《图形的平移与旋转》测试题
图形的平移和旋转基础题(含答案解析)版

图形的平移和旋转一.选择题(共15小题)1.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°2.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.423.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°4.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣17.如图,已知?ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°8.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O 按顺时针方向旋转到△CBE的位置,则旋转角为()A.30° B.45° C.60° D.90°10.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.11.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30° B.35° C.40° D.45°12.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长13.下列图形中,是中心对称图形的为()A. B. C.D.14.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)15.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°二.填空题(共6小题)16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .18.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE= .19.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .20.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.21.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .三.解答题(共6小题)22.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF 相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.23.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为,点B关于x轴的对称点B′的坐标为,点C关于y轴的对称点C的坐标为.(2)求(1)中的△A′B′C′的面积.24.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.25.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).26.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.27.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.图形的平移和旋转基础题教师版参考答案与试题解析一.选择题(共15小题)1.(2015?德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.【点评】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.2.(2015?镇海区模拟)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.42【考点】平移的性质.【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S梯形ABEO,根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=48.故选:A.【点评】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO的面积相等是解题的关键.3.(2015?哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.4.(2015?贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.【解答】解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5∴点M(m,n)在第一象限,故选A.【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.5.(2014?呼伦贝尔)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】坐标与图形变化-平移.【分析】先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.【解答】解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为(1,﹣3),故点在第四象限.故选D.【点评】本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(2015?枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1【考点】旋转的性质.【专题】压轴题.【分析】连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.【解答】解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1O D=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD?AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:D.【点评】本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,正确的作出辅助线是解题的关键.7.(2015?天津)如图,已知?ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°【考点】旋转的性质;平行四边形的性质.【分析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.【点评】本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出∠DA′B和∠BA′E′.8.(2014?自贡)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.(2015?巴彦淖尔)如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为()A.30° B.45° C.60° D.90°【考点】旋转的性质.【专题】计算题.【分析】由题意得到D对应点为C,连接OC,OD,∠DOC即为旋转角,利用正方形性质求出即可.【解答】解:∵正方形ABCD,O为正方形的中心,∴OD=OC,OD⊥OC,∴∠DOC=90°,由题意得到D对应点为C,连接OC,OD,∠DOC即为旋转角,则将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,旋转角为90°,故选D.【点评】此题考查了旋转的性质,熟练掌握旋转的性质是解本题的关键.10.(2015?龙岩)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.(2015?东西湖区校级模拟)如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30° B.35° C.40° D.45°【考点】旋转的性质.