蒙特卡罗方法(MC)
蒙特卡洛方法 (MC) 方法

MCC 方法蒙特卡罗方法的诞生蒙特卡罗方法的产生可追溯到Buffon 投针实验。
法国数学家Buffon 用此实验来估算π值,它的原理是这样子的:在桌面上划一组间距为d 的平行线,然后向桌面上随意抛掷长度为L 的细针,从针与平行线相交的概率就可以得到π值。
其中 [0,)A d ∈ [0,)x π∈ 由积分性质可得投针置于平行线上的概率为sin 12l d l p dAdx d πθππ==⎰⎰假如在N 次投针实验中,有M 次与平行线相交,则有2l M P d Nπ==图3.2Buffon 的投针实验图3.3 投针位置分析1930年,费米利用蒙特卡罗方法研究了中子的扩散,并设计了一个蒙特卡罗机械装置,用于计算核反应堆的临界状态。
冯.诺依曼是蒙特卡罗方法的正式奠基者,他与Stanislaw Ulam 合作建立了概率密度函数、反累积分布函数的数学基础,以及伪随机数产生器,从而使得蒙特卡罗方法得以推广,成为科学领域一种常用的模拟方法。
蒙特卡罗方法的基本思想对某一个待解决的物理问题(当这个物理问题可以抽象为数学问题时)建立一个概率模型,即确定某个随机事件X ,使得待求问题的解等于随机事件X 出现的概率或随机变量的数学期望值。
然后进行模拟实验,重复多次地模拟随机事件X 。
最后对随机实验结果进行统计平均,求出X 出现的频数作为问题的近似解。
这就是蒙特卡罗方法的基本思想。
具体来说:假设所要求的量x 是随机变量的数学期望,那么近似确定x 的方法是对进行N次重复抽样,产生相互独立的值的序列、、……、,并计算其算术平均值:11NNnn Nξξ==∑根据大数定理有P (l i m )N N x ξ→∞==因此,当N 充分大时,下式 ()N E x ξξ≈=成立的概率为1,亦即可以用作为所求量x 的估计值。
用蒙特卡罗方法求解时,最简单的情况是模拟一个发生概率为P 的随机事件A 。
考虑一个随机变量,若在一次试验中事件A 出现,则取值为1;若事件A 不出现,则取值为0。
计算物理学_蒙特卡罗方法

第八讲蒙特卡罗方法蒙特卡罗(Monte Carlo简称MC)方法又称随机抽样法(Random Sampling)、随机模拟(Random Simulation)或统计试验法(Statistic Testing)。
这个方法的起源可以追溯到十七世纪或更早的年代。
Monte Carlo 是摩纳哥(Monaco)的一个著名城市,位于地中海之滨,以旅游赌博闻名。
Von Neumann 等人把计算机随机模拟方法定名为Monte Carlo方法,显然反映了这种方法带有随机的性质。
简单地说,MC方法是一种利用随机统计规律,进行计算和模拟的方法。
它可用于数值计算,也可用于数字仿真。
在数值计算方面,可用于多重积分、线性代数求解、矩阵求逆以及用于方程求解,包括常微分方程、偏微分方程、本征方程、非齐次线性积分方程和非线性方程等。
在数字仿真方面,常用于核系统临界条件模拟、反应堆模拟以及实验核物理、高能物理、统计物理、真空、地震、生物物理和信息物理等领域。
§8.l蒙特卡罗方法的基础知识8.1.1 基本概念为了对MC方法有一点初步的认识,请先看使用MC方法的几个例子。
蒲丰投针问题:蒲丰(Buffon-法国著名数学家)在1777年发现随机投针的概率与无理数π之间的关系.这个问题是说,若在平面上画有距离为a的平行线束,向平面上投掷长为()<的针,试求针与一平行线相交的概率。
l l a这个问题的解法如下:以M表示落下后针的中点,x表M与最近一平行线的距离,ϕ表针与此线的交角,见上图。
可见,02 0≤≤≤≤/,x a ϕπ这两式决定x ϕ平面上一矩形R ;为了使针与一平行线(这线必定是与针中点M 最近的平行线)相交,充分而且必要条件是2ϕ≤sin lx 这个不等式决定R 中一个子集G 。
因此,我们的问题等价于向R 中均匀分布地掷点而求点落于G 中的概率P.根据概率的几何意义,得222sin ()ld l P a a πϕϕππ==⎰此式提供了求π值的一个方法:可以通过投针事件求得针与平行线相交概率P ,求得π值:2/()l Pa π= (8.1)若投掷次数为m ,针与平行线相交的次数为n ,那么/p n m ≈即 2/()lm an π≈于是,可用投针试验来求无理数π的近似值.下表列举了历史上若干学者投针试验计算π值的结果:射击问题(打靶游戏):设r 表示射击运动员的弹着点到靶心的距离,()g r 表示击中r 处相应的得分数(环数),分布密度函数()f r 表示该运动员的弹着点分布,它反映运动员射击水平。
磁学模拟中的多尺度方法研究

