材料力学第七章答案 景荣春

合集下载

材料力学第七章课后题答案 弯曲变形

材料力学第七章课后题答案 弯曲变形
3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC

材料力学简明教程(景荣春)课后答案4

材料力学简明教程(景荣春)课后答案4


案 b 解
FS
(x)
=
ql 4

qx
(0 < x < l)
答 M (x) = ql x − q x2 (0 ≤ x ≤ l)
42
课后 FS
max
=
3 ql 4

M = ql2 max 4
( ) c 解
∑MA =0
, − q × 2l × l
+
FB
× 2l
+ ql 2
=
0 , FB
=
ql 2

( ) ∑ Fy
网 FS+C
=
1 ql 2

M
+ C
=
− 1 ql 2 ; 8
FSB = 0 , M B = 0
案 4-2 已知各梁如图,求:(1)剪力方程和弯矩方程;(2)剪力图和弯矩图;(3) FS max
和M 。 max



解 设左支座为 A,右支座为 B
( ) ∑ M B = 0 , FA = −F ↓
FS (x) = −F
=
ba a+b
F
FS+C
=
−a a+b
F

M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql


M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得

材料力学第五版 第七章 应力状态 答案

材料力学第五版 第七章 应力状态  答案

第七章应力状态与强度理论一、教学目标和教学内容1.教学目标通过本章学习,掌握应力状态的概念及其研究方法;会从具有受力杆件中截取单元体并标明单元体上的应力情况;会计算平面应力状态下斜截面上的应力;掌握平面应力状态和特殊空间应力状态下的主应力、主方向的计算,并会排列主应力的顺序;掌握广义胡克定律;了解复杂应力状态比能的概念;了解主应力迹线的概念。

掌握强度理论的概念。

了解材料的两种破坏形式(按破坏现象区分)。

了解常用的四个强度理论的观点、破坏条件、强度条件。

掌握常用的四个强度理论的相当应力。

了解莫尔强度理论的基本观点。

会用强度理论对一些简单的杆件结构进行强度计算。

2.教学内容○1应力状态的概念;○2平面应力状态分析;○3三向应力状态下的最大应力;○4广义胡克定律•体应变;○5复杂应力状态的比能;⑥梁的主应力•主应力迹线的概念。

讲解强度理论的概念及材料的两种破坏形式。

讲解常用的四个强度理论的基本观点,并推导其破坏条件从而建立强度计算方法。

介绍几种强度理论的应用范围和各自的优缺点。

简单介绍莫尔强度理论。

二、重点难点重点:1、平面应力状态下斜截面上的应力计算,主应力及主方向的计算,最大剪应力的计算。

2、广义胡克定律及其应用。

难点:1、应力状态的概念,从具体受力杆件中截面单元体并标明单元体上的应力情况。

2、斜截面上的应力计算公式中关于正负符号的约定。

3、应力主平面、主应力的概念,主应力的大小、方向的确定。

4、广义胡克定律及其应用。

5 强度理论的概念、常用的四个强度理论的观点、强度条件及其强度计算。

6 常用四个强度理论的理解。

7 危险点的确定及其强度计算。

三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。

四、建议学时10学时五、讲课提纲1、应力状态的概念所谓“应力状态”又称为一点处的应力状态(state of stresses at a given point),是指过一点不同方向面上应力的集合。

