《相似三角形的判定(3)》

合集下载

数学教案三角形相似的判定 第3课时【优秀3篇】

数学教案三角形相似的判定 第3课时【优秀3篇】

数学教案三角形相似的判定第3课时【优秀3篇】角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。

2.继续渗透和培养学生对类比数学思想的认识和理解。

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。

4.通过学习,了解由特殊到一般的唯物辩证法的观点。

二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。

2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。

四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。

这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。

应让学生对此有所了解。

定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。

例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。

还可提问:(1)当BD与、满足怎样的关系时∽ ?(答案:)(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)(答案:或两种情况)探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。

相似三角形判定复习(三)

相似三角形判定复习(三)
AB BC CA = = A' B' B' C' C' A'
⇒△ABC∽△A'B'C'
直角三角形相似的判定: 直角边和斜边的比相等,两直角 三角形相似。
C' ∠C=∠C' =90 ⇒ Rt△ABC∽Rt△A'B'C' AB AC = A A'C' A' B '
o
A'
B'
C
B
二、探索题
1、条件探索型 、
维 要 严 密
如图, ABCD中 BC延长 7.如图,在□ABCD中,G是BC延长 线上一点,AG与BD交于点E,与 交于点E, 线上一点,AG与BD交于点E,与DC 交于点F 交于点 F , 则图中相似三角形共 有( )
A. B. C. D. 3对 4对 5对 6对
A
D
E B
F C G
8.【04宁波】如图,已知点P是边长为 宁波】如图,已知点P 宁波 4的正方形 的正方形ABCD内一点,且PB=3 内一点, 的正方形 内一点 BF⊥BP垂足是 请在射线 上找一点 垂足是B请在射线 ⊥ 垂足是 请在射线BF上找一点 M,使以点 、M、C为顶点的三角形 ,使以点B、 、 .为顶点的三角形 与△ABP相似 相似 D A 则BM= P
M F
2 C
2.如图, 2.如图,D是△ABC的AB边上的一点,已知 如图 ABC的AB边上的一点, 边上的一点 2 AB=12 AC=15, =12, AB, AC上取一点 上取一点E AB=12,AC=15,AD= 3 AB,在AC上取一点E, ADE与 ABC相似 相似, AE的长 的长。 使△ADE与△ABC相似,求AE的长。

