北师大版八年级上数学培优及答案

合集下载

北师大版八年级上数学培优和答案

北师大版八年级上数学培优和答案

)八年级上试题一、填空题1、设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a , 则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

3、在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=α,则∠A=_________。

4、直角三角形两锐角的平分线交角的度数是 。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。

6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )A.m °B.2m °C.(90-m)°D.(90-2m)°2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( ) A . 8 3≤y ≤ 64 11 B . 64 11≤y ≤8 C . 8 3≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )A.5种B. 6种C. 7种D.8种 5、在△ABC 中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( ) A.23y x =-- B.26y x =-- C.23y x =-+ D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )c k 1x +bx2y =-A.32B.23C.32-D.23- 9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( ) A.5个 B.6个 C.7个 D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组A .B .C .D .由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、 排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。

北师大版数学八年级上学期期末备考专项培优训练:二元一次方程组应用(含答案)

北师大版数学八年级上学期期末备考专项培优训练:二元一次方程组应用(含答案)

期末备考专项培优训练:二元一次方程组应用1.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的收入结余12000元,今年菠萝的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余23400元;(2)若设去年的收入为x元,支出为y元,则今年的收入为 1.2x元,支出为0.9y 元.(以上两空用含x、y的代数式表示)(3)列方程组计算小明家今年种植菠萝的收入和支出.解:(1)由题意可得,今年结余:12000+11400=23400(元),故答案为:23400;(2)由题意可得,今年的收入为:x(1+20%)=1.2x(元),支出为:y(1﹣10%)=0.9y(元),故答案为:1.2x,0.9y;(3)由题意可得,,解得,,则1.2x=1.2×42000=50400,0.9y=0.9×30000=27000,答:小明家今年种植菠萝的收入和支出分别为50400元、27000元.2.为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B 型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.解:(1)设每辆A型车有x个座位,每辆B型车有y个座位,依题意,得:,解得:.答:每辆A型车有45个座位,每辆B型车有60个座位.(2)设租m辆A型车,n辆B型车,依题意,得:45m+60n=480,解得:n=8﹣m.∵m,n为整数,∴(舍去),,,∴有两种租车方案,方案1:租4辆A型车、5辆B型车;方案2:租8辆A型车、2辆B型车.当租4辆A型车、5辆B型车时,所需费用为350×4+400×5=3400(元),当租8辆A型车、2辆B型车时,所需费用为350×8+400×2=3600(元).∵3400<3600,∴租4辆A型车、5辆B型车所需租金最少,最少租金为3400元.3.《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的,则有50钱;若乙得到甲所有钱的,则也有50钱,问甲、乙各持钱多少?请解答此问题.解:设甲、乙的持钱数分别为x,y,根据题意可得:,解得:,答:甲、乙的持钱数分别为37.5,25.4.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和20秒的两种广告.15秒广告每播1次收费0.6万元,20秒广告每播1次收费0.8万元.若要求每种广告播放都不少于1次,且2分钟广告时间恰好全部用完.问:两种广告的播放次数有几种安排方式?每种安排方式的收益分别为多少万元?解:设播放15秒的广告x次,播放20秒的广告y次,根据题意得:15x+20y=120,解得:y=6﹣,∵x,y均为不小于1的整数,∴x是4的整数倍,∴x=4,y=3,∴只有1种安排方式,即播放15秒的广告的次数是4次,播放20秒的广告的次数是3次;播当x=4,y=3时,0.6×4+0.8×3=4.8(万元),这种安排方式的收益为4.8万元.5.由甲、乙两运输队承包运输15000立方米沙石的任务,要求在10天之内(包含10天)完成.已知两队共有20辆汽车,甲队每辆车每天能够运输100立方米的沙石,乙队每辆车每天能够运输80立方米的沙石,前3天两队一共运输了5520立方米.(1)求甲乙两队各有多少辆汽车?(2)3天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?解:(1)设甲队有x辆汽车,乙队有y辆汽车,根据题意得:,解得:,答:甲队有12辆汽车,乙队有8辆汽车,(2)设甲队最多可以抽调m辆汽车走,根据题意得:7[100(12﹣m)+80×8]≥15000﹣5520,解得:m,m最大的整数是4,答:甲队最多可以抽调4辆汽车走.6.随着越来越多年轻家长对低幼阶段孩子英语口语的重视,某APP顺势推出了“北美外教在线授课”系列课程,提供“A课程”、“B课程”两种不同课程供家长选择.已知购买“A 课程”3课时与“B课程”5课时共需付款410元,购买“A课程”5课时与“B课程”3课时共需付款470元.(1)请问购买“A课程”1课时多少元?购买“B课程”1课时多少元?(2)根据市场调研,APP销售“A课程”1课时获利25元,销售“B课程”1课时获利20元,临近春节,小融计划用不低于3000元且不超过3600元的压岁钱购买两种课程共60课时,请问购买“A课程”多少课时才使得APP的获利最高?解:(1)设购买“A课程”1课时x元,购买“B课程”1课时y元.依题意,得:,解得:,答:购买“A课程”1课时70元,购买“B课程”1课时40元.(2)设购买“A课程”a课时,则购买“B课程”60﹣x课时.依题意,得:,解得:20≤a≤40,设利润为w,w=25a+20(60﹣a)=5a+1200,5>0,w随着a的增大而增大,故当a=40时,w最大.答:购买“A课程”40课时才使得APP的获利最高.7.某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位(1)求该公司A,B两种车型各有多少个座位?(2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)解:(1)设公司A、B两种车型各有x个座位和y个座位,根据题意得:解得答:公司A、B两种车型各有45个座位和60个座位,(2)设公司A、B两种车型各有a辆和b辆,租金为w元,根据题意得:∴w=﹣a+2450∵45a+60b=420∴a=∵a,b为正整数∴b=1,a=8,b=4,a=4∴当a=8时,w的值最小,即W=﹣20+2450=2430∴租该公司A、B两种车型各有8辆和1辆租金最少,最少租金为2430元.8.李阿姨要为家里添加餐具,分别买了型号不同的大小两种碗,共花了80元.已知小碗每只6元,大碗每只8元,问大小碗各买了几只?解:设小碗买了x只,大碗买了y只,6x+8y=80,∵x,y均为正整数,∴,,,答:小碗4只,大碗7只;或小碗8只,大碗4只;或小碗12只,大碗1只.9.甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.10.有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?解:设每只黑球和白球的质量分别是x、y克,依题意得,解得,答:每只黑球3克,白球1克.11.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?解:(1)设甲种笔记本销售x本,乙种笔记本销售y本,依题意得,解得,答:甲种笔记本销售65本,乙种笔记本销售35本;(2)所得销售款不可能是660元设甲种笔记本销售x本,乙种笔记本销售(100﹣x)本,则8x+(100﹣x)×5=660.解得该方程的解不是整数,故销售款不可能是660元.12.某旅行社组织280名游客外出旅游,计划租乘大巴车和小巴车赴旅游景点,其中大巴车每辆可乘80人,小巴车每辆可乘40人,要求租用的车子不留空位,同时也不能超载.(1)请你写出所有的租车方案;(2)若大巴车的租金是350元/天,小巴车的租金是200元/天,请你设计出费用最少的租车方案,并算出最少的费用是多少?.解:(1)设需要租x辆大巴车,y辆小巴车,根据题意得:80x+40y=280,∴y=7﹣2x.∵x、y均为整数,∴当x=0时,y=7;当x=1时,y=5;当x=2时,y=3;当x=3时,y=1.∴租车方案有:①租7辆小巴车;②租1辆大巴车,5辆小巴车;③租2辆大巴车,3辆小巴车;④租3辆大巴车,1辆小巴车.(2)方案①所需费用为200×7=1400(元);方案②所需费用为350+200×5=1350(元);方案③所需费用为350×2+200×3=1300(元);方案④所需费用为350×3+200=1250(元).∵1250<1300<1350<1400,∴费用最少的租车方案为:租3辆大巴车,1辆小巴车,最少的租车费用为1250元.13.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?解:设该兴趣小组男生有x人,女生有y人,依题意得:,解得:.答:该兴趣小组男生有12人,女生有21人.14.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?解:(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据题意得,解之得.答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10﹣2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.15.【方法阅读】一般地,二元一次方程的解有无数个,但是有些二元一次方程的正整数解却只有有限个,如二元一次方程2x+3y=15的正整数解只有和两个.那么,我们如何寻找二元一次方程的正整数解呢?不妨以方程2x+3y=15为例,首先过程方程各项的特征,发现2x和15分别是偶数和奇数,可以确定3y必然是奇数,即y是奇数,再运用特值法代入尝试,即将y=1,3,5,…等奇数代入原方程一次求出相应的x的值,从而获得2x+3y=15的正整数解.同学们还可以尝试运用列表法来探索二元一次方程的正整数解.【理解运用】(1)盒子里有若干个大小相同的红球和白球,规定从中摸出一个红球的3分,摸到一个白球的4分,假设小华摸到x个红球和y个白球,共得34分,请你列出关于x、y的方程,并写出这个方程符合实际意义的所有的解.【灵活运用】(2)已知△ABC的三边m,n,p都是正整数,m,n,p,且△ABC的周长为15,则符合条件的三角形共有7个.解:(1)依题意得:3x+4y=34,有三个正整数解为,,;(2)设m≥n≥p,则由m+n+p=15,得m≥5.用试值法或者枚举法可得:,,,,,,.所以符合条件的三角形共有7个.故答案是:7.。