磁学模拟中的多尺度方法研究磁学模拟是研究磁性材料物理性质的重要手段之一。
与实验相比,磁学模拟能够提供更加丰富的信息和更加细致的分析,尤其在考察微观结构对于宏观性质的影响等方面具有天然优势。
目前,磁学模拟方法包括分子动力学、蒙特卡洛、自洽平均场等很多种,其中多尺度方法在近几年受到了越来越多的关注。
多尺度方法(Multiscale Modeling)是指将系统分为多个层次进行建模,每个层次使用不同的理论方法和计算工具。
多尺度方法的主要目的是让计算量和计算效率更好地匹配,增加计算效率同时保留更多的系统物理信息,以期在较小的计算资源上获得更加可靠的计算结果。
其优点包括适用范围广、信息充分、计算高效等。
在磁学模拟领域,多尺度方法的应用涵盖了磁化动力学、磁畴演化、磁畴壁运动等方面。
下面简要介绍基于多尺度方法的几种典型的磁学模拟。
分子动力学(Molecular Dynamics,MD)方法是一种实现时间演化的计算方法,可用于模拟磁性材料中磁波的传播和磁畴壁的运动。
其优点在于可以捕捉到机械、热力学等多种物理机制,同时也可以方便地引入外部场、温度等因素。
MD方法在模拟磁畴壁如何跨越晶界的时候,可以揭示晶界对磁畴壁移动的屏障效应,为进一步的磁畴学研究提供了重要的理论支持。
蒙特卡洛(Monte Carlo,MC)方法是基于随机抽样的数值计算方法。
在磁学模拟中,MC方法常用于模拟反铁磁相互作用系统,如铁氧体。
使用MC方法,可以计算出如系统自旋浓度、序参量等宏观性质,同时也可以通过反推出微观状态的概率分布,以获得更加深入的认识。
自洽平均场(Self-Consistent Mean Field,SCMF)方法是建立在平均场理论基础上的一种计算方法,可以用于计算磁性材料的静态性质。
其基本思路是将磁性材料视为一系列相互作用的磁单元,计算这些磁单元的平均场,然后再根据平均场计算宏观物理量。
SCMF方法具有高效、精度较高等优点,在具体应用中也得到了许多实践。
物理问题的计算机模拟方法(2)—蒙特卡罗方法

第三章 随机性模拟方法—蒙特卡罗方法(MC )§ 3.1 预备知识例:一个粒子在一个二维正方格点上跳跃运动随机行走:每一时间步上,粒子可选择跳到四个最近邻格点上的任何一个,而记不得自己来自何方;自回避行走:粒子记得自己来自什么地方,而回避同它自己的路径交叉。
随机行走的每一步的结果就是系统的一个状态,从一个状态到另一个状态的跃迁只依赖于出发的状态,这些状态形成一个序列,这就是一个马尔可夫链。
状态序列:x 0, x 1, …, x n , …已给出状态x 0, x 1, …, x n+1 的确定值,x n 出现的概率叫做条件概率 ()01,x x x -n n P 马尔可夫链的定义:如果序列x 0, x 1, …, x n , …对任何n 都有 ()()101,--=n n n n P P x x x x x 则此序列为一个马尔可夫链(或过程)。
§ 3.2 布朗动力学(BD ) 1.郎之万方程 v t R dtdvmβ-=)( 方程右边第一项为随机力,对粒子起加热作用;第二项为摩擦力,避免粒子过热。
将方程变形为:dt mvt R dt m v dv )(+-=β 于是,解可写为:])0()(11[)0( )0()(0)()(10⎰+≈⎰=---tt mt md v R m tm d ev R m ev eev t v tττββτττβ⎰+≈---t m t t md Re m ev 0)()(1)0( ττβτβ当随机力R(t)服从高斯分布时,上述方程的解描述的即为布朗运动,于是,布朗运动问题就化为在一些补充条件下求解郎之万方程,即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧><=>=<>=<=+><--)( 2)()(2)0()(,0)()(222/2/12高斯分布R R B e R R P t T k R t R t R m t R m v dt dv πδββ 注:)()()(t t q t R t R '->='<δ 表示随机力R 在t 和t ’时刻没有关联, q 为噪声强度。
Monte Carlo 方法资料

Monte Carlo方法的基本思想
Monte Carlo 方法的基本思想是: 为了求解某个问题 , 建立一个恰 当的概率模型或随机过程 , 使得其参量(如事件的概率、随机变 量的数学期望等)等于所求问题的解 , 然后对模型或过程进行反 复多次的随机抽样试验 , 并对结果进行统计分析 , 最后计算所求 参量 , 得到问题的近似解。