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

27.2.1相似三角形的判定(第3课时)一、内容和内容解析1.内容判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.2.内容解析全等是相似中放缩比例为1的特殊情形,这为我们提供了一个思路:类比判定两个三角形全等的“SSS”“SAS”方法,发现并提出判定两个三角形相似的简单方法.在探究“三边成比例的两个三角形相似”的过程中,学生通过度量,发现结论成立,再通过作与△A'B'C'相似的三角形,把证明相似的问题转化为证明所作三角形与△ABC全等的问题.“两边成比例且夹角相等的两个三角形相似”的证法与前一个判定方法的证明方法类似,再次体现了定理“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”的基础性作用.基于以上分析,确定本节课的教学重点是:判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.二、目标和目标解析1.目标(1)理解三角形相似的两个判定定理.(2)会运用三角形相似的两个判定定理解决简单的问题.2.目标解析达成目标(1)的标志是:理解两个判定定理的含义,能分清条件和结论,能用文字语言、图形语言和符号语言表示.达成目标(2)的标志是:会用两个判定定理判定两个三角形相似,从而解决简单的问题.三、教学问题诊断分析在两个判定定理的证明过程中,教科书作了一个中介三角形,使之与要证的三角形相似,再利用相似三角形对应边成比例和已知条件证明“中介三角形”与原三角形全等,这种转化的方法学生往往难以想到.其中通过线段的比相等证明线段相等,不同于以往常用的证明线段相等的方法,也会给定理的证明带来一定难度.基于以上分析,确定本节课的教学难点是:判定定理“三边成比例的两个三角形相似”的证明.四、教学过程设计 1.问题引入,类比猜想问题1 (1)两个三角形全等有哪些简便的判定方法?(2)全等是相似比为1的特殊情形.如图1,类比三角形全等的判定,判定△ABC 与△A'B'C'相似,是否有简便的判定方法?你有什么猜想?师生活动:问题(1)由学生口答.问题(2)组织学生分小组讨论,然后全班交流.如果学生对“两角对应相等的两个三角形相似”是否正确存在疑问,可存疑,留在下一节课解决.对学生提出的判断三角形相似的方法进行归纳整理,指出本节课先研究“三边”和“两边及其夹角”的情形.设计意图:通过全等三角形与相似三角形之间特殊与一般的关系,运用类比的思维方式,让学生猜想出两三角形相似的简单判定方法,从而引出下一步要探究的问题.2.画图探究,初步感知问题2 在△ABC 与△A'B'C'中,如果满足B A AB ''=C B BC ''=C A AC''=k ,那么能否判定这两个三角形相似?师生活动:(1)画图探究.教师引导学生任意画△ABC ,取一个便于操作的k 值(如21,2等),得到△A'B'C'的三边长,再作出△A'B'C'.指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似.(2)教师借助《几何画板》对k 取任意值的情况进行演示,让学生归纳发现的结论.并说明k =1时两个三角形全等,即全等是相似的特殊情况.设计意图:在教师的指导下,学生通过自己动手,探索新知,并与他人交流探讨,感受探索过程.k 取1时,两个三角形全等,取其他值时,两个三角形相似,进一步感受相似与全等的紧密联系.《几何画板》的动态演示,有利于学生更直观地发现结论.ABCA 'B 'C '图13.构造中介,证明定理问题3 怎样证明“三边成比例的两个三角形相似”呢? 师生活动:(1)学生结合图形写出已知、求证并交流讨论.(2)当学生感到无处入手时,教师用学生剪出的△ABC 与△A'B'C'的纸片为模型,用较小的△ABC 放置于较大△A'B'C'的上(学生取的k 值不同,可能会出现两种图形,但证明的本质是相同的),点A 与点A'重合,点B 在边A'B'上,记为点D ,将点C 在A'C'上的位置记为点E .教师追问1:B'C'与DE 有什么位置关系?为什么? 师生活动:学生直观发现B'C'∥DE .教师追问2:由B'C'与DE 的位置关系可得到△A'DE 与△A'B'C'相似吗?为什么? 师生活动:学生回答由“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,得到△A'DE 与△A'B'C'相似.教师追问3:我们先构造了一个与△ABC 全等的中介△A'DE ,得到△A'DE ∽△A'B'C',然后可得△ABC ∽△A'B'C'.这为我们证明“三边成比例的两个三角形相似”提供了一个思路:能否在△A'B'C'上作一个与△A'B'C'相似的△A'DE ,再证明它与△ABC 全等呢?如何作?师生活动:(1)学生思考交流.教师展示学生的不同作法,并请学生说明△A'DE 与 △ABC 全等的原因.(2)由学生整理出证明思路,教师板书,从而得到三角形相似的判定定理.设计意图:让学生在操作中发现解决问题的方法:作DE ∥B'C',证明△A'DE ∽△A'B'C',从而把证明“△ABC 与△A'B'C'相似”的问题转化为证明△ABC ≌△A'DE 的问题.4.类比实验,自主探究问题4 全等三角形有“SAS ”的判定方法,类似地,△ABC 和△A'B'C'中,如果满足B A AB''=C A AC''=k ,且∠A =∠A',那么能否判定这两个三角形相似? 师生活动:(1)教师借助《几何画板》对k 取任意值的情况进行演示,看△ABC 和△A'B'C'的另一组对应边的比是否为k ,另两组对应角是否相等.问:图中的△ABC 与△A'B'C'相似吗?为什么?学生提出猜想的结论.(2)学生模仿上一个定理的证明,讨论问题4的证明思路,在课后完成证明过程. (3)师生小结判定定理二的内容.并追问:对于△ABC 和△A'B'C',如果B A AB ''=C B BC'',且∠B =∠B',这两个三角形一定相似吗?如果将∠B =∠B'换成∠C =∠C',这两个三角形一定相似吗?为什么?让学生试着画画看,找出反例即可.设计意图:学生有前面探究活动的经验,教师提出问题后,利用《几何画板》辅助,学生容易获取初步结论,而且仿照上一个定理的证明,容易得到这个命题的证明思路.最后,学生通过考虑“两边和其中一边的对角”的情形,加强对三角形相似条件的理解与记忆.5.运用结论,解决问题例 根据下列条件,判断△ABC 和△A'B'C'是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm , A'B'=12 cm ,B'C'=18 cm ,A'C'=24 cm . (2)∠B =120°,AB =7 cm ,AC =14 cm , ∠A'=120°,A'B'=3 cm ,A'C'=6 cm .师生活动:师生共同分析从题干的条件中是否可能得到两个三角形相似的条件,教师提醒学生注意第(2)题中的角是不是已知两边的夹角.设计意图:使学生学会从现有条件中得到判定三角形相似的条件. 6.变式训练,巩固提高判断图中的两个三角形是否相似,并求出x 和y .师生活动:学生自主答题,写出相应的解答过程,然后互评. 设计意图:巩固本节课所学的相似三角形的判定定理. 7.回顾小结回顾本节课的学习,回答下列问题: (1)你学到了哪些判定三角形相似的方法? (2)你认为证明两个三角形相似的思路是什么?设计意图:引导学生归纳本节课的知识点及判定定理的证明思路. 8.布置作业A BDE C y ° x 4530 54 36 46°20 图2152025402745图11.教科书第34页练习第1,3题. 2.教科书第42页习题27.2第2(1),3题.3.证明判定定理“两边成比例且夹角相等的两个三角形相似”(画图,写出已知、求证,并进行证明).六、目标检测设计1.下列条件中可以判定△ABC ∽△C B A '''的是( ). A .AC AB =''''C A B A B .AC AB =''''C A B A ,∠B =∠B' C .B A AB ''=''C A AC =C B BC''D .''B A AB =''C A AC设计意图:考查对三角形相似的两个判定定理的条件特征的理解. 2.如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是( ).设计意图:考查判定定理“两边成比例且夹角相等的两个三角形相似”的应用. 3.在△ABC 和△A'B'C'中,AB =6,BC =8,AC =5,A'B'=3,B'C'=4,则当A'C'=______时,△ABC ∽△A'B'C'.设计意图:考查用“三边成比例的两个三角形相似”判定两个三角形相似.4.如图,在平面直角坐标系中,A (4,0),B (0,2),如果点C 在x 轴的正半轴上(点C 与点A 不重合),当点C 的坐标为 时,△BOC 与△AOB 相似.设计意图:结合平面直角坐标系的知识,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.5.如图,在正方形ABCD 中,点P 是BC 上的一点,BP =3PC ,点Q 是CD 中点,求证:△ADQ ∽△QCP .ABCDQP (第5题)A B C 555 555 55 56675° 75°30° 40° A B CD(第4题)设计意图:结合勾股定理,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.。