材料力学简明教程(景荣春)课后答案2

材料力学简明教程(景荣春)课后答案2
τ 45° = 50 MPa
7
σ 60o
= 100 cos2 60o
= 100 × (1 )2 2
= 25 MPa
F
τ 60o
= 100 sin 2 × 60o 2
= 100 × 2
3 = 43.3MPa 2
σ 90o
= 0 ,τ 90o
= 100 sin 2 × 90o 2
=0
F
60°
σ 90° = 0 90°
=
l1 − l l
×100% 知,对同
1
种材料, δ 5
> δ10 ,即对
后 δ 5 = 20% 的某材料,其δ10 < 20% ;显然,另 1 种材料δ10 = 20% 塑性性能较好。
课 2-12 由同一材料制成的不同构件,其许用应力是否相同?一般情况下脆性材料的安全
因数为什么要比塑性材料的安全因数选得大些? 答 由同一材料制成的不同构件,其许用应力不一定相同,这取决于工况、环境和重要
(a)
(b)
思考题 2-13 解图
2-14 计算拉压超静定问题时,轴力的指向和变形的伸缩是否可任意假设?为什么?
4
答 计算拉压超静定问题时,轴力的指向假设和变形的伸缩应对应(只有其中 1 个可任 意假设),即轴力设正(负)时,变形应设成拉(缩)。否则,计算结果有问题。
2-15 图示杆件表面有斜直线 AB ,当杆件承受图示轴向拉伸时,问该斜直线是否作平
2-7 某拉伸试验机的结构示意图如图所示。设试验机的杆 CD 与试样 AB 材料同为低 碳钢,其σ p = 200 MPa ,σ s = 240 MPa ,σ b = 400 MPa 。试验机最大拉力为 100 kN。
问:(1)用这一试验机作拉断试验时,试样直径最大可达多大?

材料力学简明教程(景荣春)课后答案

材料力学简明教程(景荣春)课后答案

第 3 章扭转思考题3-1何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩?答轴在外力偶矩作用下,由截面法求出的横截面上分布内力向截面形心简化的合力(力偶矩)称为扭矩。

对扭矩T的正负规定为:若按右手螺旋法则把T表示为矢量,当矢量方向与截面的外法线n的方向一致时,T为正;反之为负。

用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。

3-2薄壁圆筒、圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件是什么?答等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶M e所做试验结果现象表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切应力⎜,因为筒壁的厚度 ™很小,可以假设沿薄壁圆筒筒壁厚度切应力不变。

又因在同一圆周上各点情况完全相同,应力也就相同,从而建立薄壁圆筒扭转切应力计算公式;在圆轴两端施加一对大小相等、方向相反的外力偶。

从实验中观察到的现象,假设轴变形后,横截面仍保持平面,其形状、大小与横截面间的距离均不改变,而且半径仍为直线(圆轴扭转平面假设),连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。

公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用)。

3-3试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。

答单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时(忽略厚度影响)筒壁各点的应力状态为纯剪切。

3-4试述剪切胡克定律与拉伸(压缩)胡克定律之间的异同点及3 个弹性常量E, G, ⎧之间关系。

答剪切胡克定律⎜ = G©(反映角度的变化)与拉伸(压缩)胡克定律 ⎛ = E∑(反映长度的变化)皆为应力与应变成正比关系。

3 个弹性常量E, G, ⎧之间关系为G =E2(1 + ⎧ )。

3-5圆轴扭转时如何确定危险截面、危险点及强度条件?答等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。

材料力学答案第7章

材料力学答案第7章

∑F

n
= 0, σ α dA = 0
∑F
分别得到
t
= 0, τ α dA = 0
σ α = 0,τ α = 0
由于方位角 α 是任取的,这就证明了 A 点处各截面上的正应力与切应力均为零。 顺便指出,本题用图解法来证更为方便,依据 A 点上方两个自由表面上的已知应力(零 应力)画应力图,该应力圆为坐标原点处的一个点圆。至此,原命题得证。
由此可知,主应力各为
σ1 = 60.0MPa, σ 2 = σ 3 = 0
5
σ1 的方位角为
α0 = 0o
对于应力图(b),其正应力和切应力分别为
σB = τB =
| M | | y B | 12 × 20 × 10 3 × 0.050 N = = 3.00 × 10 7 Pa = 30.0MPa 3 2 Iz 0.050 × 0.200 m Fs S z (ω) 12 × 20 × 10 3 × 0.050 × 0.050 × 0.075 N = = 2.25 × 10 6 Pa = 2.25MPa 3 2 I zb 0.050 × 0.200 × 0.050m
σα = (
− 30 + 10 − 30 − 10 + cos45 o − 20sin45 o )MPa = −38.3MPa 2 2 − 30 − 10 τα = ( sin45 o + 20cos45 o )MPa = 0 2
(c)解:由题图所示应力状态可知,
σ x = 10MPa,σ y = −20MPa,τ x = 15MPa,α = −60 o
7-7
已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 MPa) ,试用图解法