③ 收敛速度与问题的维数无关 , 因此 , 较适用于求解多维问题。
④ 问题的求解过程取决于所构造的概率模型 , 而受问题条件限制的 影响较小 , 因此 , 对各种问题的适应性很强。
随机数的产生
1 随机数与伪随机数
Monte Carlo 方法的核心是随机抽样。 在该过程中往往需要各种各样分 布的随机变量其中最简单、最基本的是在[0 ,1]区间上均匀分布的 随机变量。 在该随机变量总体中抽取的子样 ξ 1 ,ξ 2 , … ,ξN 称为随 机数序列 , 其中每个个体称为随机数。 用数学的方法产生随机数是目前广泛使用的方法。 该方法的基本思想 是利用一种递推公式 :
"quantum" Monte Carlo: random walks are used to compute quantum-mechanical energies and wavefunctions, often to solve electronic structure problems, using Schrödinger’s equation as a formal starting point;
即当 N 充分大时 , 有 成立的概率等于1 , 亦即可以用 ξN 作为所求量 x 的估计值。
根据中心极限定理 , 如果随机变量 ξ的标准差 σ 不为零 , 那么 Monte Carlo 方法的误差ε为
蒙特卡罗方法

感谢观看!
蒙特卡罗方法的基础知识
1. 连续型分布 2. 离散型分布 3. 概率密度分布
a) 均匀密度分布函数 b) 正态分布 c) 指数分布
蒙特卡罗方法的基础知识
蒙特卡罗方法的基础知识
随机数和随机
02
抽样
随机数和随机抽样
用蒙特卡罗方法在计算机上模拟一个随机过程,就是要产 生满足这个随机过程概率分布的随机变量。最简单和最基础的 随机变量就是[0,1]区间上均匀分布的随机变量,这些随机变 量的抽样值成为随机数。所以以后谈到随机数,如果不加特别 说明,就是指[0,1]区间上均匀分布的随机数。其他分布的随 机变量的抽样值可借助均匀分布的随机数得到。
蒙特卡罗方法的计算过程就是用统计方法模拟实际的物理过程,它主 要是在计算机上产生已知分布的随机变量样本,以代替昂贵的甚至难以实 现的实验。蒙特卡罗方法又被看作是用计算机来完成物理实验的一种方法。
随机数和随机抽样
蒙特卡罗方法可以求解的另一类问题就是确定性问题。在 求解确定性问题时,首先要建立一个有关这个确定性问题的概 率统计模型,是所求的解就是这个模型的概率分布或数学期望; 然后对这个模型做随机抽样;最后用其算数平均值作为求解的 近似值。
因此,用蒙特卡罗方法求解问题时,首先要建立一个随机模型,然后 要构造一系列的随机变量用以摸你这个的基础知识
随机变量及其分布函数 在一定条件下发生的事件分为必然事件(必然发生)、不可能事件
(恒不发生)和随机事件(可能发生也可能不发生)。事件发生的可能性 大小用概率p表示。必然事件发生的概率为1,不可能事件的概率为0;随机 事件发生的概率为0≤p≤1.由于测量的随机误差和物理现象本身的随机性, 一次测量得到的某个值是随机的。因此,实验观测的物理量实随机变量, 被研究的物理问题是一个随机事件。通常,描写随机事件A发生的概率用 p(A)表示,显然,0≤ p(A) ≤ 1。经常碰到的随机变量有两类:一类是离散型 随机变量,这种随机变量只能取有限个数值,能够一一列举出来:另一类 是连续型随机变量,这种随机变量的可能值是连续的分布在某个区间。
蒙特卡罗定位原理

蒙特卡罗定位原理
蒙特卡洛定位(MCL)也被称为粒子滤波定位,是机器人使用粒子滤波进行定位的算法。
它的工作原理是基于递归贝叶斯估计,利用一组在配置空间中均匀分布的粒子来表示可能的状态分布。
每个粒子代表一个可能的状态,即机器人在哪里的假设。
当机器人移动时,它会更新粒子的位置来预测移动后的新状态。
当机器人感知到一些信息时,会根据实际感测数据与预测状态的相关性,对粒子进行重新采样。
经过一段时间后,这些粒子会逐渐向机器人的实际位置收敛,从而估计出机器人的位置和方向。
蒙特卡洛定位是一种有效的机器人定位方法,尤其在复杂的环境中。
它通过概率的方式处理不确定性,可以处理机器人位姿跟踪和全局定位等问题。
mc算法原理

mc算法原理
MC算法原理是蒙特卡洛算法的简称。
蒙特卡洛算法是一种基于统计模拟的随机算法,可以用于解决复杂的计算问题。
MC算法原理的基本思想是通过随机取样来近似计算问题的解。
具体而言,MC算法通过生成大量的随机样本来模拟问题的概率分布或者数值分布,然后利用这些样本数据进行统计分析,得出问题的解或者近似解。
MC算法的主要步骤包括样本生成、统计分析和结果输出。
