整数之和,有多少种不一样的分拆方式,请一一列出.2.将 15 分拆成不大于 9 的三个不一样的自然数之和有多少种不一样分拆方式,请一一列出.3.将 15 分拆成三个不一样的自然数相加之和,共有多少种不一样的分拆方式,请一一列出.4 .将 15 分拆成不大于9 的四个不一样的自然数之和,有多少种不一样的分拆方式,请一一列出.5.将 15 分拆成四个不一样的自然数之和,有多少种不一样的分拆方式,请一一列出.6 .把 15 个玻璃球分红数目不一样的 4 堆,共有多少种不一样的分法 ?( 本题是美国小学数学奥林匹克试题 ) .7.七只箱子分别放有 1 个、 2 个、 4 个、 8 个、 16 个、 32 个、 64 个苹果.此刻要从这七只箱子里拿出 87个苹果,但每只箱子内的苹果要么所有取走,要么不取,你看怎么取法?8.把 100个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有 6 字,想想看,应该如何分 ?9.把 1000 个鸡蛋放到五只筐子里,每只筐子里的鸡蛋数都由数字8 构成,请你想想该怎样分 ?10.美国硬币有 1 分、 5 分、 10 分和 25 分四种.现有 10枚硬币价值是 1 元钱,此中有3枚 25分的硬币.问余下的硬币有哪几种,每种各有多少枚 ?( 本题是美国小学数学奥林匹克试题) .11. (1 , 1, 8) 是一个和为 10 的三元自然数组.假如不考虑数字摆列的次序,即把(1 ,1,8) 与 (1 , 8, 1) 及 (8 , 1, 1) 当作是同样的三元自然组.那么和为IO 的自然数组共有多少个?习题九题答种不一样的分拆方式:2.解:共有1.15==9+615= 8+72.解:共 8 种.15= 9+5+1 15=7+6+2= 9+4+2=7+5+315= 8+6+1 15 = 6+5+4=8+5+2=8+4+33.解:共 12 种.15= 12+2+115= 8+6+l15= ll+3+l =8+5+215= 10+4+l =8+4+3= 10+3+215=7+6+215= 9+5+1=7+5+3=9+4+2 15 = 6+5+4 4.解:共 6 种.15= 9+3+2+115= 8+4+2+115= 7+5+2+l=7+4+3+l15= 6+5+3+1=6+4+3+25.解:同第 4 题答案.6.解:同第 4 题答案.7.解:可这样想:总数要 87 个,最初取数最多的一箱64 个苹果,这样还差再取则不可以取装有32 个苹果的那箱,只好取装有16 个的那箱,这样还差取装有 1 个、 2 个、 4 个的三箱苹果,正好:87 = 64+16+4+2+1..87- 64= 23 个苹果;23-16= 7 个苹果;再8 .解:从已有经验中可知6× 6= 36 ,这样就能够把每个盒里装 6 个馒头,共装有一个盒装100 - 36= 64 个馒头. 64 个这个数,恰好含有数字6,知足题目要求.6 个盒,还即得 100 = 64+6+6+6+6+6+6.9.解:仿例 7 解法,得以下分拆式:1000 = 888+88+8+8+8.10.解:因为有 3 枚 25 分的硬币,它们的价值是:25×3=75( 分) .因此其他的 7枚硬币的价值是:100- 75=25(分 ) .将 25 分拆成7 个数之和, ( 注意没有各数不一样的限制 )25= 1+1+1+1+1+10+10.因此这 7枚硬币是 5枚1分,2枚 10分.11.解:共 8个.它们是(1 ,1,8) ,(1 ,2,7) , (1 ,3,6) , (1 ,4,5),(2,2,6) ,(2 ,3,5) ,(2 ,4,4) ,(3 ,3,4) .。

小学奥数数论讲义 4-整数分拆之最值与应用强化篇

小学奥数数论讲义 4-整数分拆之最值与应用强化篇

整数分拆之最值与应用一、拆分的基础知识整数的拆分问题常常以计数问题、最值问题等形式出现,因此除了掌握有关的等差数列、数的整除、平均数等基本知识外,还要求掌握加法原理、乘法原理、枚举法、筛选法等基本的记数原理和方法。

二、拆分基本方法1.题目要求拆质数且乘积最大——若可以拆相同的数字就按照“多拆3,少拆2,不拆1——拆分后乘积最大”原则。

2.若题目要求拆成若干个互不相同的自然数之和——要求这些自然数的乘积尽量大应将数列拆分成:a=2+3+4+…的形式,但是实际计算的时候会发现一般不能拆成恰好相同,则:⑴当多0时,将a拆成a=2+3+4+…+ (n-1)+n;⑵当多1时,将a拆成a=3+4+5+…+ (n-1)+( n-1);⑶当多2,3,…,n-1中的数时,就将该数从2,3,…,n-1,n中删除,其余数即为所拆之数。

例如:将30拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,应怎样拆?2+3+4+5+6+7+8=35比30大5,故将5去掉30被拆成2+3+4+6+7+8【例1】将15拆分成2个数的和,并且使这2个数的乘积最大,应该怎样拆分?最大值是多少?【巩固1】把11拆分成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何拆分?【巩固2】试把14拆分为两个自然数之和,使它们的乘积最大。