九年级数学上册《相似三角形的判定定理3》教案、教学设计

九年级数学上册《相似三角形的判定定理3》教案、教学设计
5.预习下一节课的内容,提前了解相似三角形的其他判定方法,为后续学习打下基础。
作业要求:
1.学生应独立完成作业,诚实守信,不得抄袭。
2.注意作业书写的规范性和整洁性,养成良好的学习习惯。
3.家长应关注学生的学习情况,协助学生按时完成作业,并对学生的学习给予鼓励和支持。
作业批改与反馈:
1.教师应及时批改作业,了解学生的学习情况,对存在的问题进行针对性辅导。
2.选取生活中的一个相似三角形的例子,画图并解释其相似关系,将所学知识应用到实际情境中,增强学生的几何直观。
3.小组合作完成一道综合性的几何证明题,要求运用相似三角形的判定定理3解决问题。通过合作交流,培养学生的团队协作能力和几何逻辑思维。
4.尝试研究相似三角形判定定理3在解决面积问题中的应用,并撰写一篇小论文,内容包括定理的应用方法、解题步骤和实际例题。
九年级数学上册《相似三角形的判定定理3》教案、教学设计
一、教学目标
(一)知识与技能
1.掌握相似三角形的判定定理3,即两边成比例且夹角相等的两个三角形相似。
2.熟练运用相似三角形的判定定理3解决实际问题,提高解决问题的能力。
3.能够运用相似三角形的性质,解决与比例相关的问题,如线段比例、面积比例等。
4.掌握相似三角形的判定方法,形成严密的逻辑推理能力,为后续学习打基础。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论以下问题:
a.相似三角形的判定定理3的具体内容是什么?
b.如何运用判定定理3解决实际问题?
c.判定定理3在实际生活中的应用例子。
2.各小组汇报讨论成果,分享解题思路和经验。
3.教师点评各小组的表现,给予鼓励和指导。
(四)课堂练习
1.设计不同难度的习题,让学生独立完成,巩固所学知识。