1.3.1 勾股定理的应用 北师大版八年级数学上册培优练(含答案)

1.3.1 勾股定理的应用 北师大版八年级数学上册培优练(含答案)

专题1.3勾股定理的应用姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•达川区校级月考)如图,原来从A村到B村,需要沿路A→C→B(∠C=90°)绕过村庄间的一座大山.打通A,B间的隧道后,就可直接从A村到B村.已知,AC=12km,BC=16km,那么,打通隧道后从A村到B村比原来减少的路程为( )A.5km B.8km C.10km D.20km【分析】直接利用勾股定理得出AB的长,进而得出答案.【解析】由题意可得:AB²=AC2+BC2=122+162=400(km),AB=20km,则打通隧道后从A村到B村比原来减少的路程为:12+16﹣20=8(km).故选:B.2.(2020春•文水县期末)疫情期间,小颖宅家学习.一天,她在课间休息时,从窗户向外望,看到一人为快速从A处到达居住楼B处,直接从边长为24米的正方形草地中穿过.为保护草地,小颖计划在A处立一个标牌:“少走?米,踏之何忍”,已知B、C两处的距离为7米,那么标牌上?处的数字是( )A.3B.4C.5D.6【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解析】由题意可知AB²=AC2+BC2=24²+7²=625m,故居民直接到B时要走AB=25m,若居民不践踏草地应走AC+BC=24+7=31mAC+BC﹣AB=31﹣25=6m故在?的地方应该填写的数字为6,故选:D.3.(2021春•长沙期中)如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于( )A.1.2米B.1.5米C.2.0米D.2.5米【分析】过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【解析】如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD²=AE2+DE2=0.9²+1.2²=6.25,,故选:B.4.(2020春•西城区校级期中)为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)( )A.0.7米B.0.8米C.0.9米D.1.0米【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解析】梯脚与墙角距离的平方:2.52―2.42=0.49,∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.5.(2020•巴中)《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?( )A.4尺B.4.55尺C.5尺D.5.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.故选:B.6.(2020秋•未央区期中)如图,在灯塔O的东北方向8海里处有一轮船A,在灯塔的东南方向6海里处有一渔船B,则AB间的距离为( )A.9海里B.10海里C.11海里D.12海里【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【解析】已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=8海里,OB=6海里,∴AB²=OA2+OB2=8²+6²=100AB=10(海里).故选:B.7.(2020秋•罗湖区期中)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是( )A.10米B.15米C.16米D.17米【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB 的长,即攀岩墙的高.【解析】如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故选:B.8.(2020秋•龙泉驿区期中)如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为( )A.13cm B.8cm C.7cm D.15cm【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解析】由题意可得:杯子内的筷子长度为:52+122=13,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm).故选:C.9.(2020秋•历城区期中)古代数学的“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,AB+AC=25尺,BC=5尺,则AC等于( )尺.A.5B.10C.12D.13【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(25﹣x)尺,利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(25﹣x)尺,根据勾股定理得:x2+52=(25﹣x)2.解得:x=12,答:折断处离地面的高度为12尺.故选:C.10.(2020春•南岗区校级期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是( )A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm【分析】当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解析】如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16(cm);当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=AD2+BD2=17(cm),所以h的取值范围是:8cm≤h≤17cm.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•盐池县期末)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 17 米.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此利用勾股定理求出水平距离即可.【解析】根据勾股定理,楼梯水平长度为132―52=12米,则红地毯至少要12+5=17米长,故答案为:17.12.(2021春•越秀区校级期中)如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A 到公路MN的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间为 24 秒.【分析】设卡车开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由卡车的速度可得出所需时间.【解析】设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB=1002―802=60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.13.(2020秋•南宫市月考)小明从A处出发沿北偏东40°的方向走了30米到达B处;小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α= 50 .【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解析】∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.14.(2020秋•成华区校级月考)将一根24cm的筷子,置于底面直径为5cm、高为12cm的圆柱体中,如图,设筷子露出在杯子外面长为hcm,则h的最小值 11cm ,h的最大值 12cm .