【例2】试把14拆分为3个自然数之和,使它们的乘积最大。

【巩固】试把19拆分为3个自然数之和,使它们的乘积最大。

【例3】试把1999拆分为8个自然数的和,使其乘积最大。

【巩固】试把1553拆分为6个自然数的和,使其乘积最大。

【例4】将一根长144厘米的铁丝,做成长和宽都是整数的长方形,共有种不同的做法,其中面积最大的是哪一种长方形?【巩固】有长方形和正方形三块地。

它们的周长是100米,它们的一条边长分别是30米,28米和25米。

这三块中哪一块地最大?面积是多少?【例5】把14拆分成若干个自然数的和,再求出这些数的积,要使得到的积最大,应该把14如何拆分?这个最大的乘积是多少?【巩固】分别拆分2001、1994、1993三个数,使拆分后的积最大。

三年级奥数春季班第10讲整数的分拆之强化篇

三年级奥数春季班第10讲整数的分拆之强化篇

三年级奥数春季班第10讲整数的分拆之强化篇摘要:一、引言二、整数分拆的概念与意义1.整数分拆的含义2.整数分拆的作用三、整数分拆的方法与技巧1.基本分拆方法2.进阶分拆技巧四、整数分拆实战案例解析1.案例一1.题目分析2.解题过程3.思路总结2.案例二1.题目分析2.解题过程3.思路总结五、整数分拆强化训练1.训练一1.题目设置2.解题指导2.训练二1.题目设置2.解题指导六、总结与展望正文:【引言】随着春季学期的推进,我们来到了三年级奥数的第10讲——整数的分拆。

在这一讲中,我们将学习整数分拆的概念、方法、实战案例以及强化训练,帮助大家更好地掌握这一重要的数学技能。

【整数分拆的概念与意义】整数分拆,指的是将一个整数拆分成若干个较小的整数,这些较小整数的和等于原整数。

例如,将整数6分拆为1+2+3,或4+2。

那么,为什么要在奥数中学习整数分拆呢?1.整数分拆的含义:掌握整数分拆,有助于提高学生的数学思维能力,培养他们灵活运用知识解决问题的能力。

2.整数分拆的作用:在解决一些复杂数学问题时,整数分拆能够帮助我们化繁为简,找到解决问题的切入点。

【整数分拆的方法与技巧】接下来,我们来看看整数分拆有哪些基本方法和进阶技巧。

【整数分拆实战案例解析】为了让大家更好地理解整数分拆,我们选取两个实战案例进行解析。

【整数分拆强化训练】掌握整数分拆的方法和技巧后,我们来进行强化训练,以检验和提高大家的实战能力。

【总结与展望】通过本讲的学习,我们了解了整数分拆的概念、方法、实战案例以及强化训练。

希望大家能够学以致用,在实际问题中灵活运用整数分拆,提高自己的数学素养。

【教师版】小学奥数5-3-2 质数与合数(二).专项练习及答案解析

【教师版】小学奥数5-3-2 质数与合数(二).专项练习及答案解析

1.掌握质数与合数的定义 2.能够用特殊的偶质数2与质数5解题 3.能够利用质数个位数的特点解题 4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。

模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,例题精讲知识点拨知识框架5-3-2.质数与合数(二)乘积为74.我们要善于抓住此类题的突破口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旗开得胜
5-2-2.整数分拆之最值应用
教学目标
1.熟练掌握整除的性质;
2.运用整除的性质解最值问题;
3.整除性质的综合运用求最值.
知识点拨
一、常见数字的整除判定方法
1. 一个数的末位能被2或5整除,这个数就能被2或5整除;
一个数的末两位能被4或25整除,这个数就能被4或25整除;
一个数的末三位能被8或125整除,这个数就能被8或125整除;
2. 一个位数数字和能被3整除,这个数就能被3整除;
一个数各位数数字和能被9整除,这个数就能被9整除;
1
3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.
4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11
或13整除.
【备注】(以上规律仅在十进制数中成立.)
二、整除性质
性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).
性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.
用同样的方法,我们还可以得出:
性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那
么b∣a,c∣a.
性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.
例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.
性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);
性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,
2
那么bd|ac;
例题精讲
模块一、2、3、5系列
【例 1】要使156
abc能被36整除,而且所得的商最小,那么,,
a b c分别是多少?
【考点】整除最值之2、3、5系列【难度】3星【题型】解答
【解析】分解为互质的几个数的乘积,3649
=⨯分别考虑所以6c能被4整除,从而c只可能是1,3,5,7,
9.要使商最小,,a b应尽可能小,先取0
++是9的
a=,又15612
+++++=++,所以3b c
a b c b c
倍数所以1
c=时,取得最小值.
b=,5
【答案】0
c=
b=,5
a=,1
【例 2】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?
【考点】整除最值之2、3、5系列【难度】4星【题型】解答
【解析】乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.551
=⨯,3056
=⨯,……,
=⨯,2054
=⨯,2555
=⨯,1553
=⨯,1052
发现只有25、50、75、100、……这样的数中才会出现多个因数5,乘到55时共出现11213
+=个因数5,所以至少应当写到55,最多可以写到59.
3。

相关文档
最新文档