共型光学零件加工(英文,美国罗切斯特大学)
苏瑛-光学零件制造工艺学

光学零件特种加工工艺:特种加工工艺是按照不同技术要求 对冷加工或热加工之后的光学零件进行特殊加工。主要有光 学零件表面镀膜工艺、刻镀工艺、照相工艺、胶合工艺。 (1)光学零件镀膜工艺:它是在抛光或磨边好的零件表面上 镀一层薄膜,如镀增加透光或反光的膜层或其他用途的膜层。 该技术现在已形成一个薄膜光学技术,应用十分广泛。 (2)刻镀、照相工艺是在光学零件表面上制作各种分划标记 的工艺技术。 (3)胶合是将透镜、平面镜或棱镜按要求用光学胶胶合起来 的工艺。通常是将凸凹透镜胶合在一起来改善系统象差;棱 镜相胶来改变光路等。
图样绘制的要求应按照国家机械制图标准和光学制图标准及图样管理制度的 有关规定执行,一般应符合下列原则:
有关尺寸数据的标注均应符合国家制图标准。工艺图纸一般都要求标注允许 的公差范围,而不标注公差代号。需检验的尺寸、数据必须给出公差。
图样中所标注尺寸或数据有三种表示方法。 公称值:不带公差的名义值。加工中此值不做验收的依据,如透镜图中等焦距和
(2)按应力双折射大小分成三类
(3)按条纹大小分成四类
(4)按气泡大小和多少分成八类六级。
特殊玻璃
光学仪器中常用的特殊玻璃有耐辐射光学玻璃、石英光学玻璃、 微晶玻璃、窗用平板玻璃、硬质玻璃等。 一、耐辐射光学玻璃:在γ射线或高剂量的X射线的作用下,具有一 定的抗辐射性能的光学玻璃。耐辐射光学玻璃牌号的命名,按“无 色光学玻璃”牌号,根据其耐辐射性能的大小来分。 二、光学石英玻璃: 三、微晶玻璃:从原来的玻璃态经过热处理改变成的一种多晶体材 料。它的强度比普通玻璃大8倍;硬度比熔融石英还高,接近淬火 钢;密度低;具有高的热稳定性。 四、吸热玻璃:吸热滤光玻璃在可见光区域内有高的透过率而在红 外区域则大量吸收,对于光源的热辐射具有吸收性能。这种玻璃长 用于照明系统,吸收量随玻璃厚度的增加而增加,常用厚度为3mm。
激光加工技术PPT课件

1 2
3
4
1—激 光 ; 2—被 焊 接 零 件 ; 3—被 熔 化 金 属 ; 4—已 冷 却 的 熔 池
图7-12 激光焊接过程示意图
第26页/共35页
(四)激光表面处理 当激光的功率密度约为103~105 W/cm2时,便可实现对铸铁、 中碳钢,甚至低碳钢等材料进行激光表面淬火。淬火层深度一般为0.7~1.1 mm,淬火层硬度比常规淬火约高20%。激光淬火变形小,还能解决低碳钢 的表面淬火强化问题。图7-13为激光表面淬火处理应用实例。
第7页/共35页
被激发到高能级的原子一般是很不稳定的,它总是力图回到能量较 低的能级去,原子从高能级回落到低能级的过程,称为“跃迁”。
在基态时,原子可以长时间的存在,而在激发状态的各种高能级的 原子停留的时间一般都较短。但有些原子或离子的高能级或次高能级却有着 较长的寿命,这种寿命较长的较高能级,称为亚稳定能级。
内的200 多种疾病。
第33页/共35页
谢谢大家
第34页/共35页
谢谢您的观看!