【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形内角和定理得出∠ACA′=∠A′BA=40°.【解答】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故选:C.【点评】此题主要考查了旋转的性质以及三角形的外角的性质和三角形内角和定理等知识,根据已知得出∠ACA′=40°是解题关键.12.(2014?邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长【考点】生活中的平移现象.【专题】操作型.【分析】分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.【解答】解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.【点评】此题主要考查了生活中的平移现象,得出各图形中铁丝的长是解题关键.13.(2015?甘孜州)下列图形中,是中心对称图形的为()A. B. C.D.【考点】中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.(2015?随州)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.15.(2014?南昌)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【考点】旋转的性质;平移的性质.【分析】利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.【解答】解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选:B.【点评】此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.二.填空题(共6小题)16.(2015?福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1 .【考点】旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM?sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM?sin60°=,∴BM=BO+OM=1+,故答案为:1+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.17.(2015?西宁)若点(a,1)与(﹣2,b)关于原点对称,则a b= .【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.18.(2015?湘潭)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE= 3 .【考点】旋转的性质.【分析】根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=3即可.【解答】解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=3.故答案为:3.【点评】本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.19.(2015?扬州)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= 5 .【考点】旋转的性质.【分析】根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由点F是DE的中点,可求出EG、GF,因为AE=AC﹣EC=2,可求出AG,然后运用勾股定理求出AF.【解答】解:作FG⊥AC,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F是DE的中点,∴FG∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.【点评】本题主要考查了旋转的性质、三角形中位线性质、勾股定理的综合运用,作垂线构造直角三角形是解决问题的关键.20.(2015?吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为42 cm.【考点】旋转的性质.【专题】压轴题.【分析】根据将△ABC绕点B顺时针旋转60°,得到△BDE,可得△ABC≌△BDE,∠CBD=60°,BD=BC=12cm,从而得到△BCD为等边三角形,得到CD=BC=CD=12cm,在Rt△ACB中,利用勾股定理得到AB=13,所以△ACF与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD,即可解答.【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.【点评】本题考查了旋转的性质,解决本题的关键是由旋转得到相等的边.21.(2015?沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA 交GF于点K.若正方形ABCD边长为,则AK= 2﹣3 .【考点】旋转的性质.【专题】压轴题.【分析】连接BH,由正方形的性质得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL证明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH=∠ABE=30°,AH=EH,由三角函数求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.【解答】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB?tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.【点评】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、三角函数;熟练掌握旋转的性质和正方形的性质,并能进行推理计算是解决问题的关键.三.解答题(共6小题)22.(2015?湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【考点】旋转的性质;勾股定理;菱形的性质.【专题】计算题;证明题.【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=A B=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.23.(2013?南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.【考点】关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标.【分析】(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.【解答】解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案为:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′?B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.【点评】本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.24.(2015?新泰市校级模拟)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点 A ,旋转角度是90 度;(2)若连结EF,则△AEF是等腰直角三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.【考点】旋转的性质.【分析】(1)根据旋转变换的定义,即可解决问题.(2))根据旋转变换的定义,即可解决问题.(3)根据旋转变换的定义得到△ADE≌△ABF,进而得到S四边形AECF=S正方形ABCD=25,求出AD的长度,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)由题意得:AF=AE,∠EAF=90°,∴△AEF为等腰直角三角形.