相似三角形的判定三

相似三角形的判定三

相似三角形的判定(三)知识点回顾:1.关于三角形的判定方法(1)定义法:对应角相等、对应边成比例(2)预备定理:平行于三角形一边的直线和它两边(或两边延长线)相交,所构成的三角形和原三角形相似.(3)判定定理1.两角对应相等两三角形相似(4)判定定理2.两边对应成比例且夹角相等,两三角形相似(5)判定定理3.三边对应成比例的两三角形相似(6)直角三角形判定的方法①以上各种判定方法均适用②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和直角对应成比例,那么这两个直角三角形相似③直角三角形被斜边上的高分成的两个直角三角形和原三角形相似2、判定定理的适用范围(1)已知有一角相等时,可选择判定定理1与判定定理2.(2)有两边对应成比例时,可选择判定定理2与判定定理3.(3)直角三角形判定先考虑判定直角三角形相似的方法.还可以考虑一般三角形相似的方法说明:一般不用定义来判定三角形的相似.3、三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似.例题讲解 课前练习1.在图3中,若DE ∥BC ,DB ∶DA=9∶4,则ΔABC 与ΔADE 的相似比是______.2.如图4, 在梯形ABCD 中,EF 交DB 、DC 于E 、F,则图中的相似三角形共有_____对;若AE ∶EF=4∶3则ΔAFD 与ΔGFC 的相似比是______.3.如图5,当∠ADC=∠____时,ΔABC ∽ΔACD ;当AD 2=_________时,ΔABC ∽ΔACD.4. ΔABC 的三边长为3、4、5,ΔA /B /C /的最短边为5,若ΔABC ∽ΔA /B /C /,则ΔA /B /C /的面积为____.例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。

18.5相似三角形的判定(三)(SAS、SSS)

18.5相似三角形的判定(三)(SAS、SSS)
和HFCD,矩形对角线AC的长是 ;
挑战自我
三个边长为a的正方形ABEG、GEFH
和HFCD,矩形对角线AC的长是 ;
已知:如图,四边形ABEG 、GEFH 、
HFCD都是边长为a的正方形. 求证:△AEF∽△CEA.
证法1:∵正方形ABEG的边长为a,
证法1:∵正方形ABEG的边长为a, ∴AE= a.
AE∶EF= a∶a= ,
EC∶EA=2a∶
a=
,
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,
AE∶EF= a∶a= ,
EC∶EA=2a∶
CA∶AF = a∶
a=
a=
,
,
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,

∴DE=B´C´,EA= C´A´. ∴ △ADE≌△A´B´C´.
证明:在△ABC的边AB 上截取AD= A´B´,过点 D作DE∥BC交AC于点E. 这样, △ADE∽△ABC. ∵ AD= A´B´, ∴ 又

∴DE=B´C´,EA= C´A´. ∴ △ADE≌△A´B´C´. ∴ △A´B´C´∽△ABC.
∴ △AEF∽△CEA.
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,
AE∶EF= a∶a= ,
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,
解:∵
2)AB=5厘米, BC=6厘米, AC=8厘米, A´B´=10 厘米 , B´C´=12 厘米 , A´C´ =16厘米.