第35页/共35页
第14页/共35页
固体激光器的基本结构示意图
第15页/共35页
封离式CO2激光器结构示意图
第16页/共35页
(二)导光聚焦系统 根据被加工工件的性能要求,光束经放大、整形、聚焦后作用于加工部 位,这种从激光器输出窗口到被加工工件之间的装置称为导光聚焦系统。 (三)激光加工系统 激光加工系统主要包括床身、能够在三维坐标范围内移动的工作台及机 电控制系统等。随着电子技术的发展,许多激光加工系统已采用计算机来控制 工作台的移动,实现激光加工的连续工作。
激光技术是20世纪60年代初发展起来的一门新兴科学,在材料加工 方面,已逐步形成一种崭新的加工方法——激光加工(简称LBM lasser beam machining)。激光加工可以用于打孔、切割、焊接、热处理等各 个领域。
光学零件镜片

ε
➢ 透镜存在偏心时,透镜的边缘厚度也有差异
(边厚差△t)。 △t=D*C/[f′*(n-1)]
➢ 加工中通过定心磨边保证偏心。
一般有光学定心及机械定心二种方式
光学零件概述
• 镀膜:
➢ 光学零件表面一般都要镀膜,镀膜要求依光学设计进行 ➢ 薄膜分类:增透膜、反光膜、分光膜、滤光膜、保护膜等等 ➢ 按结构分单层、多层 ➢ 大多数零件都是镀增透膜,主要参数是:
5、裂边要求:
R1、R2面:0.2
6、一般公差:±0.1,角度公差:±1°
7、椭圆、锥度必须在外径公差内
8、部品中禁止使用ROHS及CSE04011禁止物质
记号 日 期 1 08-6-19 2 3 4
订正内容 误记
担 当确 认 材 质
胡海涛
nd υd
f
NBFD15
面别 公称R值
1.80610±50 光线有效径
分类:单片研磨、多片研磨;低速研磨、高速研磨。
砂挂完品
加工第一面
加工第二面
研磨完品
7.芯取工程简介
光学零件芯取:
目的:校正偏心、外圆尺寸符合装配要求。 定义:校正偏心的过程即为定心。是把透镜二个球面的球心调
整到磨边机主轴线上,使得磨边时透镜是绕自身二个球 心连线旋转,则用砂轮磨削出的外圆柱面几何轴和光轴 一致。 芯取的实质是把透镜的几何轴固定到光轴上。
R1面欠膜自外径起0.5以内可
R2面镀全膜(平面部膜附可)
2、偏心检测基准:A+B/透过式50秒;并A+B测R1面跳动0.007;
3、面精度要求R1/R2:分散、椭圆R1面为0.5本 ,R2面为1本;
中高、中落、塌边、翘边R1面为0.5本 ,R2面为1本;
光学元件技术要求与检验国际新标准

Ra 0.012
Rq15nm
?
Rq2.0~0.5nm
• 国外光学元件表面粗糙度要求(RMS)
细磨玻璃表面、磁盘表面 良好的机械加工表面 单点金刚石切削表面 普通光学元件 超光滑光学元件 特殊超光滑光学元件 10nm- 几m 10nm- 1m 3-15nm 1.5-2.5nm <0.5nm <0.1nm
光学元件技术要求国际新标准 及其在我国推行与研究现状
基本内容
1. 概况
2. 3. 4. 5. 6.
背景 基本内容及简要说明 值得关注的若干问题 推行及研神光Ⅲ 装置规定以ISO10110为基础制定各
种技术要求 • 上海地区光学商贸往来 • NIF: 1999年7月SPIE会议两条信息: (1) NIF光学图纸均按ISO10110标准实施 (2) MIL-0-13830A与ISO10110的转换关系
ISO1011 0-6
ETD n 1 3438 弧分 δ Φ
L f ETD 1 mm 1 1 R1 R2
ISO1 5/N×A; 0110 CN’×A’ -7 LN”×A”; EA” (方法1) 5/TV或 /TV;EA” 5/RV或 RV;EA” (方法2)
3.3 列表说明各部分内容 所在部分 ISO10110-2 编码 0/A 解 说 0/=材料应力双折射的编码 号 A=最大光程差(OPD),以 nm/cm为单位 1/=材料气泡及杂质编码号 N=气泡和/或杂质数目A=气 泡分级数(尺寸),以mm 为单位所允许缺陷最大尺寸 截面面积的平方根 2/=材料非均匀性和条纹编码 号,A=非均匀性级数,B=条 纹级数
• 起草与颁布
◊ ISO/TC172/SC1/WG2/于1979年起草 “光学制图表示法” ◊定名为ISO10110 ◊依据DIN3140 差异 *表面粗糙度;*干涉波面描述;….. ◊1980年4月16日通过 ◊1996年发布1,2,3,5,6,7,9,10 1997年发布4,8,11,12,13
光学加工

国外光学加工技术发展现状如今我们不难发现,军用武器系统中几乎都装备有各种各样的光电传感器件,而在这些光电传感器件中,或多或少都采用了各种样式的光学零件。
从美国陆军所作的一项调查报告的材料中我们知道,1980~1990年美国军用激光和红外热成像产品所需要的各种光学零件就有114.77万块,其中球面光学零件为63.59万块,非球面光学零件为23.46万块,平面光学零件为18.1万块,多面体扫瞄镜为9.62万块。
拿M1坦克为例,其大约使用了90块透镜、30块棱镜以及各种反射镜、窗口和激光元件。
又如一具小小的AN/AVS-6飞行员夜视眼镜就采用了9块非球面光学零件和2块球面光学零件。
从70年代开始,以红外热成像和高能激光为代表的军用光学技术迅速发展。
军用光学系统不但要求成像质量好,而且要求体积小、重量轻、结构简单。
这对光学加工行业是一个严峻考验。
为了跟上时代发展的步伐,设计和制作出质地优良的光学成像系统,光学零件加工行业于70年代开展了大规模技术革命和创新活动,研究开发出许多新的光学零件加工方法,如非球面光学零件的加工法。
近10多年来,新的光学零件加工技术得到进一步地推广和普及。
目前,国外较为普遍采用的光学零件加工技术主要有:计算机数控单点金刚石车削技术、光学玻璃透镜模压成型技术、光学塑料成型技术、计算机数控研磨和抛光技术、环氧树脂复制技术、电铸成型技术……以及传统的研磨抛光技术等。
一.计算机数控单点金刚石车削技术计算机数控单点金刚石车削技术,是由美国国防科研机构于60年代率先开发、80年代得以推广应用的非球面光学零件加工技术。
它是在超精密数控车床上,采用天然单晶金刚石刀具,在对机床和加工环境进行精确控制条件下,直接利用金刚石刀具单点车削加工出符合光学质量要求的非球面光学零件。
该技术主要用于加工中小尺寸、中等批量的红外晶体和金属材料的光学零件,其特点是生产效率高、加工精度高、重复性好、适合批量生产、加工成本比传统的加工技术明显降低。
激光、光电、光学词汇中英文对照