故答案为等腰直角.(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,而∠D=90°,DE=2,∴.【点评】该题主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点及其应用问题;解题的关键是牢固掌握旋转变换的性质、正方形的性质、勾股定理等几何知识,这是灵活运用、解题的基础和关键.25.(2015?昆明)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).【考点】作图-旋转变换;弧长的计算;作图-轴对称变换.【专题】作图题.【分析】(1)利用关于x轴对称点的横坐标相等,纵坐标化为相反数可先找出点A1、B1、C1的坐标,然后画出图形即可;(2)利用旋转的性质可确定出点A2、C2的坐标;(3)利用弧长公式进行计算即可.【解答】解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC=,∴点C旋转到C2点的路径长=.【点评】本题主要考查的是图形的对称、图形的旋转以及扇形的弧长公式,掌握相关性质是解题的关键.26.(2015?桂林)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)如图,画出△ABC向左平移3个单位后的△A1B1C1;(2)如图,画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC扫过的面积即为扇形AOA2的面积减去扇形COC2的面积,求出即可.【解答】解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C2为所求的三角形;(3)在(2)的条件下,AC边扫过的面积S=﹣=5π﹣=.故答案为:.【点评】此题考查了作图﹣旋转变换,平移变换,以及扇形面积公式,作出正确的图形是解本题的关键.27.(2015?贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.【考点】作图-旋转变换;两条直线相交或平行问题;作图-平移变换.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据旋转角度,旋转方向,分别找到A、B、C的对应点,顺次连接可得△A2B2C2;(3)由图形可知交点坐标;【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由图形可知:交点坐标为(﹣1,﹣4).【点评】此题主要考查了平移变换以及旋转变换,得出对应点位置是解题关键.。
图形的平移与旋转练习题

图形的平移与旋转1.△ABC各极点的坐标别离为A(-3,5)、B(-4,3)、C(-1,1),将△ABC先向上平移3个单位长度,再向右平移4个单位长度,取得△DEF。
(1)别离写出点D、E、F的坐标;(2)若是将△DEF看成是由△ABC通过一次平移取得的,计算出平移距离。
2.如下图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离是多少?3.通过平移把点A(1,3)移到点B(3,0),按一样的平移方式把点(2,3)移到点P,那么点P的坐标是多少?4.五边形ABCDE的极点坐标别离为A(0,6)、B(-3,-3)、C(0,-3)、D(2,0)、E(3,3),将五边形ABCDE通过一次平移后取得五边形FGHIJ,其中极点A的对应点是F(-3,10)。
(1)写出其他对应点的坐标;(2)请指出这一平移的平移距离。
5.如下图,两个边长为a的正方形,让一个正方形的极点在另一个正方形的中a2,现把其中一个正方形固定不动,另一个正心上,现在重叠部份的面积为14方形绕中心旋转,那么在旋转进程中,两个正方形重叠部份的面积是不是发生转变?什么缘故?6.如下图,设D是△ABC中BC边的中点,P是AB边上一点,Q是AC边上一点,且PD⊥DQ,试说明:BP+CQ>PQ7.如下图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后取得△ACE,那么线段DE的长度是多少?8.如下图,将周长是8的△ABC沿BC方向平移1个单位长度取得△DEF,那么四边形ABFD的周长是多少?9.如下图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标别离为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积是多少?10.如下图,将等边△ABC沿BC方向平移取得△A1B1C1,假设BC=3,S△PB1C=√3,那的长度是多少?么BB1。
八年级上数学第四章+图形的平移与旋转(题+答案)

第四章图形的平移与旋转单元测试卷一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A. 3B. 4C. 5D. 62.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置.若∠CAB′=25°,则∠CAC′的度数为( )A. 25°B. 40°C. 65°D. 70°3.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A. ∠EAB=30°B. ∠EAB=45°C. ∠EAB=60°D. ∠EAB=75°4.在平面直角坐标系中,P点关于原点的对称点为P1(−3,−8),P点关于x轴的对称点为33=( )P2(a,b),则√abA. −2B. 2C. 4D. −45.如图直角梯形ABCD中,AD//BC,AB⊥BC,AD=2,BC=3,将CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )A. 1B. 2C. 3D. 不能确定6.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2√3,P是BC边上一动点,连接AP,把线段AP绕点A逆时针旋转60°到线段AQ,连接CQ,则线段CQ的最小值为( )A. 1B. 2C. 3D. √37.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O( )A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为( )A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)9.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 ( )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)10.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 48B. 96C. 84D. 42二、填空题(本大题共8小题,共24分)11.如图,已知直线AB与y轴交于点A(0,2),与x轴的负半轴交于点B,且∠ABO=30°,点C为x轴的正半轴上一点,将线段CA绕点C按顺时针方向旋转60°得线段CD,连接BD,若BD=√41,则点C的坐标为.12.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.13.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是.14.在所示的数轴上,点B与点C关于点A成中心对称,A、B两点对应的实数分别是√3和−1,则点C所对应的实数是.15.如图所示,已知AB=3,AC=1,∠D=90∘,△DEC与△ABC关于点C成中心对称,则AE的长是.16.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是______.17.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG,则下列结论:a2; ③FC平分∠BFG; ①∠FCG=∠CDG; ②△CEF的面积等于14 ④BE2+DF2=EF2.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共66分。
图形的平移与旋转(习题及答案).

