人教版六年级下册数学单元知识点归纳——第三单元 圆柱与圆锥
六年级数学下册圆柱和圆锥知识点讲解

六年级数学下册圆柱和圆锥知识点讲解1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积 = 圆柱的侧面积 +底面积times;2 即S表=S侧+S底times;2或2pi;rtimes;h + 2times;pi;r27、圆柱的侧面积 = 底面周长times;高即S侧=Ch 或2pi;rtimes;h8、圆柱的体积=圆柱的底面积times;高,即V=sh或pi;r2times;h(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
)9、圆锥只有一个底面,底面是个圆。
圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高。
(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
)11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh 或 pi;r2times;hdivide;313、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
以上就是精品小编为大家整理的有关六年级数学下册圆柱和圆锥知识点讲解的全部内容,希望能够对大家在数学上的学习有所帮助!。
六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版

六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。
本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。
教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。
但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。
三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。
2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。
2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。
3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。
4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。
2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。
七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。
2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。
六年级数学下册圆柱与圆锥知识点总结(全面)

圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
B、不沿着高展开,展开图形是平行四边形或不规则图形。
C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
人教版小学六年级数学下册第三单元《圆柱与圆锥》知识点梳理

第三单元《圆柱与圆锥》知识点梳理一、圆柱的认识1.圆柱的初步认识:像茶叶筒、罐头盒、木墩等物体的形状都是圆柱形。
2.圆柱各部分的名称及特征圆柱是由两个底面和一个侧面三部分组成的。
底面:圆柱的两个圆面,是完全相同的两个圆。
侧面:圆柱周围的面,是一个曲面。
高:圆柱两个底面之间的距离,一个圆柱有无数条高。
3.圆柱的侧面展开图①沿着高展开,展开图图是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高;如果底面周长和高相等,展开图是一个正方形。
②不沿着高展开,展开图是一个平行四边形或不规则图形。
③无论怎么展开,都不可能得到梯形。
二、圆柱的表面积1.圆柱侧面积的计算方法圆柱的侧面积=底面周长×高。
S表示侧面积,C表示底面周长,h表示高,S=Ch2.圆柱侧面积计算公式的应用①已知圆柱的底面直径和高:S=πdh②已知圆柱的底面半径和高:S=2πrh3.圆柱表面积的意义和计算方法圆柱表面积=圆柱的侧面积+底面积×24.圆柱表面积计算公式的应用①已知圆柱的底面半径和高:S=2πrh+2πr2)2②已知圆柱的底面直径和高:S=πdh+2π(d2)2③已知圆柱的底面周长和高:S=Ch+2π(c2π5.进一法在取近似值时,根据实际情况把一个数某位后面的数字(不管这个数字比5大还是比5小)舍去并把保留部分最后一位数字加上1,这种取近似值的方法叫做“进一法”。
三、圆柱的体积1.圆柱体积的意义和计算公式①一个圆柱所占空间的大小,叫做这个圆柱的体积。
②圆柱的体积=底面积×高,用字母表示为:V =Sh 。
2.圆柱的体积计算公式的应用①已知圆柱的底面半径和高:V =πr 2h②已知圆柱的底面直径和高:V =π(d 2)2h③已知圆柱的底面周长和高:V =π(c 2π)2h四、圆锥的认识1.圆锥的初步认识:像沙堆、陀螺等物体的形状都是圆锥2.圆锥各部分的名称及特征圆锥是由一个底面和一个侧面两部分组成的。
六年级数学下册第三单元圆柱与圆锥 整理和复习

学习计划 回顾和巩固本单元所学知识,加深对圆柱和圆锥的理解 通过做练习题、模拟试题等方式检验自己的学习成果
下一步学习计划和目标
• 针对自己的薄弱环节进行有针对性的强化训练
下一步学习计划和目标
01
学习目标
02
03
04
熟练掌握圆柱和圆锥的基本性 质和计算公式
能够灵活运用所学知识解决实 际问题
提高自己的数学素养和解题能 力
01
02
03
理解公式
熟练掌握圆柱和圆锥的表 面积、体积公式,理解公 式中各个量的含义。
准确计算
在求解表面积或体积时, 要确保计算的准确性,特 别是涉及π的计算。
注意单位
题目中给出的数据单位要 统一,计算结果也要注意 单位。
判断形状或位置关系类问题解决方法
观察图形特征
通过观察图形的形状、大 小、位置等特征,判断它 们之间的关系。
圆锥体积公式推导
• 圆锥体积公式:V=1/3πr^2h(r为底面半径,h为高)。推导过程:通过相似三角形和比例关系,可以得到圆锥的高与底 面半径和母线长的关系,进而推导出圆锥体积公式。
实例分析与计算
已知圆锥的底面半径为3cm,母线长 为5cm,求圆锥的侧面积和全面积。
一个圆锥形容器高15cm,底面半径 是4cm,容器内装满水。如果把这些 水倒入一个底面半径是2cm的圆柱形 容器中,水面的高是多少厘米?
六年级数学下册第三单元圆 柱与圆锥 整理和复习
汇报人:XX
汇报时间:
目录
• 圆柱与圆锥基本概念 • 圆柱表面积和体积计算 • 圆锥表面积和体积计算 • 圆柱与圆锥之间关系探讨
目录
• 典型例题解析与技巧指导 • 知识体系梳理与复习建议
六年级下册圆锥圆柱数学知识点