【分析】当筷子与杯底垂直时h 最大,当筷子与杯底及杯高构成直角三角形时h 最小,据此可以得到h 的取值范围.【解析】当筷子与杯底垂直时h 最大,h 最大=24﹣12=12(cm ).当筷子与杯底及杯高构成直角三角形时h 最小,此时,在杯子内部分=122+52=13(cm ),故h =24﹣13=11(cm ).故h 的取值范围是11≤h ≤12.故答案为:11cm ;12cm .15.(2020秋•太原期中)《九章算术)“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何.”其大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?若设门的宽为x 尺,根据题意列出的方程 x 2+(x +6.8)2=102 .(注:1丈=10尺,1尺=10寸)【分析】设长方形门的宽x 尺,则高是(x +6.8)尺,根据勾股定理即可列方程求解.【解析】设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺,宽是2.8尺.故答案为:x 2+(x +6.8)2=102.16.(2020秋•溧水区期中)木工师傅为了让尺子经久耐用,常常在尺子的直角顶点A 处与斜边BC 之间加一根小木条AD .已知∠BAC =90°,AB =5dm ,AC =12dm ,则小木条AD 的最短长度为 6013 dm .【分析】首先利用勾股定理求出BC 的长,再利用三角形面积求出即可.【解析】∵∠BAC =90°,AB =5dm ,AC =12dm ,∴BC =AB 2+AC 2=52+122=13(dm ),当AD ⊥BC 时,AD 最短,则12AD ×BC =12AB ×AC ,则AD =AB ×AC BC =5×1213=6013(dm ).故答案是:6013.17.(2020秋•广陵区校级期中)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B ′(示意图如图,则水深为 12 尺.【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB '的长为10尺,则B 'C =5尺,设出AB =AB '=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解析】依题意画出图形,设芦苇长AB =AB ′=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.18.(2020秋•泰州期中)如图所示是一个圆柱形饮料罐,底面半径为5cm,高为12cm,上底面中心有一个小圆孔,将一根长24cm的直吸管从小圆孔插入,直到接触到饮料罐的底部,直吸管在罐外的长度hcm (罐的厚度和小圆孔的大小忽略不计),则h的取值范围是 11≤h≤12 .【分析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高;当吸管底部在A点时吸管在罐内部分最长,此时可以利用勾股定理在Rt△ABO中求出,然后可得罐外部分a长度范围.【解析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高,罐外部分a=24﹣12=12(cm);当吸管底部在A点时吸管在罐内部分最长,即线段AB的长,在Rt△ABO中,AB=AO2+BO2=122+52=13(cm),罐外部分a=24﹣13=11(cm),所以11≤h≤12.故答案是:11≤h≤12.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•荥阳市期中)郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【解析】(1)因为△ABC是直角三角形,所以由勾股定理,得AC2=BC2+AB2.因为AC=50米,BC=30米,所以AB2=502﹣302=1600.因为AB>0,所以AB=40米.即A,B两点间的距离是40米.(2)过点B作BD⊥AC于点D.因为S△ABC=12AB•BC=12AC•BD,所以AB•BC=AC•BD.所以BD=AB⋅BCAC=30×4050=24(米),即点B到直线AC的距离是24米.20.(2020秋•太原期中)如图是一块四边形木板,其中AB=16cm,BC=24cm,CD=9cm,AD=25cm,∠B=∠C=90°.李师傅找到BC边的中点P,连接AP,DP,发现△APD是直角三角形,请你通过计算说明理由.【分析】根据勾股定理解答即可.【解析】∵点P为BC中点,∴BP=CP=12BC=12(cm),∵∠B=90°,在Rt△ABP中,根据勾股定理可得:AB2+BP2=AP2,162+122=AP2,解得:AP=20(cm),同理可得:DP=15(cm),∵152+202=252,∴AP2+DP2=AD2,∴△APD是直角三角形,∠APD=90°.21.(2020秋•碑林区校级月考)我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200元,则共需要投入多少钱?【分析】利用勾股定理求出AC,利用勾股定理的逆定理证明∠ADC=90°即可解决问题.【解析】连接AC,在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC=AB2+BC2=202+152=25(米).在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=625=AC2.∴△ADC是直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=12×15×20+12×7×24=234(平方米).∴四边形空地ABCD的面积为234平方米.∴200×234=46800(元).答:学校共需投入46800元.22.(2020秋•青羊区校级月考)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.(1)该小学是否受到噪声的影响,并说明理由.(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?【分析】过点A作AC⊥ON于点C,求出AC的长,第一台到B点时开始对学校有噪音影响,第二台到B 点时第一台已经影响小学50米,直到第二台到D点噪音才消失.【解析】如图所示:过点A作AC⊥ON于点C,∵∠MON=30°,OA=160米,∴AC=12OA=80米,∵80m<100m,∴该小学会受到噪声影响;(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,∴AB=AD=100米,由勾股定理得:BC=AB2―AC2=1002―802=60(米),∴BD=2BC=120米,CD=60米∴影响的时间应是:t=1205=24(秒);答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.23.(2020秋•南山区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【分析】设AB=x,则AC=x+1,依据勾股定理即可得到方程x2+52=(x+1)2,进而得出风筝距离地面的高度AB.【解析】设AB=x,则AC=x+1,由图可得,∠ABC=90°,BC=5,∴Rt△ABC中,AB2+BC2=AC2,即x2+52=(x+1)2,解得x=12,答:风筝距离地面的高度AB为12米.24.(2020春•武汉期中)如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.【分析】根据题意设出E点坐标,再由勾股定理列出方程求解即可.【解析】设AE=x,则BE=20﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=82+x2,在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,由题意可知:DE=CE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距A点13.3km.。