1➢ 复习巩固 图形的平移与旋转(习题) 1. 下列图案中,既是中心对称图形又是轴对称图形的有( )A .1 个B .2 个C .3 个D .4 个2. 如图,将周长为 15 cm 的△ABC 沿射线 BC 方向平移 2 cm 后得到△DEF ,则四边形 ABFD的周长为 cm . 第 2 题图 第 3 题图3. 如图,△ABC 是等腰直角三角形,∠A =90°,将△ABC 沿 BC方向平移得到△A 1B 1C 1,边 A 1B 1 与 AC 交于点 D .若 BC =6,S △ B CD 4 ,则线段 CC 1 的长为 .4. 如图,在平面直角坐标系中,点 A (-1,0),点 B (0,-2),将线段 AB 平移至 A 1B 1,若点 A 1,B 1 的坐标分别为(m ,1), (3,n ),则n m 的值为 .第 4 题图第 5 题图 5. 如图,△ABC 绕点 A 顺时针旋转 80°得到△AEF ,若∠B =100°,∠F =50°,则∠α的度数为 . 6. 如图,在△ABC 中,AB =2,BC =3.6,∠B =60°,将△ABC 绕点 A 顺时针旋转一定角度得到△ADE ,当点 B 的对应点 D 恰好落在 BC 边上时,CD 的长为.10 2 7. 如图,∠C =90°,AC =4,BC =3,将△ABC 绕点 A 逆时针旋转,使点 C 落在线段 AB 上的点 E 处,点 B 落在点 D 处,连接 BD , 则 BD 的长为( )A .B . 2C .3D . 2 第 7 题图第 8 题图 8. 如图,△ODC 是由△OAB 绕点 O 逆时针旋转 50°后得到的图形,若点 A 恰好落在边 CD 上,且∠BOD =130°,则∠C 的度数为 .9. 已知点 A (a -b ,-6)与 B (-2,a +b )关于坐标原点对称,则 ab 的值为 . 10. 如图,△ABC 和△ECD 都是等边三角形,△EBC 可以看作是△DAC 经过平移、轴对称或旋转得到.说明得到△EBC 的过程.1. 平移△ABC ,使得边 AB 移到 DE 的位置.下图是小刚的作业,他的作法完全正确,可不小心将一团墨汁沾染到了作业本上.(1) 指出平移的方向和平移的距离;(2) 帮小刚补全平移前后的△ABC 和△DEF .512.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,4),B(-4,2),C(-2,1).(1)将△ABC 绕着点C 顺时针旋转90°得到△A1B1C,请画出△A1B1C,并写出A1,B1 的坐标;(2)若△A2B2C2 和△ABC 关于原点O 中心对称,请画出△A2B2C2;(3)P(a,b)是△ABC 的边AC 上一点,将△ABC 平移后点P 的对称点为P′(a+2,b-6),请画出平移后的△A3B3C3;(4)我们发现△A2B2C2 和△A3B3C3 关于某点中心对称,对称中心的坐标为.【参考答案】➢复习巩固1. B2. 193. 24. 15. 50°6. 1.67. A8. 35°9. 810.以点C 为旋转中心,将△DAC 逆时针旋转60°可以得到△EBC11.(1)图略,连接AD,平移的方向是点A 到点D 的方向,平移的距离是线段AO 的长度;(2)图略;12. (1)图略,A1(1,2),B1(-1,3);(2)图略;(3)图略;(4)(1,-3)。
图形的平移,对称与旋转的经典测试题含答案

【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】
图形的平移与旋转测试题及答案

图形的平移与旋转测试时间:分钟,满分:分一、选择题(每小题3分,共30分)1. 以下现象:①荡秋千;②呼啦圈;③跳绳;④转陀螺。
其中是旋转的有()。
(A)①②(B)②③(C)③④(D)①④2。
下列图形中只能用其中一部分平移可以得到的是()。
(A)(B)(C)(D)3。
下列标志既是轴对称图形又是中心对称图形的是()。
(A)(B) (C)(D)4。
如图1,四边形EFGH是由四边形ABCD平移得到的,已知,AD=5,∠B=70°,则下列说法中正确的是()。
(A)FG=5, ∠G=70°(B)EH=5,∠F=70°(C)EF=5,∠F=70°(D) EF=5,∠E=70°5。
如图3,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=45°,则∠AOD的度数为().(A)55°(B)45°(C)40°(D)35°6。
同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,如图3中所有小三角形均是全等的等边三角形,其中的菱形AEFG可看成是把菱形ABCD以A为中心()。
(A)顺时针旋转60°得到(B)逆时针旋转60°得到(C)顺时针旋转120°得到(D)逆时针旋转120°得到7. 如图,甲图案变成乙图案,既能用平移,又能用旋转的是().8。
下列图形中,绕某个点旋转180°能与自身重合的图形有 ( )。
(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆。
(A )2个 (B )3个 (C )4个 (D )5个9. 如图4,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF,则下列结论中,错误的是()。
(A )BE=EC(B)BC=EF(C )AC=DF(D )△ABC ≌△DEF10。
八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。