六年级下册圆锥圆柱数学知识点学好数学要擅长总结自己把握的数学的解题方法,只有这样你才能够真正把握了数学的解题技巧。
做到总结和归纳是学会数学的关键。
下面是我整理的六年级下册圆锥圆柱数学学问点,仅供参考盼望能够关心到大家。
六年级下册圆锥圆柱数学学问点1.圆柱的特征:一个侧面、两个底面、很多条高且侧面沿高展开图是长形。
2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。
圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。
圆柱与圆锥等高等体积,圆锥的底面积(留意:是底面积而不是底面半径)是圆柱的3倍。
圆柱体积比等底等高圆锥体积多2倍。
圆锥体积比等底等高圆柱体积少。
(1)等底等高:V锥:V柱=1:3(2)等底等体积:h锥:h柱=3:1 (3)等高等体积:S锥:S柱=3:1题型总结:高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。
半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍削成最大体积的问题:正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽高)圆柱圆锥高等于长方体高浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。
等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,留意不要乘以1/3 。
练习题1一个圆柱和一个圆锥等底等高,圆柱的体积是48立方厘米,那么圆锥的体。
积是( ),假如圆锥的体积是36立方厘米,圆柱的体积是( )。
2.把一个圆柱削成一个最大的圆锥,这个圆柱的体积是48.15立方分米,削成的圆锥的体积是( )立方分米,削去的体积是( )。
3. 把一个圆柱削成一个最大的圆锥,这个圆锥的体积是3.2立方分米,削去的体积是( )立方分米,原来圆柱的体积是( )。
4.一个圆柱的底面半径是3㎝,高是2㎝,与它等底等高的圆锥体的体积是( )。
人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理

