计算坐标与坐标方位角基本定律

合集下载

坐标方位角的计算公式

坐标方位角的计算公式

坐标方位角的计算公式嘿,咱来说说这坐标方位角的计算公式。

您要是学过地理或者相关的学科,应该都听过坐标方位角这玩意儿。

那到底啥是坐标方位角呢?简单说,它就是表示一个方向的角度。

咱们先从基础的概念入手哈。

想象一下您站在一个地方,要确定另一个地方相对于您所在位置的方向,这时候坐标方位角就派上用场啦。

那坐标方位角咋算呢?这就得提到一些数学公式啦。

比如说,我们有起始点的坐标(x1, y1)和终点的坐标(x2, y2),这时候坐标方位角α就可以通过下面这个公式来算:α = arctan((y2 - y1) / (x2 - x1))可别被这公式吓着,我给您举个例子就明白啦。

有一次我出去旅游,到了一个陌生的小镇。

我在小镇的广场上(就把这当作起始点,坐标是 100, 200),想要去小镇边缘的一座小亭子(当作终点,坐标是 300, 400)。

那按照公式,先算出 (y2 - y1) 就是400 - 200 = 200,(x2 - x1) 就是 300 - 100 = 200。

然后代入公式arctan(200 / 200) ,算出角度就是 45 度。

这就说明从小镇广场去那座小亭子的方向是 45 度。

在实际应用中,还得注意一些细节。

比如说,如果 (x2 - x1) 等于 0 ,这时候就得特殊处理啦。

因为除数不能为 0 嘛。

如果是这种情况,那就说明方向是垂直的,要么是 90 度,要么是 270 度,具体得看 (y2 -y1) 是正还是负。

而且,算出来的角度可能不是我们想要的最终结果。

因为算出来的角度范围是 -π/2 到π/2 之间,但是我们通常想要的是 0 到 360 度之间的角度。

这时候就得根据坐标的正负情况来调整。

比如说,如果算出来的角度是负数,那就加上 360 度;如果是正数但小于 0 度,那就直接加上 360 度。

坐标方位角的计算公式在很多领域都有用呢。

像测绘、建筑、导航这些,都离不开它。

比如说在建筑工地上,工程师们要确定建筑物各个部分的位置和方向,就得靠这个公式来帮忙。

测量学坐标方位角怎么计算

测量学坐标方位角怎么计算

测量学坐标方位角怎么计算引言在测量学中,测量坐标方位角是一个常见且重要的问题。

方位角是指一个点相对于某个参考点的方向,通常用于导航、位置定位和地图绘制等应用中。

本文将介绍如何计算测量学中的坐标方位角。

坐标系与方位角概念在进行坐标方位角的计算之前,需要先了解一些基本概念。

在测量学中,我们常用的坐标系是笛卡尔坐标系,它由水平方向的x轴和垂直方向的y轴构成。

而方位角则以正北方向为参考,顺时针计算。

方位角的表示通常采用度数制,以360度为一圈。

0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。

方位角计算方法要计算一个点相对于参考点的方位角,需要知道两点在笛卡尔坐标系中的坐标。

设参考点的坐标为(x1, y1),目标点的坐标为(x2, y2),则方位角的计算公式如下:方位角 = atan2(y2 - y1, x2 - x1) * (180 / pi)其中,atan2是一个数学函数,用于计算给定点的反正切值。

需要注意的是,由于计算结果是弧度制,所以要将其转换为度数制。

实例演示为了更好地理解方位角的计算方法,我们来进行一个实例演示。

假设参考点的坐标为(3, 4),目标点的坐标为(8, 6)。

我们希望计算目标点相对于参考点的方位角。

首先,我们需要代入上述计算公式:方位角 = atan2(6 - 4, 8 - 3) * (180 / pi)接下来,我们可以用计算器或者编程语言中的数学库来计算,得到方位角为45.96 度。