(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,在Rt ABC ∆中,,AC BC D E =、是斜边AB 上两点,且45DCE ∠=︒,将ACD ∆绕点C 顺时针旋转90︒后,得到BCF ∆,连接EF ,下列结论中:①45ECF ∠=︒;②ACD ∆≌BCE ∆;③CE 平分DCF ∠;④222AD BE DE +=;正确的有( )个A .1个B .2个C .3个D .4个4.如图,在△ABC 中,AB=3,BC=5.2,∠B=60°,将△ABC 绕点A 逆时针旋转△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .0.8B .2C .2.2D .2.85.下列图案中,是中心对称图形的是( )A .B .C .D . 6.下列四个图形是word 软件中的自选图形,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 7.如图,将ABC 绕点C 逆时针旋转得到DEC ,若点D 刚好落在边AB 上,CB 与DE 交于点F ,120,20ACB E ∠=︒∠=︒,则ADC ∠的度数为( )A .40︒B .50︒C .55︒D .60︒ 8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ) A . B . C . D .9.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .5 10.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1211.下列语句说法正确的是 ( )A .两锐角分别相等的两个直角三角形全等B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等12.如图,在ABC 中,70,30B BAC ∠=︒∠=︒,将ABC 绕点C 顺时针旋转得到,EDC 当点B 的对应点D 恰好落在AC 上时,连接,AE 则AED ∠的度数为( )A .40B .35C .25D .20二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.如图,点D 是等腰直角三角形 ABC 内一点,AB =AC ,若将△ABD 绕点A 逆时针旋转到△ACE 的位置,则∠AED 的度数为________________.15.如图,P 是等边△ABC 内一点,PA =4,PB =3PC =2,则ABC 的边长为________.16.在平面直角坐标系xoy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转90°得到OA′, 则点A′的坐标是____________.17.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.18.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD //BC ,则∠BAE =______°.19.如图,将△AOB 绕点O 按逆时针方向旋转50°后得到△COD ,如果∠AOB =15°,那么∠AOD 的度数为_____.20.如图,在ABC ∆中,8AB =,6AC =,30BAC ∠=,将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,连接1BC ,则1BC 的长为__________.三、解答题21.如图,在ABC 中,1AB =,45BAC ∠=︒,3AC =.将ABC 绕点B 逆时针旋转一个角α,得到A BC ''△,点A 恰好在A C ''边上.(1)求α的度数;(2)求AC '的长.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.如图,在边长为8的等边ABC 中,点D 是AB 的中点,点E 是平面上一点,且线段2DE =,将线段EB 绕点E 顺时针旋转60°得到线段EF ,连接AF .(1)如图1,当2BE =时,求线段AF 的长;(2)将线段BE 绕点B 旋转得到图2,求证:AF CE =.24.如图,ABC 在平面直角坐标系内,顶点的坐标分别为()4,4A -,()2,5B -,()2,1C -.(1)平移ABC ,使点C 移到点()12,4C --,画出平移后的111A B C △,并写出点1A ,1B 的坐标;(2)画出与ABC 关于原点对称的图形.25.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-2,1),B (-4,5),C (-5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2;(3)求△A 2B 2C 2的面积.26.在平面直角坐标系中,ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将ABC 绕着点A 顺时针旋转90°,画出旋转后得到的11AB C △,并直接写出点11,B C 的坐标.(2)在(1)得到的图形中,1∠=BAC ______度,连结1B C ,作1AB C 的高CD ,求CD 长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A 、是中心对称图形,不是轴对称图形,故本选项不合题意;B 、不是中心对称图形,但是轴对称图形,故本选项不合题意;C 、是中心对称图形,又是轴对称图形,故本选项合题意;D 、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C .