2019年北师大版八年级上册数学第1章《勾股定理》培优专题训练含答案

2019年北师大版八年级上册数学第1章《勾股定理》培优专题训练含答案

2019年北师大版八年级上册第1章《勾股定理》培优专题训练一.选择题1.在Rt△AOB中,∠AOB=90°,若AB=10,AO=6,则OB长为()A.5 B.6 C.8 D.102.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为()A.6 B.9 C.18 D.363.满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=6:8:10C.∠C=∠A﹣∠B D.b2=a2﹣c24.一只蚂蚁从圆柱体的下底面A点沿着侧面爬到上底面B点,已知圆柱的底面半径为2cm,高为8cm(π取3),则蚂蚁所走过的最短路径是()c m.A.8 B.9 C.10 D.125.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB于D,CD=2,则AB长为()A.6 B.C. +2 D. +26.如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S12+S22=S32B.S1+S2>S3C.S1+S2<S3D.S1+S2=S37.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定8.如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是()A.AB=5 B.∠C=90°C.AC=2D.∠A=30°9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8 B. 9.6 C.10 D.4 510.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.30二.填空题11.如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.12.禅城区某一中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m,若每种植1平方米草皮需要300元,总共需投入元.13.如图,一个无盖的正方体,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,经过计算发现,它的最短路径是20cm,则这个正方体的棱长为cm.14.如图,在6×6正方形网格(每个小正方形的边长为1cm)中,网格线的交点称为格点,△ABC的顶点都在格点处,则AC边上的高的长度为cm.15.在△ABC中,如果AB=5cm,AC=4cm,BC边上的高线AD=3cm,那么BC的长为cm.16.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,则△ABD的面积为.17.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为.18.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.三.解答题19.如图,在△ABC中,D是BC边上的一点,已知AB=13,AD=12,AC=15,BD=5.(1)求证:AD⊥BC;(2)求CD的长.20.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?21.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,A、B、D三点在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8.(1)试求点F到AD的距离.(2)试求BD的长.22.如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.23.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B 出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?25.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.[定理表述]请你根据图1中的直角三角形,写出勾股定理内容;[尝试证明]以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.参考答案一.选择题1.解:∵在Rt △AOB 中,∠AOB =90°,AB =10,AO =6,∴OB =,故选:C .2.解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE =∠ACB ,∠ACF =∠ACD ,即∠ECF =(∠ACB +∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB =∠MEC =∠ECM ,∠DCF =∠CFM =∠MCF , ∴CM =EM =MF =3,EF =6,由勾股定理可知CE 2+CF 2=EF 2=36, 故选:D .3.解:A 、∵∠A :∠B :∠C =3:4:5,∴∠C =,所以不是直角三角形,正确;B 、∵(6x )2+(8x )2=(10x )2,∴是直角三角形,错误;C 、∵∠C =∠A ﹣∠B , ∴∠C +∠B =∠A ,∴∠A =90°,是直角三角形,故本选项错误; D 、∵b 2=a 2﹣c 2,∴是直角三角形,错误; 故选:A .4.解:把圆柱侧面展开,展开图如右图所示,点A 、B 的最短距离为线段AB 的长. 在RT △ABC 中,∠ACB =90°,BC =8cm ,AC 为底面半圆弧长,AC =2π=6cm ,所以AB ==10cm .故选:C .5.解:在Rt △ACD 中,∠A =45°,CD =2, 则AD =CD =2,在Rt △CDB 中,∠B =30°,CD =2,则BD =2,故AB =AD +BD =2+2. 故选:D .6.解:设直角三角形的三边从小到大是a ,b ,c .则S 1=b 2,S 2=a 2,S 3=c 2.又a 2+b 2=c 2, 则S 1+S 2=S 3. 故选:D .7.