首先,根据问题的特点,设计合适的抽样方法生成具有代表性的随机样本。
其次,对生成的样本数据进行统计分析,比如计算样本均值、方差等参数,或者通过统计直方图、密度估计等方式得到问题的概率或者数值分布。
最后,根据统计分析的结果,输出问题的解或者近似解。
MC算法在众多领域中得到广泛应用。
在金融学中,可以用MC算法进行期权定价;在物理学中,可以用MC算法模拟粒子运动;在生物学中,可以用MC算法预测蛋白质的结构等等。
总之,MC算法原理是一种基于统计模拟的随机算法,通过生成大量的随机样本进行统计分析来近似计算问题的解。
它在各个领域都发挥着重要的作用,是一种强大而灵活的计算工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒙特卡罗方法(MC)
蒙特卡罗(Monte Carlo)方法:
蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。
传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
这也是我们采用该方法的原因。
蒙特卡罗方法的基本原理及思想如下:
当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并
用它们作为问题的解。
这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。
它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。
可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
蒙特卡罗解题三个主要步骤:
构造或描述概率过程:
对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。
即要将不具有随机性质的问题转化为随机性质的问题。
实现从已知概率分布抽样:
构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。
最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。
随机数就是具有这种均匀分布的随机变量。
随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。
产生随机数的问题,就是从这个分布的抽样问题。
在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。
另一种方法是用数学递推公式产生。
这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。
不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。
由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。
由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。
建立各种估计量:
一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。
建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。
例如:检验产品的正品率问题,我们可以用1表示正品,0表示次品,于是对每个产品检验可以定义如下的随机变数Ti,作为正品率的估计量:
于是,在N次实验后,正品个数为:
显然,正品率p为:
不难看出,Ti为无偏估计。
当然,还可以引入其它类型的估计,如最大似然估计,渐进
有偏估计等。
但是,在蒙特卡罗计算中,使用最多的是无偏估计。
用比较抽象的概率语言描述蒙特卡罗方法解题的手续如下:构造一个概率空间(W ,A,P)
,其中,W 是一个事件集合,A是集合W 的子集的s 体,P是在A上建立的某个概率测度;
在这个概率空间中,选取一个随机变量q (w ),w ? W ,使得这个随机变量的期望值
正好是所要求的解Q ,然后用q (w )的简单子样的算术平均值作为Q 的近似值。
蒙特卡罗方法与一般计算方法有很大区别,一般计算方法对于解决多维或因素复杂的问
题非常困难,而蒙特卡罗方法对于解决这方面的问题却比较简单。
其特点如下:
·直接追踪粒子,物理思路清晰,易于理解。
·采用随机抽样的方法,较真切的模拟粒子输运的过程,反映了统计涨落的规律。