激光、光电、光学词汇中英文对照1. 激光(Laser)2. 光电效应(Photoelectric Effect)3. 光学(Optics)4. 光纤(Fiber Optic)5. 光谱(Spectrum)6. 折射率(Refractive Index)7. 透镜(Lens)8. 反射(Reflection)9. 干涉(Interference)10. 衍射(Diffraction)11. 偏振(Polarization)12. 激光切割(Laser Cutting)13. 激光焊接(Laser Welding)14. 光电探测器(Photoelectric Detector)15. 光电传感器(Photoelectric Sensor)16. 光学显微镜(Optical Microscope)17. 光学望远镜(Optical Telescope)18. 光学镜头(Optical Lens)19. 光学滤波器(Optical Filter)20. 光学编码器(Optical Enr)21. 光学通信(Optical Communication)22. 光学存储(Optical Storage)24. 光学子系统(Optical Subsystem)25. 光学设计(Optical Design)26. 光学加工(Optical Fabrication)27. 光学镀膜(Optical Coating)28. 光学检测(Optical Inspection)29. 光学成像(Optical Imaging)30. 光学治疗(Optical Therapy)31. 光学材料(Optical Materials)32. 光学元件(Optical Elements)33. 光学路径(Optical Path)34. 光学平台(Optical Platform)35. 光学子件(Optical Component)36. 光学连接器(Optical Connector)37. 光学开关(Optical Switch)38. 光学调制器(Optical Modulator)39. 光学衰减器(Optical Attenuator)40. 光学放大器(Optical Amplifier)41. 光学显示器(Optical Display)42. 光学子午线(Optical Meridian)43. 光学分辨率(Optical Resolution)44. 光学畸变(Optical Distortion)45. 光学厚度(Optical Thickness)46. 光学密度(Optical Density)48. 光学干涉仪(Optical Interferometer)49. 光学相干断层扫描(Optical Coherence Tomography)50. 光学扫描器(Optical Scanner)51. 光学跟踪(Optical Tracking)52. 光学遥感(Optical Remote Sensing)53. 光学成像系统(Optical Imaging System)54. 光学跟踪系统(Optical Tracking System)55. 光学定位系统(Optical Positioning System)56. 光学子午仪(Optical Meridian Instrument)57. 光学补偿器(Optical Compensator)58. 光学补偿器(Optical Corrector)59. 光学基准(Optical Reference)60. 光学基准面(Optical Reference Plane)这些词汇涵盖了激光、光电和光学领域的基本概念、技术和设备。
第八章-光学系统的设计

2
§ 8-1常用光学设计软件
南开大学现代光学研究所
现代光学设计软件的特点
通用性强
共轴和非共轴系统;各类常规和复杂表面(球面、 平面、非球面、二元面等);材料种类;孔径形 状等。
分析能力强
几何像差;波像差;点列图;传递函数;热分 析;公差分析等。
优化能力
像差自动平衡和优化;边界条件和评价函数灵活
图形界面
南开大学现代光学研究所研究生课程——光学仪器原理(X. Zhao)
8
LightTools
与CODE V同公司。 可操作性强,建模功能强大。具有优化功能。
两类软件的区别
前者针对成像系统和像差分析;后者针对非成 像系统和非序列光线追迹。 前者侧重优化;后者侧重仿真分析。
南开大学现代光学研究所研究生课程——光学仪器原理(X. Zhao)
42
§ 8-6 光学系统设计实例
南开大学现代光学研究所
投影物镜设计实例
指标要求
焦距 相对孔径
14 mm 1:2.4
视场角2ω 放大率
54度 27×
后工作距离
21 mm
畸变
<1%
MTF
> 60%@36 lp 照度均匀性
选择初始结构
>95%
双胶合前组+双高斯后组
输入基本参数
系统参数;波长;视场;各面形参数
南开大学现代光学研究所研究生课程——光学仪器原理(X. Zhao)
41
初步分析
自动优化
Solves Merit function Optimization
评价与分析
Ray fans Spot diagram OPD fans Aberrations
光学零件加工流程综述(完整版)

镀膜材料包括金属、介质等,根据不同的光学要求选择不同的镀膜 材料。
镀膜工艺
镀膜工艺包括真空蒸发、化学气相沉积、物理气相沉积等,以达到不 同的光学要求。
切割技术
1 2
切割技术
通过切割将光学零件加工成所需的形状和尺寸。
切割工具
切割工具包括金刚石刀具、线切割等,根据不同 的材料和要求选择不同的切割工具。
光学元件的污染问题与对策
污染问题
在光学零件加工过程中,由于空气中悬 浮颗粒、油雾、手汗等原因,可能导致 光学元件的污染,如表面污渍、颗粒附 着等,这些问题会影响光学元件的光学 性能和寿命。
VS
对策
为了减小污染,加工车间应保持清洁和干 燥,定期进行空气净化处理;操作人员应 穿戴干净的工作服和手套,避免直接接触 光学元件;在加工完成后,应及时对光学 元件进行清洗和保护,避免污染和损伤。 同时,可以采用一些表面处理技术来提高 光学元件的抗污染能力,如镀膜、涂层等 。
光学零件加工流程综述(完整版
contents
目录
• 光学零件简介 • 光学零件加工流程 • 光学零件加工技术 • 光学零件加工中的问题与对策 • 光学零件加工的未来发展 • 结论
01 光学零件简介
光学零件的定义与分类
定义
光学零件是指利用光的折射、反射、 干涉等原理制成的各种元件,如透镜、 棱镜、反射镜等。
06 结论
总结
01
本文对光学零件加工流程进行了全面综述,详细介绍了光学零 件的种类、加工原理、工艺流程和关键技术。
02
通过分析不同类型的光学零件加工流程,总结了各流程的特点
和适用范围,为实际生产提供了指导。
针对现有加工技术的不足,提出了改进和优化的方向,为未来
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16 September 2004TECHNOLOGY DEMONSTRATION BRIEFCONFORMAL OGIVE ALON DOME FABRICATION Keywords:Conformal, freeform, optics, ogive, ALON™, domes, near-net-shape castings, infrared transmitting ceramicsThis brief will describe a successful project at the Center for Optics Manufacturing (COM) to demonstrate a conformal optics manufacturing process to deterministically microgrind a freeform ogive missile dome of ALON™ ceramic from a near-net-shape cast blank. The dome is 6.45 inches tall and 4.7 inches wide at the base. The concave surface was an off axis sphere, and the convex surface was an asphere. Both surfaces transitioned to a sphere at their apex.Contact:John SchoenActing DirectorTel: 585-275-8296Email: schoen@Fabrication Processes:A near net shape molded dome of ALON™ was provided in an oversized condition. The dome’s shapes were then deterministically contour microground with toric shaped grinding wheels on the convex surface, and ball shaped grinding wheels on the concave surface. For added stiffness and positional accuracy during grinding, COM leveraged and applied the technology the Moore Nanotech 500FG multi-axis freeform machining platform developed in the DARPA Precision Conformal Optics Technology program.The following presents the steps used to fabricate the dome.•The dome blank was received molded oversized to the final shape, per Figure 1Figure 1: ALON dome as near net shape•The first step was to block the blank into a conforming fixture using UV adhesive for processing the concave surface (see figure 2). The first grinding step was to grind a flat on the base, and bring the dome to the correct height.Figure 2: Computer model of ALON dome and fixture for concave side processing.•The second step was to grind (FG500) the concave surface using ball tools. The surface would be referenced to the flat base that was ground in the previous step. To accomplish this task, a series of different size ball tools were used to reduce tool wear during the grinding cycle, and to maximize grinding efficiency.Figure 3: Examples of ball tools grinding ALON dome, and various ball tool configurations.•The final step for the concave surface was to develop a hybrid conventional polishing process it before deblocking. A tool was designed and made by a rapid prototype machine located at COM’s facility. The tool was made with a shorter radius to accommodate the thickness of double-sided foam tape, and a polyurethane pad with a diamond slurry worked the best to remove the sub-surface damage and “shine” the surface. Figure 4 shows this process.Figure 4: a.) Polishing tools with various polyurethane pads attached. b.) Polishing tool was hand held during polishing operation.•Once the concave side was complete, the dome was deblocked and inverted to grind the convex surface. The fixture for the convex surface held the dome by the concave curve with the adhesive, and was referenced by optical contact with the base to try and obtain the best tilt accuracy. Figure 5 shows this process.Figure 5: Blocking fixture for the convex surface processing, and dome mounted to fixture.•The dome’s convex surface was then ground to final shape with two torrid shaped contour grinding wheels using a 3-axis motion (X, Z and B). Figure 6 depicts this process on the Moore FG500 freeform machine platform.Figure 6: Progression of grinding wheel for contour grinding the convex surface of the ALON dome.