解:∵AB =1.5,BC =0.9,AC =1.2,∴AB 2=1.52=2.25,BC 2+AC 2=0.92+1.22=2.25, ∴AB 2=BC 2+AC 2, ∴∠ACB =90°,∵CD 是AB 边上的高,∴S △ABC =,1.5CD =1.2×0.9, CD =0.72, 故选:A .8.解:A 、由勾股定理得:AB ==5,故此选项正确;B 、∵AC 2=22+42=20,BC 2=12+22=5,AB 2=52=25, ∴AB 2=BC 2+AC 2, ∴∠C =90°,故此选项正确;C 、AC ==2,故此选项正确;D 、∵BC =,AB =5, ∴∠A ≠30°, 故此选项不正确; 本题选择错误的结论, 故选:D .9.解:作AD ⊥BC 于D ,如图所示:则∠ADB =90°, ∵AB =AC ,∴BD =BC =6,由勾股定理得:AD ==8,当BM ⊥AC 时,BM 最小, 此时,∠BMC =90°,∵△ABC 的面积=AC •BM =BC •AD ,即×10×BM =×12×8,解得:BM =9.6, 故选:B .10.解:设每个小直角三角形的面积为m ,则S 1=4m +S 2,S 3=S 2﹣4m , 因为S 1+S 2+S 3=60,所以4m +S 2+S 2+S 2﹣4m =60, 即3S 2=60, 解得S 2=20. 故选:C .二.填空题(共8小题)11.解:∵DE 是AB 的中垂线,∴DA =DB ,设AD =x ,则DB =x ,CD =BC ﹣BD =8﹣x , 在Rt △ACD 中,∵AC 2+CD 2=AD 2, ∴62+(8﹣x )2=x 2,解得x =,∴CD =8﹣x =,故答案为:.12.解:在Rt △ABC 中,∵AC 2=AB 2+BC 2=32+42=52, ∴AC =5.在△DAC 中,CD 2=132,AD 2=122, 而122+52=132, 即AC 2+AD 2=CD 2, ∴∠DAC =90°,S 四边形ABCD =S △BAC +S △DAC =•BC •AB +DC •AC ,=×4×3+×12×5=36.所以需费用:36×300=10800(元). 故答案为:10800.13.解:如图,将正方体展开, 则线段AB 即为最短的路线, 设这个正方体的棱长为xcm ,∴AB ==x =20,∴x =4,∴这个正方体的棱长为4cm ,故答案为:4.14.解:如图,在Rt △ABC 中,AB =4cm ,BC =4cm ,由勾股定理知,AC ===4.设AC 边上的高的长度为hcm ,则AB •BC =AC •h ,∴h ===2(cm ).故答案是:2.15.解:(1)如图1,当点D 落在BC 上时,∵AB =5,AD =3,AC =4,∴BD ===4,CD ===,则BC =BD +CD =4+;(2)如图2,当点D 落在BC 延长线上时,∵AB =5,AD =3, AC =4,∴BD ===4,CD ===,则BC =BD ﹣CD =4﹣;综上,BC 的长的为(4+)或(4﹣)cm .16.解:作DE ⊥AB 于E ,∠C =90°,AC =12,BC =5,∴AB ==13,由基本作图可知,AD 是∠CAB 的平分线, 在△ACD 和△AED 中,,∴△ACD ≌△AED (AAS ),∴AE =AC =12,DE =DC ,∴BE =AB ﹣AE =1,BD =5﹣CD =5﹣DE ,在Rt △DEB 中,DE 2+BE 2=BD 2,即DE 2+12=(5﹣DE )2,解得,DE =,∴△ABD 的面积=×AB ×DE =,故答案为:.17.解:由题意:S 正方形A +S 正方形B =S 正方形E , S 正方形D ﹣S 正方形C =S 正方形E ,∴S 正方形A +S 正方形B =S 正方形D ﹣S 正方形C∵正方形B ,C ,D 的面积依次为4,3,9∴S 正方形A +4=9﹣3,∴S 正方形A =2故答案为2.18.解:连接AC .根据勾股定理可以得到:AB 2=12+32=10,AC 2=BC 2=12+22=5,∵5+5=10,即AC 2+BC 2=AB 2,∴△ABC 是等腰直角三角形,∴∠ABC =45°.故答案为:10,45.三.解答题(共7小题)19.解:(1)在△ABD 中,∵AD 2+BD 2=122+52=169,AB 2=132=169,∴AD 2+BD 2=AB 2,∴△ABD 是直角三角形,其中∠ADB =90°,∴AD ⊥BC ;(2)∵AD⊥BC,∴∠AD C=90°,在Rt△ACD中,AD2+CD2=AC2,即122+CD2=152,解得:CD=9或CD=﹣9(舍).20.解:(1)∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE===15,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.21.解:(1)如图,过点F作FM⊥AD于点M,在△EDF中,∠EDF=90°,∠E=60°,DE=8,则∠DFE=30°,故EF=2DE=16,DF===8,∵AB∥EF,∴∠FDM=∠DFE=30°,在Rt△FMD中,MF=DF=8×=4,即点F与AD之间的距离为:4;(2)在Rt△FMD中,DM===12,∵∠C=45°,∠CAB=90°,∴∠CBA=45°,又∵∠FMB=90°,△FMB是等腰直角三角形,∴MB=FM=4,∴BD=MD﹣FM=12﹣4.22.解:根据题意得;AC =30海里,AB =40海里,BC =50海里;∵302+402=502,∴△ABC 是直角三角形,∠BAC =90°,∴180°﹣90°﹣35°=55°,∴乙船的航行方向为南偏东55°.23.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC =CA .设AC 为x ,则OC =9﹣x ,由勾股定理得:OB 2+OC 2=BC 2,又∵OA =9,OB =3,∴32+(9﹣x )2=x 2,解方程得出x =5.∴机器人行走的路程BC 是5cm .24.解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .25.定理表述:直角三角形中,两直角边的平方和等于斜边的平方.证明:∵S 四边形ABCD =S △ABE +S △AED +S △CDE ,=×2+,又∵S 四边形ABCD ==,∴=×2+, ∴(a +b )2=2ab +c 2,∴a 2+2ab +b 2=2ab +c 2,∴a 2+b 2=c 2.。