·不受系统多维、多因素等复杂性的限制,是解决复杂系统粒子输运问题的好方法。
· MC程序结构清晰简单。
·研究人员采用MC方法编写程序来解决粒子输运问题,比较容易得到自己想得到的任意中间结果,应用灵活性强。
· MC方法主要弱点是收敛速度较慢和误差的概率性质,其概率误差正比于,如果单纯以
增大抽样粒子个数N来减小误差,就要增加很大的计算量。
近十年来,蒙特卡罗方法发展很快,从1983年到1988年期刊论文数量增长了五倍,有几
本好书是关于电子? 光子蒙特卡罗问题的[注1],蒙特卡罗方法的代码被认为是黑匣子,
它已成为计算数学中不可缺少的组成部分,这主要是因为以下原因:
·传统的分析方法受到了问题复杂性的限制。
· MC方法直观,对实验者很有吸引力。
·计算机变得更快更便宜。
·量子理论的发展为我们提供了辐射与物质相互作用的截面数据。
[注1]:
· I.Lux and L.Koblinger,MONTE CARLO PARTICLE TRANSPORT METHODS:MEUTRON AND
PHOTO CALCULATIONS (CRC Press,1991).
· R.L.Morin(Editor),MONTE CARLO SIMULATION IN THE RADIOLOGICAL SCIENCES (CR
C Press,1988).[Contributors: H.-P. Chan, K.Doi, J.E.Goin, R.L.Morin, R.Nath,
D.E.Raeside,J.C.Widman and J.F.Williamson]
· T.M.Jenkins, W.R.Nelson, A.Rindi, A.E.Nahum and D.W.O.Rogers (Editors), M
ONTE CARLO TRANSPORT OF ELECTRONS AND PHOTOS (Plenum Press,1988). [Contribut
ors: P.Andro, M.J.Berger, A.F.Bielajew, A.Del Guerra, B.Grosswendt, J.Halble
ib, A.Ito, T.M.Jenkins, R.Monhan, A.E.Nahum, W.R.Nelson, D.W.O.Rogers, S.Sel
tzer and R.Wang]
蒙特卡罗方法的计算程序:
关于蒙特卡罗方法的计算程序已经有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEA
NT等。
这些程序大多经过了多年的发展,花费了几百人年的工作量。
除分藓俗友芯恐
心(CERN)发行的GEANT主要用于高能物理探测器响应和粒子径迹的模拟外,其它程序都
深入到低能领域,并被广泛应用。
就电子和光子输运的模拟而言,这些程序可被分为两
个系列:
1.EGS4、FLUKA、GRANT
2.ETRAN、ITS、MCNP
这两个系列的区别在于:对于电子输运过程的模拟根据不同的理论采用了不同的算法。
EGS4和ETRAN分别为两个系列的基础,其它程序都采用了它们的核心算法。
ETRAN(for Electron Transport)由美国国家标准局辐射研究中心开发,主要模拟光子和
电子,能量范围可从1KeV到1GeV。
ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Trans
port Codes )是由美国圣地亚哥(Sandia)国家实验室在ETRAN的基础上开发的一系列模拟计算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它们的主要差别在于几何模型的不同。
TIGER研究的是一维多层的问题,CYLTRAN研究的是粒子在圆柱形介质中的输运问题,ACCEPT是解决粒子在三维空间输运的通用程序。
NCNP(Monte Carlo Neutron and Photo Transport Code)由美国橡树林国家实验室(Oak Ridge National Laboratory)开发的一套模拟中子、光子和电子在物质中输运过程的通
用MC 计算程序,在它早期的版本中并不包含对电子输运过程的模拟,只模拟中子和光子,较新的版本(如MCNP4A)则引进了ETRAN,加入了对电子的模拟。
FLUKA 是一个可以模拟包括中子、电子、光子和质子等30余种粒子的大型MC计算程序,它把EGS4容纳进来以完成对光子和电子输运过程的模拟,并且对低能电子的输运算法进
行了改进。