人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
人教版六年级数学下册第三单元知识梳理

例题演练
例: 求下面圆柱的表面积和体积。
12.56×8=100.48(cm2) 3.14×(12.56÷3.14÷2)2=12.56(cm2) 表面积:100.48+12.56×2=125.6(cm2) 体积:12.56×8=100.48(cm3)
必考知识点
二、圆锥 1.特征:底面是一个圆,侧面是一个曲面,展开后是一 个扇形;高是顶点到底面圆心的距离,只有一条。
例:
例题演练
高 1.9
顶点 底面
半径 1
必考知识点
2.体积:圆锥的体积= 1 ×圆锥的底面积×高,
3
即
例题演练
例:
这个圆锥的体积是: 13×3.14×1²×1.9≈1.99(cm³)
作业课件
第三单元知识梳理
一的圆;侧面是一个曲
面,沿着高展开是一个长方形;高是两底面之间的
距离,有无数条。
例题演练
例:
上下底面 是完全相 同的圆。
O上底面
有无数条。
侧面 高
侧面是一 O下底面 个曲面。
必考知识点
2.表面积:圆柱的表面积=圆柱的底面积×2+圆 柱的侧面积,即S圆柱=2π r²+2π rh。 3.体积:圆柱的体积=圆柱的底面积×高,即V圆柱 =π r2h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 圆柱与圆锥
一、圆柱的认识
1.生活中有许多物体是圆柱形的,如茶叶桶、蜡烛、罐头
盒等。
2.圆柱的特征:圆柱是由3.个面围成的.....。
它的上、下两个面叫做底面..。
圆柱周围的面(上、下底面除外)叫做侧面..。
圆柱的两个底面之间的距离叫做高.,圆柱有无数条高.......。
3.圆柱的上、下底面是完全相同的两个圆。
圆柱的侧面.....
是一个曲面.....,.沿高展开后是一个长方形...........(.或正方形....),..这个长方形.....
(.或正方形....).的长..(.或边长...).等于圆柱的底面周长.........,.宽.(.或边长...).等于..圆柱的高。
.....
4.把一张长方形的硬纸贴在木棒上,快速转动木棒,长方形硬纸形成的图形就是圆柱。
二、圆柱的表面积
1.圆柱的侧面积......=.底面周长....×.高.,用字母表示:S .侧.=Ch ...。
如果已知底面直径,底面周长的计算公式是C =πd ,圆柱的侧面积公式就是S .侧.=.π.dh ..
;如果已知底面半径,底面周长的计算公式就是C =2πr ,圆柱的侧面积公式就是S .侧.=2..π.rh ..。
2.圆柱的表面积......=.侧面积...+.底面积...×2..,用字母表示为S .
表.=Ch ...+2..π.r .
2.。
三、圆柱的体积
1.圆柱所占空间的大小,叫做这个圆柱的体积。
2.圆柱体积的推导过程:把一个圆柱的底面沿半径分成若干个相等的扇形,按照等分线沿着圆柱的高把它们切开后,可以拼成一个近似的长方体。
分成的扇形越多,拼成的立体图形就
越接近于长方体。
拼成的长方体与圆柱形状不同,体积相等。
提示:如果沿一条斜线
将圆柱的侧面展开,它的侧
面会是一个平行四边形,圆柱的底面周长是平行四边形
的底,圆柱的高是平行四边形的高。
注意:圆柱的侧面展开不可能得到梯形。
提示:在实际中,不是所有的圆柱形物体都有两个底面,要具体问题具体分析。
例如:求一段排气筒的表面积就是求圆柱的侧面
积,求一个水桶的表面积就
是求圆柱的侧面积和一个底
面积的和。
提示:把圆柱转化成长
方体来求体积,运用的是转
化的思想方法。
要点:圆柱的高不变,底
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的
高。
长方体的体积=底面积×高,推导出:圆柱的体积
.....=.
底面积
...
×.
高.。
3.圆柱的体积公式是V.圆柱
..
=Sh
...
,如果知道圆柱的底面半径r
和高h,圆柱的体积公式就是V.圆柱
..
=.π.r.2.h.。
4.在求不规则的物体的体积或容积时,可以利用转化的思
想,将其转化成规则的图形进行计算。
四、圆锥的认识
1.生活中有很多物体的形状是圆锥形的,像尖形的帽子、
粮囤的顶部等,还有漏斗、跳棋等物体的形状也接近圆锥形。
2.圆锥的特征:圆锥是由一个底面和一个侧面围成的立体
图形。
圆锥的底面是一个圆,圆锥的侧面是一个曲面。
从圆锥
的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高
.......。
3.圆锥高的测量方法:①把圆锥的底面水平放好;②把一块
平板水平地放在圆锥的顶点上面;③平板和底面之间的距离就
是圆锥的高。
4.把一张直角三角形的硬纸贴在木棒上,快速转动木棒,直
角三角形转动形成的图形是圆锥,贴在木棒上的直角边是圆锥
的高,另一条直角边是圆锥的底面半径。
五、圆锥的体积
1.圆锥的体积推导过程:准备等底等高的圆柱和圆锥形容
器。
把空的圆锥形容器里装满水或细沙,然后倒入空圆柱形容
器里,倒3次正好将空圆柱装满。
如果把空圆柱形容器装满水
或细沙,倒入空圆锥形容器中,每次都倒满,正好也倒了3次。
通
过实验可知,等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的
3倍,也可以说圆锥的体积是圆柱体积的。
面半径、直径或周长扩大到
原来的n倍,则体积扩大到原
来的n2倍;若底面半径、直
径、或周长缩小到原来的
,则体积缩小到原来
的。
注意:从圆锥的顶点到
圆锥底面圆周上的一点连一
条直线,沿这条直线把圆锥
的侧面展开,会得到一个扇
形。
提示:如果把一个圆锥
切成大小、形状完全相同的
两块,切面是两个以底面直
径为底边,以圆锥的高为高
的等腰三角形。
圆柱与圆锥的关系:
(1)等体积等高时,圆柱
2.圆锥的体积公式:V圆锥=Sh。
已知圆锥的底面半径和高,可以直接利用公式V圆锥=πr2h来计算体积。
底面积是圆锥的,圆锥底面积是圆柱的3倍;
(2)等体积等底时,圆锥高是圆柱的3倍,圆柱高是圆
锥的。
第三单元圆柱和圆锥
一、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:
1.以长方形的长为底面周长,宽为高;
2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高
4、圆柱的切割:
①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²
②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增=4rh
5、圆柱的侧面展开图:
①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
②不沿着高展开,展开图形是平行四边形或不规则图形
③无论怎么展开都得不到梯形
6、圆柱的相关计算公式:
底面积:S底=πr²
底面周长:C底=πd=2πr
侧面积:S侧=2πrh
表面积:S表=2S底+S侧=2πr²+2πrh
体积:V柱=πr²h
考试常见题型:
①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算
无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
侧面积+两个底面积:油桶、米桶、罐桶类
二、圆锥
1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、圆锥的切割:
①横切:切面是圆
②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,
即S增=2rh
5、圆锥的相关计算公式:
底面积:S底=πr²
底面周长:C底=πd=2πr
体积:V锥=1/3πr²h
考试常见题型:
①已知圆锥的底面积和高,求体积,底面周长
②已知圆锥的底面周长和高,求圆锥的体积,底面积
③已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算
三、圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高,体积相差2/3Sh
题型总结
①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积
分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化
分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比
②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)
③横截面的问题
④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体
⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3。