北师大版八年级上册 第五章二元一次方程组 二元一次方程组的解 培优专题( 解析版)

北师大版八年级上册 第五章二元一次方程组   二元一次方程组的解 培优专题( 解析版)
【点睛】
本题考查了解二元一次方程组,利用题干条件消去原方程组中的x是解题关键.
15.
【解析】
【分析】
根据题意将方程9x-6y+y=13变形为3(3x-2y)+y=13,再将 整体代入求解即可.
【详解】
解: ,
将方程②变形,得9x-6y+y=13,即3(3x-2y)+y=13③,
把方程①代入③,得12+y=13,解得y=1,
详解:方程组 的解与方程组 的解相同得 ① ②,
解①得 ,
把 代入②得 ,
解得 ,
当m=1,n=2时,方程组 与方程组 同解.
∴m=1,n=2.
点睛:本题考查了二元一次方程组的解,利用了方程组的解满足方程组.
17.(1)m=2;n=3;(2)方程组正确的解为
【解析】
【分析】
(1)将第一组解代入方程组的第一个方程求出m的值,将第二组解代入方程组的第二个方程求出n的值即可;
19.阅读理解:解方程组 时,如果设 =m, =n,则原方程组可变形为关于m,n的方程组 解这个方程组得到它的解为 由 , ,求得原方程组的解为 ,利用上述方法解方程组:
20.请你根据萌萌所给的如图所的内容,完成下列各小题.
(1)若m※n=1,m※2n=﹣2,分别求m和n的值;
(2)若m满足m※2≤0,且3m※(﹣8)>0,求m的取值范围.
23.已知方程组 中,x、y的系数部已经模糊不清,但知道其中□表示同一个数,△也表示同一个数, 是这个方程组的解,你能求出原方程组吗?
25.阅读探索
解方程组
解:设a1x,b2y,原方程组可变为
解方程组得 ,即 ,所以 .此种解方程组的方法叫换元法.
(1)拓展提高
运用上述方法解下列方程组:

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是()A.在中国西南地区B.在云贵高原的中部C.距离北京2 600千米D.东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是() A.(20,30)B.(15,-28)C.(-40,-10)D.(-35,19)3.【母题:教材P54例题】某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,则如图所示的表示法正确的是()4.【2023·济宁任城区校级月考】已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为()A.0 B.1 C.-1 D.3 5.【2023·天津中学月考】已知点A(-1,-4),B(-1,3),则() A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为() A.2 B.-4 C.-1 D.37.若点P(1,a)与点Q(b,2)关于x轴对称,则代数式(a+b)2 023的值为() A.-1 B.1 C.-2 D.28.【2023·常州实验中学月考】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E 的坐标是()A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 024的坐标是()A.(1 011,0) B.(1 011,1) C.(1 012,0) D.(1 012,1) 二、填空题(每题3分,共24分)11.点(0,-2)在________轴上.12.点(4,5)关于x轴对称的点的坐标为__________.13.一个英文单词的字母顺序分别对应如图中的有序数对:(5,3),(6,3),(7,3),(4,1),(4,4),则这个英文单词翻译成中文为__________.14.已知点A,B,C的坐标分别为(2,4),(6,0),(8,0),则△ABC的面积是________.15.【母题:教材P71复习题T1(3)】若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________________.16.已知点N的坐标为(a,a-1),则点N一定不在第________象限.17.【2023·苏州一中月考】如图,一束光线从点A(3,3)出发,经过y轴上的点C 反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.18.【规律探索题】【2022·毕节】如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位长度,再向右平移1个单位长度,得到点A1(1,1);把点A1向上平移2个单位长度,再向左平移2个单位长度,得到点A2(-1,3);把点A2向下平移3个单位长度,再向左平移3个单位长度,得到点A3(-4,0);把点A3向下平移4个单位长度,再向右平移4个单位长度,得到点A4(0,-4),…;按此做法进行下去,则点A10的坐标为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【母题:教材P60随堂练习】2023年亚运会将在杭州举行,如图是杭州李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,依次写出他路上经过的地方.(3)连接(2)中各点,所形成的路线构成了什么图形?20.已知点P (2m -6,m +2).(1)若点P 在y 轴上,则点P 的坐标为__________; (2)若点P 的纵坐标比横坐标大6,则点P 在第几象限?21.若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.如图,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论分别求出线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.22.【2023·吉林一中月考】已知点P (2x ,3x -1)是平面直角坐标系内的点. (1)若点P 在第三象限,且到两坐标轴的距离和为11,求x 的值;(2)已知点A (3,-1),点B (-5,-1),点P 在直线AB 的上方,且到直线AB 的距离为5,求x 的值.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒一个单位长度.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.【存在性问题】已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.D【点拨】表示昆明市地理位置最合理的是东经102°、北纬24°.2.D【点拨】图中阴影区域在第二象限,故选D.3.A【点拨】A.镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,故本选项符合题意;B.镇初级中学在镇政府的南偏西30°方向上,且距离镇政府1 500 m,故本选项不符合题意;C.镇政府在镇初级中学的南偏西60°方向上,且距离镇初级中学1 500 m,故本选项不符合题意;D.镇政府在镇初级中学的南偏西30°方向上,且距离镇初级中学1 500 m,故本选项不符合题意.故选A.4.B【点拨】因为点A(m-1,3)与点B(2,n-1)关于x轴对称,所以m-1=2,n-1=-3,解得m=3,n=-2,所以m+n=1.5.C【点拨】把A(-1,-4),B(-1,3)在平面直角坐标系中画出,并连接AB,可知AB平行于y轴.6.C【点拨】因为直线AB∥x轴,所以A、B两点的纵坐标相等,所以-2=m-1,解得m=-1.7.A【点拨】因为P(1,a)与Q(b,2)关于x轴对称,所以b=1,a=-2,所以(a+b)2 023=(-2+1)2 023=-1.8.C【点拨】因为点A的坐标为(0,a),所以点A在该平面直角坐标系的y轴上.因为点C,D的坐标分别为(b,m),(c,m),所以点C,D关于y轴对称.因为正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,所以点B,E也关于y轴对称.因为点B的坐标为(-3,2),所以点E的坐标为(3,2).9.D【点拨】因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点P的坐标为(3,3)或(6,-6).10.C【点拨】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,2 024÷4=506,所以A2 024的坐标为(506×2,0),则A2 024的坐标是(1 012,0).二、11.y【点拨】横坐标为0,所以点(0,-2)在y轴上.12.(4,-5)【点拨】因为关于x轴对称的点横坐标变,纵坐标互为相反数,所以点(4,5)关于x轴对称的点的坐标为(4,-5).13.学习【点拨】根据有序数对对应的字母即可求解.14.4【点拨】把点A,B,C在平面直角坐标系中标出来,可知BC=2,△ABC的边BC上的高为4,所以△ABC的面积为12×4×2=4.15.(-5,4)或(-5,-4)【点拨】由点P到两坐标轴的距离可知,点P有4个.因为点P在y轴的左侧,所以点P的坐标为(-5,4)或(-5,-4).16.二【点拨】当a>1时,a-1是正数,所以点P在第一象限,当a<1时,a -1为负数,所以点P在第三象限或第四象限.故点N一定不在第二象限.17.5【点拨】作点A关于y轴的对称点A′(-3,3),过A′作垂直于x轴于点D,连接A′,D,B构成△A′DB,所以A′D=3,DB=4,所以A′B=A′D2+BD2=5,即光线从点A到点B经过的路径长为5.18.(-1,11)【点拨】由题图可知A5(5,1);将点A5向上平移6个单位长度,再向左平移6个单位长度,可得A6(-1,7);将点A6向下平移7个单位长度,再向左平移7个单位长度,可得A7(-8,0);将点A7向下平移8个单位长度,再向右平移8个单位长度,可得A8(0,-8);将点A8向上平移9个单位长度,再向右平移9个单位长度,可得A9(9,1);将点A9向上平移10个单位长度,再向左平移10个单位长度,可得A10(-1,11).三、19.【解】(1)学校的坐标为(1,3),邮局的坐标为(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略,所形成的路线构成了一条帆船图形.20.【解】(1)(0,5)(2)根据题意,得2m -6+6=m +2,解得m =2. 所以点P 的坐标为(-2,4). 所以点P 在第二象限.21.【解】由题中所给结论及点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),得点D (-2,2),E (2,2).因为点D ,E 的纵坐标相等,且不为0, 所以DE ∥x 轴. 又因为AB 在x 轴上, 所以DE ∥AB .22.【解】(1)因为点P 在第三象限,所以点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .因为点P 到两坐标轴的距离和为11, 所以1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 23.【解】(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3), Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9.24.【解】(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4, 所以|x -(-3)|=4, 解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9. 设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10;当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9,解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2). (3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形. 如图,点Q 的坐标为(0,9)或(0,-4)或⎝ ⎛⎭⎪⎫0,78或(0,-1).。