【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B解析:B【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A 、是轴对称图形不是中心对称图形,故不符合题意;B 、既是轴对称图形又是中心对称图形,故符合题意;C 、是轴对称图形不是中心对称图形,故不符合题意;D 、是轴对称图形不是中心对称图形,故不符合题意;故选:B .【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.C解析:C【分析】①根据旋转的性质可得出∠BCF=∠ACD ,由∠ACB=90°,∠DCE=45°,可得出∠BCF+∠BCE=∠ECF=45°,即可判断①;②根据旋转的性质可得出△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,即可判断②; ③根据∠DCE=∠ECF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=EF ,求出∠EBF=90°,根据勾股定理推出即可.【详解】解:∵在Rt △ABC 中,BC=AC ,∴∠A=∠CBA=45°,①由旋转,可知:∠BCF=∠ACD ,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,∴∠BCF+∠BCE=∠ECF=45°,故①正确;②由旋转,可知:△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,故②错误;③∵∠DCE=∠ECF=45°,∴CE 平分∠DCF ,故③正确;④由旋转可知:AD=BF ,∠CBF=∠A=45°,∵∠CBA=45°,∴∠EBF=90°,由勾股定理得:BF 2+BE 2=EF 2,即AD 2+BE 2=EF 2,在△CDE 和△CFE 中,CE CE DCE ECF CD CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CFE (SAS ),∴DE=EF ,∴AD 2+BE 2=DE 2,故选:C .【点睛】本题考查了全等三角形的判定、相似三角形的判定、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.4.C解析:C【分析】根据旋转的性质得到△ABD 为等边三角形,得到BD=AB=3,再根据线段和差计算得到答案即可.【详解】∵△ABC 绕点A 逆时针旋转△ADE ,∴AB=AD ,∵∠B=60°,∴△ABD 为等边三角形,即BD=AB=3,∴CD=BC-BD=5.2-3=2.2;故选:C .【点睛】此题考查旋转的性质,等边三角形的判定及性质,线段的和差计算,掌握旋转的性质证得△ABD 为等边三角形是解题的关键.5.A解析:A【分析】根据中心对称图形的概念解答.【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.A解析:A【分析】先根据旋转的性质可得,20AC CD B E =∠=∠=︒,再根据三角形的内角和定理可得40A ∠=︒,然后根据等腰三角形的性质即可得.【详解】由旋转的性质得:,AC CD B E =∠=∠,120,20ACB E ∠=︒∠=︒,12041801800ACB B AC A B E ∠-∠=︒∠-∠∴∠==︒-=︒-︒,又AC CD =,40A ADC ∠∴=∠=︒,故选:A .【点睛】本题考查了旋转的性质、三角形的内角和定理、等腰三角形的性质,熟练掌握旋转的性质是解题关键.8.B解析:B【分析】据中心对称图形的概念,结合图形特征即可求解.【详解】A 、不是中心对称图形,故此选项错误;B 、是中心对称图形,故此选项正确;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项成文;故选:B .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.10.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.11.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A 、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B 、经过旋转,对应线段相等,原命题是假命题;C 、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D 、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.12.D解析:D【分析】由三角形内角和定理可得∠ACB =80°,由旋转的性质可得∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,由等腰三角形的性质得到∠AEC =50°,由角的和差即可求解.【详解】解:∵∠B =70°,∠BAC =30°,∴∠ACB =80°,∵将△ABC 绕点C 顺时针旋转得△EDC ,∴∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,∴∠CEA =50°,∴∠AED =∠AEC -∠CED =20°,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.