《概率统计》6-10章全套课件
合集下载
《概率论与数理统计》全套课件PPT(完整版)

m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
第6章 第4讲 正定二次型 课件(共26张PPT)- 《概率论与数理统计(慕课版)》同步教学(人民邮

之差为2r – m为符号差.
3
01
正定二次型的定义
惯性定理
任意二次型 X T AX 都可通过非退化线性变换化为规范形
z12 z22
z 2p z 2p 1
z 2p q,
其中 p 为正惯性指数,q 为负惯性指数,p + q为二次型的秩
且 p 、q 由二次型唯一确定,即规范情势唯一的.
霍尔维茨定理
例5
方程3x 2 5 y 2 5z 2 4 xy 4 xz 10 yz 1表示何种二次曲面.
2
2
2
f
x
,
y
,
z
解 因为
3x 5 y 5z 4 xy 4 xz 10 yz
是一个二次型,
3 2 -2
其矩阵A= 2 5 -5 ,由 A - E 0 得
因为 3 2 3 0,
所以A不是正定矩阵,从而二次型不是正定二次型.
10
01
正定二次型的定义
例3
已知A为n阶正定矩阵,E为n阶单位矩阵,证明 | A E | 1.
解
设A的特征值为 1 , 2 ,
, n, 由A为正定矩阵知
1 0, 2 0,
A + E 的特征值为 1 1, 2 1,
4
01
正定二次型的定义
定义6.3
对应矩阵A 称为正定矩阵.
实二次型 f ( x1 , x2 ,
恒有 f (c1 , c2 ,
, xn ) X T AX,若对任意 (c1 , c2 ,
, cn ) 0,则称 f ( x1 , x2 ,
, cn )T 0,
概率论与数理统计全套精品课件(PPT)

概率论与数理统计
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:
东华大学《概率论与数理统计》课件 第6章样本与抽样分布

X
的
n
一
个
样
本的
观察
值
,
则g( x1 , x2 , xn )是统计量g( X1 , X 2 , X n )的观察值.
例1 设总体X 服从两点分布b(1, p) ,其中p 是未知参数,
X1,
,
X
是
5
来自X的简
单
随机样本.试指出
X1
X
,
2
max
1 i 5
X
i
,
X5 2 p,
( X5 X1)2
哪些是统计量,哪些不是统计量,为什么?
从国产轿车中抽5辆进行耗 油量试验
样本容量为5 抽到哪5辆是随机的
对总体X在相同条件下,进行n次重复、独立观察,其结果依次记 为 X1,X2,…,Xn.这样得到的随机变量X1,X2,…,Xn.是来自总体的一个简单 随机样本,其特点是:
1. 代表性:X1,X2,…,Xn中每一个与所考察的总体X有相同的分布. 2. 独立性:X1,X2,…,Xn相互独立.
k同分布,
E(
X
k i
)
k
k 1, 2, , n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1 , A2 , , Ak ) P g(1, 2 , , k )
其中g为连续函数.
矩估计法的理论依据
2. 经验分布函数
设X1, X2,
,
X
是
n
总
体
F的
一
个Hale Waihona Puke 本,用S(
x
则称变量
t X Yn
所服从的分布为自由度为 n的 t 分布.
《概率统计》PPT课件

后抽比先抽的确实吃亏吗?
“大家不必争先恐后,你们一个一个 按次序来,谁抽到‘入场券’的机会都 一样大.”
到底谁说的对呢?让我们用概率 论的知识来计算一下,每个人抽到“ 入场券”的概率到底有多大?
“先抽的人当然要比后抽的人抽到的机会大。”
我们用Ai表示“第i个人抽到入场券” i=1,2,3,4,5. 则 A 表示“第 i个人未抽到入场券” i 显然,P(A1)=1/5,P( A1)=4/5
P(A2)=0.4×0.5×(1-0.7)+0.5×0.7×(1-0.4)+ 0.4×0.7×(1-0.5)=0.41, P(A3)=0.4×0.5×0.7=0.14 P(B|A0)=0, P(B|A1)=0.2, P(B|A2)=0.6, P(B|A3)=1, 根据全概率公式有
P( B) P( B | Ai )P( Ai ) 0.458
P(Ai|B),表示症状B由Ai引起的概率 若P(Ai|B), i=1,2,…,n中,最大的一个是P(A1|B),
我们便认为A1是生病的主要原因,下面的关键是:
计算 P(Ai|B), i=1,2,…,n
P( Ai B) P( B | Ai ) P( Ai ) P( Ai | B) n Bayes公式 P( B) P( B | Ai ) P( Ai )
也就是说,
第1个人抽到入场券的概率是1/5.
由于 由乘法公式
A2 A1 A2
因为若第2个人抽到 了入场券,第1个人 肯定没抽到.
P ( A2 ) P ( A1 ) P ( A2 | A1 )
也就是要想第2个人抽到入场券,必须第1个人未 抽到, 计算得:
P(A2)= (4/5)(1/4)= 1/5
同济大学《概率论与数理统计》PPT课件