结论测量学中坐标方位角的计算是通过参考点和目标点的笛卡尔坐标来进行的。

通过代入方位角的计算公式,我们可以得到一个点相对于参考点的方向。

这在导航、位置定位和地图绘制等应用中具有重要的作用。

希望本文对于测量学中坐标方位角的计算有所帮助,能够帮助读者更好地理解和应用这一概念。

参考文献•Wikipedia.。

关于坐标与坐标方位角的计算

关于坐标与坐标方位角的计算

关于坐标与坐标方位角的计算坐标与坐标方位角是地理学中经常涉及的两个概念。

坐标一般指的是其中一点在地球表面的位置,而坐标方位角是指其中一点相对于参考点的方向。

在地理信息系统、导航系统以及测量、航海等领域中,坐标与坐标方位角的计算是非常重要的。

首先,我们先来了解一下坐标的概念和表示方法。

坐标一般是由经度和纬度两个数值组成。

经度是指地球上其中一点与本初子午线的夹角,范围是从0°到180°东经或西经。

纬度是指地球上其中一点与赤道的夹角,范围是从0°到90°北纬或南纬。

经度和纬度的单位都是度(°)。

在计算坐标时,我们需要使用测量仪器(如GPS)来测定其中一点的经度和纬度数值。

这些数值可以直接使用,也可以根据仪器的输出进行转换。

例如,GPS通常会输出以度、分、秒或以十进制度表示的经纬度数值,我们可以根据需要进行转换。

将经度和纬度数值表示为十进制度,方便计算和比较。

接下来,我们来讨论坐标方位角的计算。

坐标方位角是指一个点相对于参考点的方向,也可以理解为一个点与参考点之间连线与正北方向之间的夹角。

坐标方位角的计算通常使用数学中的三角函数来实现。

首先,我们需要确定一个正北方向。

在地球表面上,通常使用地心纬度方向作为正北方向。

地心纬度是指与参考椭球体表面垂直的线所作的纬度,在地球上大致是从南向北逐渐增加的方向。

因此,我们可以将地心纬度方向作为正北方向。

其次,我们需要使用球面三角学中的公式来计算坐标方位角。

球面三角学是关于球面上的三角形的一门数学学科,可以用来解决地理测量和导航等问题。

在坐标方位角的计算中,主要使用到的公式有:1.余弦定理:可以用来计算一个球面三角形的边长,即两点之间的距离。

2.正弦定理:可以用来计算一个球面三角形的角度。

通过这些公式,我们可以计算出点A与参考点B之间的距离以及夹角。

然后,根据夹角的正负和大小,我们可以确定点A相对于参考点B的方向角。

需要注意的是,坐标方位角的计算要考虑地球的曲率。

坐标距离及方位角计算公式

坐标距离及方位角计算公式

坐标距离及方位角计算公式坐标距离计算公式:在平面坐标系中,可以使用勾股定理来计算两个点之间的距离。

给定两个点A(x1,y1)和B(x2,y2),它们之间的距离可以由以下公式计算:距离=√((x2-x1)²+(y2-y1)²)在三维空间中,可以使用空间直角坐标系的距离计算公式。

给定两个点A(x1,y1,z1)和B(x2,y2,z2),它们之间的距离可以由以下公式计算:距离=√((x2-x1)²+(y2-y1)²+(z2-z1)²)方位角计算公式:方位角是指从一个点到另一个点的方向角度。

在二维平面坐标系中,可以使用反正切函数来计算两点之间的方位角。

给定两个点A(x1,y1)和B(x2,y2),它们之间的方位角可以由以下公式计算:方位角 = atan2(y2 - y1, x2 - x1)在三维空间中,可以使用球坐标系来计算两个点之间的方位角。

给定两个点A(r1,θ1,φ1)和B(r2,θ2,φ2),其中r表示距离,θ表示纬度,φ表示经度,它们之间的方位角可以由以下公式计算:方位角= atan2(sin(φ2 - φ1) * cos(θ2), cos(θ1) * sin(θ2) - sin(θ1) * cos(θ2) * cos(φ2 - φ1))这些公式可以通过编程语言如Python或者使用地理信息系统软件如ArcGIS来实现。

总结:坐标距离计算公式通过平面直角坐标系或者球坐标系来计算两个点之间的距离。

方位角计算公式通过反正切函数或者球坐标系来计算从一个点到另一个点的方位角度。

这些公式对于地理和导航应用非常重要,可以帮助确定地理位置和导航方向。

坐标测量角度及方位角计算

坐标测量角度及方位角计算

基本计算公式:
sinα=对边/斜边sinα=A/C
cosα=邻边/斜边cosα=B/C
tgα=对边/邻边tgα=A/B
ctgα=邻边/对边ctgα=B/A
B
一、根据其中一个已知坐标点做原点,作坐标系图。