材料力学第七章答案 景荣春

材料力学第七章答案 景荣春






ww
7-13 用塑性很好的低碳纲制成的螺栓,当拧过紧时,往往沿螺纹根部崩断,试分析其 破坏原因。 答 螺纹根部处于三向受拉应力状态,切有叫大的应力集中。脆断。
w.
102
kh
7-12 水管在冬天常发生冻裂,为什么冰不破碎而钢管却破裂? 答 冰的密度比水小,结的冰成三向受压,呈现良好的塑性,不破碎;钢管因冰体积膨 胀受拉,加上温度低,呈现冷脆性,被拉断。
kh
τ yz τ zx
G G
1 ⎡σ x − μ (σ y + σ z ) ⎤ , ⎦ E⎣ 1 ⎡σ y − μ (σ z + σ x ) ⎦ ⎤, εy = ⎣ E 1 εz = ⎡ σ z − μ (σ x + σ y ) ⎤ ⎦, E⎣
εx =
上式称为一般应力状态下的广义胡克定律。 正应力只产生正应变, 并考虑横向变形效应 (泊松效应) , 用叠加原理求得在 σ x ,σ y 和
w.
co
m
2 ⎧11.2 − 40 + (− 20 ) ⎛ − 40 + 20 ⎞ 2 d 解(1) σ 1,3 = ± ⎜ MPa , σ 2 = 0 ⎟ + (− 40 ) = ⎨ 2 2 ⎝ ⎠ ⎩− 71.2 2 × (− 40 ) (2) tan 2α 0 = − = −4 , α 01 = −38.0° − 40 − (− 20 ) σ −σ3 (3) τ max = 1 = 41.2 MPa 2

w. da
⎛σ x −σ y ⎞ 2 ⎟ τ max = ⎜ ⎜ ⎟ + τ xy = 35 2 ⎝ ⎠ σ x +σ y σ x −σ y + × (− 0.28) − τ xy × 0.96 = 0 2 2 σ x −σ y × 0.96 + τ xy × (− 0.28) = 0 2 2 ⎛σ x −σ y ⎞ 2 ⎜ ⎟ + τ xy = 1 225 ⎜ ⎟ 2 ⎠ ⎝

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

w.
co
m
2 ⎧11.2 − 40 + (− 20 ) ⎛ − 40 + 20 ⎞ 2 d 解(1) σ 1,3 = ± ⎜ MPa , σ 2 = 0 ⎟ + (− 40 ) = ⎨ 2 2 ⎝ ⎠ ⎩− 71.2 2 × (− 40 ) (2) tan 2α 0 = − = −4 , α 01 = −38.0° − 40 − (− 20 ) σ −σ3 (3) τ max = 1 = 41.2 MPa 2





ww
w.
γ xy = γ yz = γ zx = τ xy
G
7-3 何谓单向应力状态?何谓三向应力状态?何谓纯剪切应力状态? 答 单向应力状态是在 1 个单元体的 3 个主应力中,仅有 1 个主应力不为零。 三向应力状态指在 1 个单元体的 3 个主应力均不为零。 纯剪切应力状态是 1 种特殊的平面应力状态, 其单元体的 2 个面上无应力, 其余 4 个面 上只有切应力。
a 解 σ 45° =

c 解 σ −60 =
τ −60°

10 − 20 10 − (− 20 ) + cos(− 120°) − 15 sin (− 120°) = 0.490 MPa 2 2 10 − (− 20 ) = sin (− 120°) + 15 cos(− 120°) = 20.5 MPa 2
(3) τ max
c 解 (1) σ 1,3 = ±25 MPa , σ 2 = 0 (2) tan 2α 0 = (3) τ max