随机事件 D=“出现的点数超过 6”= ,即一定不会发生的不可能事件。
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
概率论与数理统计基本概念及抽样分布PPT课件

~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,
则
2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α
即
( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2
则
E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)
第六章《概率论与数理统计教程》课件

1
例5. 设X服从[0,λ]区间上的均匀分布,参数
λ>0,求λ的最大似然估计. 1 解:由题意得: X ~ f ( x; )
1 L( x1 , x 2 ,..., x n ; ) n 0
0 x
0 其它 0 x1 , x 2 ,..., x n
dL n n1 0 d
其它
无解.
应用最大似然估计基本思想: L越大,样本观察值越可能出现 取 max( x1 , x 2 ,..., x n ) 此时,L取值最大, 所以,所求最大似然估计为 max( x1 , x 2 ,..., x n )
考虑L的取值,要使L取值最大,λ应最小, 0 x1 , x 2 ,..., x n
例2 设总体 X ~ N ( , 2 ) ,其中 及 2 都是未知参数,如
果取得样本观测值为 x1 ,, x n , 求 及 2 的矩估计值。
解: 因为总体X的分布中有两个未知参数,所以应考虑一、二阶 原点矩,我们有 v1 ( X ) E ( X )
v 2 ( X ) E( X 2 ) D( X ) [ E( X )]2 2 2
e
e
1 2
2
2
( x )2 2 2
e
L( x1 , x 2 ,..., x n ; , )
2
i 1
1 2
2
( xi )2
(
2
1 2
2
1 2 2
) e
n
i 1
n
( xi )2
1 n 2 n 1 n 2 2 ) 2 ( x i ) ln 2 ln L n ln( ( xi ) 2 i 1 2 2 2 n 2 2 i 1 1 ln L 1 n Xi X 2 ( xi ) 0 n i 1 i 1 1 n 2 1 n n ln L n 1 ( xi )2 ( xi X )2 2 2 4 ( x i ) 0 n i 1 n i 1 2 2 2 i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Jiangsheng Yu
Law of Large Numbers
Outline Inevitability & our scheme of theorems Weak Law of Large Numbers (WLLN) Some theorems for WLLN Strong Law of Large Numbers (SLLN) Sufficient and necessary condition for WLLN
Outline of topics
1
Weak Law of Large Numbers (WLLN) Inevitability & our scheme of theorems Some theorems for WLLN
Chebyshev theorem, Bernoulli theorem and Poisson theorem Markov theorem and Khintchine theorem Stieltjes integral
Actual Inevitability: because of the limited capability, man believes that the event with probability closed to 1 will occur. It is called the principle of actual inference. That’s why we prefer those events with big probabilities and study their essence. For instance,
Sufficient and necessary condition for WLLN
2
Strong Law of Large Numbers (SLLN) Borel’s strong law of large numbers (1909) Kolmogorov inequality Kolmogorov’s two strong laws of large numbers
1
2
Homework: Among 100 guys selected randomly, there are at least two with the same birthday. It is impossible for the satellite to be crashed by the meteorshev Thm
⇒
Bernoulli Thm
⇑
Markov Thm
⇑
Khintchine Thm
⇑
Kolmogorov Thm
Jiangsheng Yu
⇑
Stieltjes integral
Law of Large Numbers
Outline Inevitability & our scheme of theorems Weak Law of Large Numbers (WLLN) Some theorems for WLLN Strong Law of Large Numbers (SLLN) Sufficient and necessary condition for WLLN
Inevitability
Absolute Inevitability: insight of God, for instance,
1 2
water boils at 100o C with one atmospheric pressure. phenomena guaranteed by Newton’s first law of motion, etc.
n→∞
lim P {|Yn − cn | < } = 1
(1)
the sequence of random variables {Xi }∞ 1 is called to satisfy the i= weak law of large numbers.
Poisson Thm Chebyshev (or Tschebyscheff) inequality
Jiangsheng Yu
Law of Large Numbers
Outline Inevitability & our scheme of theorems Weak Law of Large Numbers (WLLN) Some theorems for WLLN Strong Law of Large Numbers (SLLN) Sufficient and necessary condition for WLLN
Outline Weak Law of Large Numbers (WLLN) Strong Law of Large Numbers (SLLN)
Chapter 6 (1): Law of Large Numbers
Jiangsheng Yu
School of Electronics Engineering and Computer Science Peking University, Beijing 100871, China
Definition of weak law of large numbers
Let X1 , X2 , · · · , Xn , · · · be a sequence of random variables and Yn = n1 (X1 + · · · + Xn ). If there exists a sequence of constants c1 , c2 , · · · , cn , · · · such that ∀ > 0,
Probability Theory and Mathematical Statistics, 2007-2008
Jiangsheng Yu
Law of Large Numbers
Outline Weak Law of Large Numbers (WLLN) Strong Law of Large Numbers (SLLN)