【详解】设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.【点睛】本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.45°【分析】如图由题意可以判断为等腰直角三角形即可解决问题【详解】解:由旋转变换的性质知:;为直角三角形∴∴为等腰直角三角形故答案为【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换 解析:45°【分析】如图,由题意可以判断ADE 为等腰直角三角形,即可解决问题.【详解】解:由旋转变换的性质知:EAD CAB ∠=∠,AE AD =; ABC 为直角三角形,90CAB ∴∠=︒,∴90EAD ∠=︒,∴ADE 为等腰直角三角形,45AED ∴∠=︒,故答案为45︒.【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.15.2【分析】作BH ⊥PC 于H 如图把△ABP 绕点B 顺时针旋转60°得到△CBD 连接PD 可判断△PBD 为等边三角形利用勾股定理的逆定理可证明△PCD 为直角三角形∠CPD=90°易得∠BPC=150°利用平解析:27【分析】作BH ⊥PC 于H ,如图,把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,可判断△PBD 为等边三角形,利用勾股定理的逆定理可证明△PCD 为直角三角形,∠CPD=90°,易得∠BPC=150°,利用平角等于有∠BPH=30°,在Rt △PBH 中,根据含30度的直角三角形三边的关系可计算出BH 和PH 的长,在Rt △BCH 中,根据勾股定理即可求解.【详解】解:作BH ⊥PC 于H ,如图,∵△ABC 为等边三角形,∴BA=BC ,∠ABC=60°,∴把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,如图,∴CD=AP=4,BD=BP=3∠PBD=60°,∴△PBD 为等边三角形,∴PD=PB=3∠BPD=60°,在△PDC 中,∵PC=2,PD=3CD=4,∴PC 2+PD 2=CD 2,∴△PCD 为直角三角形,∠CPD=90°,∴∠BPC=∠BPD+∠CPD=150°,∴∠BPH=30°,在Rt △PBH 中,∵∠BPH=30°,PB=23, ∴BH=12PB=3,PH=3BH=3, ∴CH=PC+PH=2+3=5, 在Rt △BCH 中,BC 2=BH 2+CH 2= (3)2+52=28,∴BC=27,∴ABC 的边长为27.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质与勾股定理的逆定理.16.【分析】先作出图形然后写出坐标即可【详解】解:如图:则A′的坐标是故答案是【点睛】本题主要考查了坐标与图形的旋转变换根据题意正确画出图形成为解答本题的关键解析:()3,2-【分析】先作出图形,然后写出坐标即可.【详解】解:如图:则A′的坐标是()3,2-.故答案是()3,2-.【点睛】本题主要考查了坐标与图形的旋转变换,根据题意正确画出图形成为解答本题的关键. 17.4【分析】观察图象发现平移前后BE 对应CF 对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.18.38【分析】由旋转的性质可得∠DAB=∠EAC=26°由平行线的性质可得∠B=∠DAB=26°由直角三角形的性质可得∠BAC=64°即可求解【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED解析:38【分析】由旋转的性质可得∠DAB=∠EAC=26°,由平行线的性质可得∠B=∠DAB=26°,由直角三角形的性质可得∠BAC=64°,即可求解.【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED,∴∠DAB=∠EAC=26°,∵AD//BC,∴∠B=∠DAB=26°,∵∠C=90°,∴∠BAC=64°,∴∠BAE=∠BAC-∠EAC=64°-26°=38°,故答案为:38°.【点睛】本题考查了旋转的性质,平行线的性质,直角三角形,灵活运用这些性质进行推理是本题的关键.19.65°【分析】首先根据旋转变换的性质求出∠AOC的度数结合∠AOB=15°即可解决问题【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°∵∠AOB=15°∴∠AOD=50°+15°=6解析:65°【分析】首先根据旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°,∵∠AOB=15°,∴∠AOD=50°+15°=65°,故答案为:65°.【点睛】本题主要考查了旋转变换的性质及其应用问题,熟练掌握旋转的性质是解题的关键. 20.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键. 三、解答题21.