b 解 (1) σ 1,3 =
⎧57 50 50 2 ± + (− 20 ) = ⎨ MPa , σ 2 = 0 2 2 ⎩ − 7 .0 2 × (− 20 ) (2) tan 2α 0 = − = −0.80 , α 01 = 19.3° 50 σ −σ 3 (3) τ max = 1 = 32 MPa 2
kh
τ yz τ zx
G G
1 ⎡σ x − μ (σ y + σ z ) ⎤ , ⎦ E⎣ 1 ⎡σ y − μ (σ z + σ x ) ⎦ ⎤, εy = ⎣ E 1 εz = ⎡ σ z − μ (σ x + σ y ) ⎤ ⎦, E⎣
εx =
上式称为一般应力状态下的广义胡克定律。 正应力只产生正应变, 并考虑横向变形效应 (泊松效应) , 用叠加原理求得在 σ x ,σ y 和
σ x +σ y
2 σ x −σ y 2
+
σ x −σ y
2
cos 2α − τ xy sin 2α =
σ +σ
2
+0−0 =σ
sin 2α + τ xy cos 2α =
σ −σ
2
sin 2α + 0 = 0
故面 AB 与面 AC 间夹角为
θ = 180° −
7-7 图 (a) 所示,在处于二向应力状态物体的边界 bc 上,点 A 处的最大切应力为 35 MPa 。求点 A 的主应力。若在点 A 周围以垂直于轴 x 和轴 y 的平面分割出单元体,求 单元体各面上的应力分量。
co
2
m
平面,其中 1 个是极大正应力所在的主平面,另 1 个是极小正应力所在的主平面;
定处于纯剪切状态吗? 答 是。 p =
σ 2 + τ 2 = const
1 (σ i − μ (σ j + σ k )) ,当 σ i = 0 时,若 σ j + σ k ≠ 0 ,则 ε i ≠ 0 。 E 1 (σ i − μ (σ j + σ k )) ,当 σ i = 0 时,若 σ j + σ k ≠ 0 ,则 ε i ≠ 0 , E
72° = 144° 2

(a)
ww
(a)
w.
107
kh
(b) (b)
da
w.
co
7-6 已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 MPa) ,试用应力圆法 求该点的主应力大小和主应力的方位及面 AB 与面 AC 间夹角大小。本题若用解析法求解, 方便吗?
m
解 tan θ =
m
d 解 σ 30° =
τ 30°
7-2 (1) (2) (3)
30 + 50 30 − 50 + cos ° = 35 MPa 2 2 30 − 50 = sin 60° = −8.66 MPa 2
已知应力状态如图所示(应力单位为 MPa) ,用解析法计算: 主应力大小,主平面位置; 在单元体上绘出主平面位置及主应力方向; 最大切应力。

f 解 (1)
2 ⎧37 − 20 + 30 ⎛ − 20 − 30 ⎞ 2 ± ⎜ MPa ⎟ + 20 = ⎨ 2 2 ⎝ ⎠ ⎩− 27 2 × 20 (2) tan 2α 0 = − = 0.80 , α 01 = 19.3° − 20 − 30 σ −σ3 (3) τ max = 1 = 32.0 MPa 2

w. da
⎛σ x −σ y ⎞ 2 ⎟ τ max = ⎜ ⎜ ⎟ + τ xy = 35 2 ⎝ ⎠ σ x +σ y σ x −σ y + × (− 0.28) − τ xy × 0.96 = 0 2 2 σ x −σ y × 0.96 + τ xy × (− 0.28) = 0 2 2 ⎛σ x −σ y ⎞ 2 ⎜ ⎟ + τ xy = 1 225 ⎜ ⎟ 2 ⎠ ⎝
2
(a)
m co
(b) (c)