相似三角形的判定三课件

相似三角形的判定三课件

按要求画出的△ABC与△A/B/C/
三边长的比值相同,画完之后,
用量角器度量比
论,你和其他同伴的结论一样 吗? △ABC与△A/B/C/相似吗? 相似三角形的判定定理3:三边对应成比例的两 个三角形相似。 几何语言表示: 在△ABC与△A/B/C/
AB AC BC / / / / / / AB AC BC
C
选做题:
如图所示,在平面直角坐标系中,已知 AO=12cm,OB=6cm,点P从点O开始 沿OA边向点A以1cm/s的速度移动;点Q 从点B开始沿BO边向点O以1cm/s的速度 移动.如果P,Q同时出发,用t(s)表示 移动的时间(0≤t≤6),那么: (1)设△POQ的面积为y,求y关于t的 函数解析式; (2)当△POQ的面积最大时,将 △POQ沿直线PQ翻折后得到△PCQ, 试判断点C是否落在直线AB上,并说明 理由; (3)当t为何值是,△POQ与△AOB相
∴△ABC∽△A´B´C´
证明:
边 S 边 边S
已知:
AB BC AC . A1B1 B1C1 A1C1
△ABC∽△A1B1C1. A1
S
求证:
A
B
C
B1
C1
有效利用判定定理一去求证。
A1
A
D E
B
证明:在线段 ,交
C
B1
C1 ,过点D .

A1D AB
(或它的延长线)上截取 1 1 于点E根据前面的定理可得
两边对应 成比例, 且夹角相 等(SAS)

类似全等三角形的判定,除上述外,还有 其他情况吗?继续探索三角形相似的条件。
自学指导
1.类比全等三角形的三边关系猜想两个三角形的三边关 系

相似三角形的判定(3边)

相似三角形的判定(3边)
(三边对应成比例的两个三角形相似.)
例4 在△ABC和△A′B′C′中,已知: AB=6cm,BC=
8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=
30cm.试证明△ABC与△A′B′C′相似.
证明

AB 6 1 A′B′=18 = 3
BC 8 1

B′C′= 24 = 3
AC 10 1 依据下列各组条件,A′证C′明=△30A= BC3和△A′B′C′相似

AB BC AC A′B′= B′C′= A′C′
AB=10cm,B∴C=△8cAmB,CA∽C△=A1′6Bc′Cm′(,A′如B′果=一16个cm三,角
B′C′=25.6cm,形A的′C三′ =条1边2.8和c另m 一个三角形的三条边
对应成比例,那么这两个三角形相
似).
生活中的三角形
如图,AB是斜靠在墙上的长梯,梯脚B距墙1.6 米,梯子上一点D距离墙1.4米,BD长为0.55米, 则梯子的长为——————
A
D
E
B
C
习题24.3
4. 依据下列各组条件,判断△ABC和△A′B′C′是不是相似, 如果相似,请给出证明过程. (1) ∠A=70°,∠B=46°,∠A′=70°,∠C′=64°; (2) AB=10厘米,BC=12厘米,AC=15厘米,A′B′=150 厘米,B′C′=180厘米,A′C′=225厘米; (3) ∠B=35°,BC=10,BC上的高AD=7,∠B′=35°, B′C′=5,B′C′上的高A′D′=3.5.
一、复习提问
我们已经有哪些判别两三角形相似的方法?
(1)相似三角形的定义 (2)两角对应相等的两个三角形相似。 (3)两角对应成比例且夹角相等的两个三角形相似。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2.1 相似三角形的判定(3)
一、教学目标
1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.
3.能够运用三角形相似的条件解决简单的问题.
二、重点、难点
1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”
2.难点:三角形相似的判定方法3的运用.
3.难点的突破方法
(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.
(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.
(3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似.
三、例题的意图
本节课安排了两个例题,例1是教材P35的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程.并让学生掌握遇到等积式,应先将其化为比例式的方法.例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课的学习打基础.
四、课堂引入
1.复习提问:
(1)我们已学习过哪些判定三角形相似的方法?
(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC 相似吗?说说你的理由.
(3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD=∠B ,那么△ACD 与△ABC 相似吗?——引出课题.
五、例题讲解
例1(教材P35例2).
证明:略(见教材P35例2).
例2 (补充)已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.
分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.
解:略(DF=
3
10). 六、课堂练习
1.教材P36的练习1、2.
2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .
3.下列说法是否正确,并说明理由.
(1)有一个锐角相等的两直角三角形是相似三角形;
(2)有一个角相等的两等腰三角形是相似三角形.
七、课后练习
1.已知:如图,△ABC 的高AD 、BE 交于点F .求证:FD
EF BF AF .
2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC•BC=BE•CD;(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.。

相关文档
最新文档