二、根据已知第二坐标点与假定原点坐标的差值确定其所在象限位置。

三、根据第二已知坐标点与假定原点的差值计算第二已知坐标点与假定原点的夹角。

四、根据夹角象限位置+或—180度//90度。

(第四象限减180度,第二象限减90度,第三象限减360度)
五、根据需测坐标数据计算其与假定原点的差值。

六、根据差值计算需测坐标与假定原点的夹角。

七、根据象限位置加+减—已知坐标与假定原点的夹角。

八、得出已知第二坐标与需测坐标的夹角。

九、根据坐标计算假定原点与需测坐标的距离。

十、根据计算结果与经纬仪测定需测坐标的位置。

坐标方位角计算公式过程

坐标方位角计算公式过程

坐标方位角计算公式过程
一、坐标方位角的定义。

在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。

二、坐标方位角计算公式推导过程。

1. 已知两点坐标计算坐标方位角。

- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。

- 首先计算Δx=x2 - x1,Δy=y2 - y1。

- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。

- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。

- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。

- 当Δ x<0时,坐标方位角β=α + 180^∘。

- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。

例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。

再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。

方位角计算公式范文

方位角计算公式范文

方位角计算公式范文方位角是指从一个参考方向(通常是正北方向)起,按顺时针方向测量到其中一方向线的角度。

方位角通常用度数表示,范围从0度到360度。

下面介绍常见的方位角计算公式:1.方位角计算公式(两点坐标):假设已知起点坐标A(x1,y1)和终点坐标B(x2,y2),方位角θ的计算公式如下:θ = atan2(y2 - y1, x2 - x1)其中,atan2函数是一个双变量反正切函数,返回值为[-π, π]之间的角度值。

注意:上述公式计算得到的θ是以正北方向为参考的方位角。

如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。

2.方位角计算公式(两点经纬度):假设已知起点的经度(lon1)、纬度(lat1)和终点的经度(lon2)、纬度(lat2),方位角θ的计算公式如下:θ = atan2(sin(Δlon) * cos(lat2), cos(lat1) * sin(lat2) -sin(lat1) * cos(lat2) * cos(Δlon))其中,Δlon = lon2 - lon1是两点经度差。

注意:上述公式计算得到的θ是以正北方向为参考的方位角。

如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。

3.方位角计算公式(方向余弦矩阵):方向余弦矩阵(Direction Cosine Matrix)是一种将方位角和俯仰角等转化为三维空间坐标旋转的方式。

方向余弦矩阵的计算公式如下:D=[ cos(θ) * cos(φ), sin(θ) * cos(φ), -sin(φ) ][ -sin(θ), cos(θ), 0 ][ cos(θ) * sin(φ), sin(θ) * sin(φ), cos(φ) ]其中,θ是方位角,φ是俯仰角。

D是一个3行3列的矩阵,表示坐标变换矩阵。

上述是常见的方位角计算公式,根据不同的应用场景和问题,可能还会有其他的计算公式。

坐标,方位角计算公式

坐标,方位角计算公式

坐标,方位角计算公式坐标方位角=磁方位角+(±磁坐偏角)。

方位角是卫星接收天线,在水平面上转0°-360°。

设定方位角时,抛物面在水平面上左右移动。

方位角(方位角,缩写为Az)是用于测量平面中物体之间的角度差的方法之一。

它是从点的北方向顺时针方向和目标方向之间的水平角度。

一、计算方法1、按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461m;ΔyBA=yA-yB=+91.508m;由于ΔxBA>0,ΔyBA>0;可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64";ΔxBP=xP-xB=-37.819m;ΔyBP=yP-yB=+9.048m;由于ΔxBP<0,ΔyBP>0;公式计算出来的方位角,可知αBP位于第Ⅱ象限。

αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67";此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+arctg;当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°-arctg。

2、计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"。

3、测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。

当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点。

根据给定坐标计算∠PAB;ΔxAP=xP-xA=-161.28m;ΔyAP=yP-yA=-82.46m;αAP=180°+arctg=207°4'47.88";又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64";∠PAB=αAB-αAP=9°27'55.76"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 计算坐标与坐标方位角的基本公式
控制测量的主要目的是通过测量和计算求出控制点的坐 标,控制点的坐标是根据边长及方位角计算出来的。

下面介 绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量 工中最基本最常用的公式。

一、坐标正算和坐标反算公式 1 .坐标正算
根据已知点的坐标和已知点到待定点的坐标方位角、 边长 计算
待定点的坐标,这种计算在测量中称为坐标正算。

如图5 — 5所示,已知A 点的坐标为X A 、%, A 到B 的 边长和坐标方位角分别为
S AB 和
AB
,则待定点B 的坐标为
(5 — 1)
由图5 — 5可知
S AB COS AB
S AB sin AB
(5 — 2)
X B X A S AB COS AB
y B y A S AB Sin AB
(5 — 3)
当A 点的坐标X A 、y A 和边长S A B 及其坐标方位角
AB
为已知
X B
y B
X A
X AB
y y AB
式中
X AB 、 y AB
坐标增量
式中
S AB
水平边长; AB
坐标方位角。

将式(5-2 )代入式(5-1
),则有
时,就可以用上述公式计算出待定点B的坐标。

式(5 —2)
是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。

从图5 —5可以看出X AB是边长S AB在X轴上的投影长度,
y AB是边长S AB在y轴上的投影长度,边长是有向线段,是在实地由A量到B得到的正值。

而公式中的坐标方位角可以从0。

至到360。

变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种
情况,其正负符号取决于坐标方位角所在的象限,如图 5 —6所示。