•Once the convex surface of the dome was ground to final specifications, it was hand polished to remove the residual sub-surface damage. The dome was left blocked on its fixture, and placed on a single spindle polisher. There, the same process was used as described in step 3. Figure 7 shows the finalized dome.Figure 7: Finished ALON dome on mounting fixture.Current Development Efforts (2004):COM’s next focus has been to follow the successful grinding effort and to explore, develop and refine affordable and deterministic finishing/polishing processes for these conformal ogive shapes and the diverse range of IR ceramics such as ALON™, Spinel, Zinc Sulfide and/or nanograined alumina. These materials have relevance to DoD joint services and programs in the areas of transparent armor and missile systems.A new compliant sub-aperture optical finishing technique is being investigated for the removal of mid-spatial frequency artifacts and smoothing of hard polycrystalline infrared ceramics for aspheric applications and conformal shaped optics. The Ultra-Form concept was developed by OptiPro Systems, Ontario, NY, and is a joint process development effort with the Center for Optics Manufacturing (COM).[Optipro Systems, Ontatio, NY has been involved with deterministic processing programs since the inception of COM and was one of the first companies to commercialize the revolutionary Opticam® series of optical grinding platforms. Optipro has also provided significant in-kind support to this new effort in equipment, metrology and engineering support.]Developmental Superfine Platform (In-kind loan from Optipro Systems)The Ultra-Form tool is a pressurized, elastomeric bladder in the shape of a toroid.Finishing pads are attached to the periphery, allowing the use of a wide variety of padmaterials and abrasive selections.Figure 1: Ultra-Form processInitial development emphasis has been placed on demonstrating the reduction of surface roughness, removal of mid-spatial artifacts and understanding the material removal function and associated parameters.For ALON™ (from Surmet Corporation), which is a hard polycrystalline ceramic material,a diamond developmental pad was found that performed extremely well. With this pad we were able to remove sub-surface damage from ALON™, reduce the rms surface roughness below 10 nanometers and not induce any grain highlighting.the surface on a Zygo NewView 5000.(m i c r o n s 200r o u g h n e s sPromising ALON Results on Optipro CpX125 with 3M diamond padCOM is currently conducting experimentation and materials process development for:•ALON™ (Surmet, previously Raytheon),•Spinel (Surmet and Technology Assessment and Transfer)•Nano-grained alumina (CeraNova)Future Frontiers and Peril in 2005COM’s future objectives remain directed to developing and implementing affordable processes for the manufacture of precision optical shapes with an emphasis on emerging IR ceramics.These efforts involve leveraging a core competency of material science and the relationship to fabrication, finishing solutions employing new and novel approaches such as the above Ultra-Form process and