σ x = −44.8 MPa , σ y = −25.2 MPa , τ xy = −33.6 MPa σ 1 = σ 2 = 0 , σ 3 = −70 MPa
7-8 图示棱柱形单元体上 σ y = 40 MPa ,其面 AB 上无应力作用,求 σ x 及 τ xy 。
7-8 若某一方向的主应力为零,其主应变一定为零吗? 因为 ε i = 答 不一定。
7-9 若受力构件内某点沿某一方向有线应变,则该点沿此方向一定有正应力吗? 因为 ε i = 答 不一定。
即有正应变的方向,但其正应力可为 0。 7-10 过受力构件上任一点,其主平面有几个? 答 过受力构件上任一点,其主平面至少有 3 个。



τ 22.5°
ww
b 解 σ 22.5° =
− 30 + 10 − 30 − 10 cos 45° − 20 sin 45° = −38.3 MPa + 2 2 − 30 − 10 = sin 45° + 20 cos 45° = 0 2
w.
103
kh
da
w.
co
τ 45°
30 + 10 30 − 10 + cos 90° − (− 20 )sin 90° = 40 MPa 2 2 30 − 10 = sin 90° + (− 20 )cos 90° = 10 MPa 2





ww
7-13 用塑性很好的低碳纲制成的螺栓,当拧过紧时,往往沿螺纹根部崩断,试分析其 破坏原因。 答 螺纹根部处于三向受拉应力状态,切有叫大的应力集中。脆断。
w.
102
kh
7-12 水管在冬天常发生冻裂,为什么冰不破碎而钢管却破裂? 答 冰的密度比水小,结的冰成三向受压,呈现良好的塑性,不破碎;钢管因冰体积膨 胀受拉,加上温度低,呈现冷脆性,被拉断。
− 2 × 25 , α 01 = −45° 0 = 25 MPa


ww
w.
104
⎛ 50 ⎞ = ⎜ ⎟ + 20 2 = 32.0 MPa ⎝ 2 ⎠
kh
2
da
2 ⎧57.0 50 + 0 ⎛ 50 − 0 ⎞ 2 a 解(1) σ 1,3 = ± ⎜ MPa , σ 2 = 0 ⎟ + 20 = ⎨ 2 ⎝ 2 ⎠ ⎩ − 7 .0 2 × 20 (2) tan 2α 0 = − = −0.80 , α 01 = −19.3° 50 − 0
da
w.
7-11 石料、极硬的工具钢在轴向压缩时,会沿压力作用方向的纵截面裂开,为什么? 答 石料、极硬的工具钢可视为脆性材料,可用第 2 强度理论(最大拉应变理论)解释 其在轴向压缩时,会沿压力作用方向的纵截面裂开。
co
m
习 题
,用解析法计算图中指定截面的正应力 7-1 已知应力状态如图所示(应力单位为 MPa) 与切应力。
σ z 的共同作用下的正应变;切应力只产生切应变。
它适用于线弹性、 小变形条件 (以保证叠加原理可用, 保证正应力和切应力无偶合作用) 。 其任一斜截面上的总应力 p 为常量, 则该单元体一 7-7 若某一平面应力状态的单元体,
101
da
⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭
w.
σ max ⎫ σ x + σ y ⎛ σ x −σ y ⎞ 2 ± ⎜ 用式 ⎬= ⎟ + τ xy 可确定极大和极小的 2 个主应力。 σ min ⎭ 2 ⎝ 2 ⎠
代入式(b)得
σ 60° =

σ x + 40 σ x − 40
2τ xy
σ x −σ y
可以求出相差 90o 的 2 个角度 α 0 ,它们确定 2 个相互垂直的
7-4 平面应力状态的极值切应力就是单元体的最大切应力吗? 答 不一定。若该平面应力状态算出的 2 个极值主应力 1 正 1 负,则该平面应力状态的 极值切应力就是单元体的最大切应力。 7-5 脆性材料适用哪几个强度理论?塑性材料适用哪几个强度理论?莫尔强度理论适 用于什么条件? 答 一般情况下,第 1,2 强度理论适用脆性材料。 第 3,4 强度理论适用塑性材料。 莫尔强度理论适用于抗拉和抗压强度不同的脆性材料。 7-6 何谓广义胡克定律?该定律是如何建立的?其适用范围是什么? 答
相关文档
最新文档