从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表 5 —3。

CQ
X
y
N
图5 —5坐标计算
—6坐标增量符号
表5—3 坐标增量符号表
270 〜
360
例1已知A点坐标x A=100.00m , y A=300.10m ;边长s A B=100m,方位角AB =330 °。

求B点的坐标X B、壮。

解:根据公式(5 —3 )有
X B X A s AB cos AB 100 100 cos330 186.1m y B y A s AB sin AB 300.1
100 sin330 249.6m
2、坐标反算
由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计算称为坐标反算。

由式(5—1 )有
X AB X B X A I
y AB y B y A
(5 —4)
该式说明坐标增量就是两点的坐标之差。

在图5 —5中X AB
表示由A点到达B点的纵坐标之差称纵坐标增量;y AB表示由A点到B点的横坐标之差称横坐标增量。

坐标增量也有
正负两种情况,它们决定于起点和终点坐标值的大小。

在图5 —5中如果A点到B点的坐标已知,需要计算AB 边的坐标方位角AB和边长时S AB ,
则有
} (5 —
5)

公式(5 —5)称为坐标反算公式。

应当指出,使用公式
(5 —5)中第一式计算的角是象限角R,应根据/ x、/y的
正负号,确定所在象限,再将象限角换算为方位角。

因此公式(5—5)中的第一式还可表示为:
例2 .已知x A=300m, y A=500m, X B =500m, y B =300m,
求A、B二点连线的坐标方位角AB和边长S AB。

解:由公式(5-5 )有
因为X AB为正、Y AB为负,直线AB位于第四象限。

所以
R AB NW 45
根据第四象限的坐标方位角与象限角的关系得:
AB 360 45 315
X B X A X AB
y AB
sin AB
R AB arctan ―y A
X B X A
arctan y AB
X AB
R AB
arctan 也
X B Y A
X A
300 500
arcta n arcta n( 1)
500 300
tan AB
C°S AB
} (5 —AB边长为:
S AB.(X B—X A)2—(y p—y A)2(50。

—300)2—(300一500)2 282.8m
坐标正算公式和坐标反算公式都是矿山测量中最基本的公式,应用十分广泛。

在测量计算时,由于公式中各元素的数字较多,测量规范
对数字取位及计算成果作了规定。

例如图根控制点要求边长计算取至毫米;角度计算取至秒;坐标计算取至厘米。

二、坐标方位角的推算公式
由公式(5-2 )知,计算坐标增量需要边长和该边的坐标
方位角两个要素,其中边长是
在野外直接测量或通过三角学的公式计算得到的,坐标方位角则是根据已知坐标方位角和水平角推算出来的。

下面介绍坐标方位角的推算公式。

如图5-7所示,箭头所指的方向为“前进”方向,位于前进方向左侧的观测角称为左观测角,简称左角;位于前进方向右侧的角称为右观测角,简称右角。

1.观测左角时的坐标方位角计算公式
在图5 —7与5 —8中,已知AB边的方位角为AB,左为
左观测角,需要求得BC边的方位角BC。

左是外业观测得到的水平角,从图上可以看出已知方位角AB与左观测角左之
和有两种情况:即大于180。

或小于180。

图5 —7中为大于180。

的情况,图5 —8中为小于180。

的情况。

180 °。

图5 — 7坐标方位角推算 图5 — 8坐标方
位角推算
从图5 — 7可知,BC 边的坐标方位角为
BC
AB 左
180
从图5 — 8可知,BC 边的坐标方位角为
BC
AB
左 180
综上所述两式则有



180
(5 — 6)
式(5-6 )是按照边的前进方向,根据后一条边的已知
方位角计算前一条边方位角的基本公式。

公式说明:导线前 一条边的坐标方位角等于后一条边的坐标方位角加上左观
测角,其和大于
180。

时应减去180 °,小于180。

时应加上
2.
观测右角时的坐标方位角计算公式
180 °。

从图5-7 或图5-8可以看出

360 右
将该式代入式(5- 6),得

(后

180

360
当方位角大于360 °时,应减去360 °,方向不变。

所以上式 变为
前 后 右180
(5 — 7)
上式说明:导线中,前一条边的坐标方位角等于后一条边 的坐标方位角减去右观测角,
其差大于180 °时应减去180 °,小于180 °时应加上180
使用式(5-6 )与(5-7)时,还应注意相应两条边的前进方 向必须一致,计算结果大于 360 °时,则应减去360 °,方向
不变。

例3图5-9为一条支导线,已知 A 点的坐标方位角 B A
=101 °28 ;导线A 点的左观测角 左=108 °32 点的右观
测角 右=75 °。

试推算坐标方位角
图5—9
支导线
AM
、 MN 。

P A
180解:由式(5-6 )得
则有
由式(5-7 )得
MN 30 75 180 135
AM BA
MN AM 右180
AM
101 28' 108 32' 180 30
则有。

相关文档
最新文档