Jet-Magnetorheological finishing.Support is essential to continue these efforts with our industrial partners and leverage COM’s assets of fabrication expertise and the resources of the University of Rochester. The future of COM is in jeopardy and will close in early 2005 without further support and funding for these efforts. Information regarding COM is attached.Contact:John M. Schoen, Acting DirectorTel: (585) 275-8296 • Fax: (585) 275-7225 • Email: schoen@Overview of the Center for Optics ManufacturingThe University of Rochester’s Center for Optics Manufacturing (COM), established in 1990, is a nationally supported, award-winning university-industry-DoD research and development alliance that is modernizing precision optics manufacturing technology. The Army has funded COM, a DoD Center of Excellence for Optics, on a yearly basis since its inception. Part of the Army’s Manufacturing Science and Technology (ManTech) program, COM is an important element of the DoD strategy to develop and acquire affordable equipment for the warfighter, and to do so with dramatically reduced cycle time using commercial processes. COM fulfills this objective by systematically identifying and attacking manufacturing cost drivers and technology shortfalls that prevent the application of advanced optical shapes in next-generation optical systems. COM’s resources are its skilled staff, a large pool of University faculty and students, and industrial collaborators in small and large companies throughout the US.Awards and Accomplishments•DoD Manufacturing Technology Achievement Award in both 1992 and 2000•Photonics Circle of Excellence Award in 1993 and 2000•Laser Focus Commercial Technology Award in 1993 and 2000•R&D 100 Award in 2001 for breakthrough optics manufacturing technology developments•Over 150 COM-developed machines in commercial use on factory floors throughout the USFacilities and Research ProgramsCOM occupies 10,000 ft2 at the Center for Optoelectronics and Imaging on the University’s South Campus. Experimental and commercial CNC precision grinding and polishing machines are located in an open “shop floor” area. Here, teams study the manufacturing processes for finishing spheres, aspherics and conformal optics from an array of glasses, crystals and polycrystalline materials. Fundamental to this research is the development of scientific rule-based methods for the achievement of low subsurface damage in rapid grinding to shape, followed by rapid polishing to sub-nanometer roughness levels with surface figure errors at or below 0.1 micron. Optics metrology is carried out in a separate area equipped with an array of state-of-the-art instruments for evaluating surface form and roughness. A third lab is devoted to slurry fluid chemistry issues in the Magnetorheological Finishing (MRF) process that was invented at COM in the mid-1990’s. COM’s current emphasis is on process improvements for the manufacture of optics from hard, polycrystalline ceramics that offer multi-spectral imaging capability to viewing systems in tanks and aircraft.。