(1)90°;(2)3【分析】(1)由旋转的性质求解即可;(2)根据勾股定理求出A A '【详解】解:(1)由旋转得到:ABC A BC ''∆≅∆∴45BA C BAC ''∠=∠=︒ ,1A B AB '==,3A C AC ''==∴45BAA BA A ''∠=∠=︒∴90ABA '∠=︒,即=90α︒(2)在Rt ABA '∆中,AA '===∴AC '=3A C A A '''-=【点睛】本题主要考查了旋转的性质及勾股定理,掌握旋转的性质是解答此题的关键.22.(1)-3,-2;(2)作图见解析;3,-1;(3)点P 的位置见解析;2AB =.【分析】(1)由与点A 关于点O 中心对称点的特征是横纵坐标符号改变点,(3,2)A ,,可得点A 关于点O 中心对称点的坐标为(-3,-2);(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,由点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,由()1,3B ,点B 1在第四象限,可得点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,由 ()1,3B .可求(1,3)B '-, 由PB=PB′可知PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短由勾股定理AB '==【详解】解:(1)∵与点A 关于点O 中心对称点的特征是横纵坐标符号改变,∵点(3,2)A ,∴点A 关于点O 中心对称点的坐标为(-3,-2),故答案为:-3,-2;(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,∵()1,3B ,点B 1在第四象限,∴点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,B 的坐标是()1,3B .则(1,3)B '-,PB=PB′,PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短,∵(3,2)A ,(1,3)B '-,∴AB '==【点睛】本题考查中心对称,三角形旋转,轴对称以及两点之间线段最短,掌握中心对称,三角形旋转,轴对称以及两点之间线段最短,关键是利用轴对称作点B关于y轴对称,两B′P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 2
图 2
《平移与旋转》单元测试题
一、选择题(每小题4分,共20分) 1、观察图1中的图形,是中心对称图形的 有( )
(A )2个 (B )1个 (C )4个 (D )3个 2、如图2,△ABC 平移之后成为△DCE ,下列说法中正确的是( ) (A )点B 的对应点是点E (B )点C 的对应点是点C (C )点C 的对应点是点E (D )点C 没有移动位置
3、下列图形中,是轴对称图形,但不是中心对称图形的是( )
(A ) 等边三角形 (B )正方形 (C ) 长方形 (D )线段 4、如图3所示,△ABC 平移后得到△DEF ,已知∠B =35°,∠A =85°,
则∠DFK =( )
(A )60°(B )35°(C )120°(D )85°
5、要使正十二边形旋转后能与自身重合,至少
应将它绕中心逆时针方向旋转( ) (A )30° (B )45° (C )60° (D )75° 一,填空题(每空2分,共40分)
6、如图4,方格纸中的三角形要由位置(1)平移到位置(2),应该先向_____平移_____格,再向______平移______格;
7、如图5,△ABC 经过向右平移4cm 之后得到了△DEF ,其中AE =3cm ,BC =12cm ,DF =10cm ,那么AC =_____cm ,DE =______cm ,BE =_____cm ,FC =_____cm ,FC 与DA 的关系是 ;
8、如图6,正方形ABCD 中,∠BAD =∠ABC=∠C=∠D =90°,AB =BC =CD =DA ,边DC 上有一点E ,将△ADE 旋转后得到了△ABG ;旋转中心是________,顺时针旋转了_______度。
9、如图7,△ABC 按逆时针方向绕点O 旋转了60°后成为△DEF ,那么OA =_____,OB =______,∠COF =_____度, ∠AOD =_____度, ∠A =______,∠C =______,AB =_____, BC =______。
10、将一个图形沿着正北方向平移5厘米后,再沿着正西方向平移5厘米,这时图形在原来位置的____________方向上。
三,解答题(40分)
11、如图9,△ABC 平移后得到△A /B /C /
,画出平移的方向 (并用文字说明),量出平移的距离。
(6分)
A
D
B E
C F K
图3 B
A C
B /
C /
A /
图9
图1 A E
B
D
G
F
C
图6 图5 图7
图4
2 / 2
12、如图,请画出ABC ∆关于点O 点为对称中心的对称图形。
(8分)
13、经过平移,EF ,AB ABC 平移到了的边∆作出平移后的三角形. (6分)
14、如图,正方形ABCD 中,E 在BC 上,DEC ∆按顺时针方向转动一个角度后成DGA ∆。
(1) 图中哪一个点是旋转中心? (2) 旋转了多少度?
(3) 求∠GDE 的度数并指出△DGE 的形状。
(10分)
15、如图,△BDE 是等边三角形ABC 饶着B 点按逆时针方向旋转30º得到的,按图回答: (1)A 、B 、C 的对应点是什么?
(2)线段AB 、AC 、BC 的对应线段是什么?
(3)∠A 、∠C 和∠ABC 的对应角是什么? (4)∠ABE 等于多少度?(10分)
O
G
E
D
C
B A
4 3 2
1
E D C
B
A。