1.1 探索勾股定理 北师大版八年级数学上册培优练(含答案)

1.1 探索勾股定理 北师大版八年级数学上册培优练(含答案)

1.1探索勾股定理姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•英德市期末)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解析】∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.2.(2019秋•高新区校级期中)若直角三角形的两边长分别为a,b,且满足a2﹣6a+9+|b﹣4|=0,则该直角三角形的第三边长的平方为( )A.25B.7C.25或7D.25或16【分析】根据非负数的性质列出方程求出a、b的值,根据勾股定理即可得到结论.【解析】∵a2﹣6a+9+|b﹣4|=0,∴(a﹣3)2=0,b﹣4=0,∴a=3,b=4,∴直角三角形的第三边长=32+42=5,或直角三角形的第三边长=42―32=7,∴直角三角形的第三平方为25或7,故选:C.3.(2021春•金牛区校级月考)下列三条线段不能组成直角三角形的是( )A.3、4、5B.5、12、13C.8、15、17D.4、5、6【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解析】A、32+42=52,故能组成直角三角形,故不符合题意;B、52+122=132,故能组成直角三角形,故不符合题意;C、152+82=172,故能组成直角三角形,故不符合题意;D、52+42≠62,故不能组成直角三角形,故符合题意.故选:D.4.(2019秋•滨海县期中)两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )A.(a+b)2=c2B.(a﹣b)2=c2C.a2+b2=c2D.a2﹣b2=c2【分析】用两种方法求图形面积,一是直接利用梯形面积公式来求;一是利用三个三角形面积之和来求.【解析】根据题意得:S=12(a+b)(a+b),S=12ab+12ab+12c2,∴12(a+b)(a+b)=12ab+12ab+12c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:C.5.(2020秋•亭湖区校级期中)如图,在赵爽弦图中,已知直角三角形的短直角边长为a,长直角边长为b,大正方形的面积为20,小正方形的面积为4,则ab的值是( )A.10B.8C.7D.5【分析】根据勾股定理解答即可.【解析】设大正方形的边长为c,则c2=a2+b2=20,小正方形的面积(a﹣b)2=4,∴20﹣2ab=4,解得:ab=8,故选:B.6.(2020秋•明溪县期中)如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x+y)2=49,用x,y表示直角三角形的两直角边(x>y),下列选项中正确的是( )A.小正方形面积为4B.x2+y2=5C.x2﹣y2=7D.xy=24【分析】根据勾股定理解答即可.【解析】根据题意可得:x2+y2=25,故B错误,∵(x+y)2=49,∴2xy=24,故D错误,∴(x﹣y)2=1,故A错误,∴x2﹣y2=7,故C正确;故选:C.7.(2020秋•东港市期中)如图,是由四个全等的直角三角形与中间一个小正方形拼成的个大正方形,若大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边分别为a,b,则(a+b)2的值是( )A.13B.25C.33D.144【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方17,也就是两条直角边的平方和是17,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=16.根据完全平方公式即可求解.【解析】根据题意,结合勾股定理a2+b2=17,四个三角形的面积=4×12ab=17﹣1,∴2ab=16,联立解得:(a+b)2=17+16=33.故选:C.8.(2019秋•昌平区期末)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为( )A.47B.62C.79D.98【分析】依据每列数的规律,即可得到a=n2﹣1,b=2n,c=n2+1,进而得出x+y的值.【解析】由题可得,3=22﹣1,4=2×2,5=22+1,……∴a=n2﹣1,b=2n,c=n2+1,∴当c=n2+1=65时,n=8,∴x=63,y=16,∴x+y=79,故选:C.9.(2019秋•建湖县期中)如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC交AC、CF于M、F,若EM=3,则CE2+CF2的值为( )A.36B.9C.6D.18【分析】根据角平分线的定义可以证明出△CEF是直角三角形,再根据平行线的性质以及角平分线的定义证明得到EM=CM=MF然后求出EF的长度,然后利用勾股定理列式计算即可求解.【解析】∵CE平分∠ACB交AB于E,CF平分∠ACD,∴∠1=∠2=12∠ACB,∠3=∠4=12∠ACD,∴∠2+∠3=12(∠ACB+∠ACD)=90°,∴△CEF是直角三角形,∵EF∥BC,∴∠1=∠5,∠4=∠F,∴∠2=∠5,∠3=∠F,∴EM=CM,CM=MF,∵EM=3,∴EF=3+3=6,在Rt△CEF中,CE2+CF2=EF2=62=36.故选:A.10.(2021春•越秀区校级期中)如图,Rt△ABC中,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且,且S1=4,S3=16,则S2=( )A.20B.12C.25D.23【分析】根据勾股定理求出AC2,得到答案.【解析】由勾股定理得,AC2=AB2﹣BC2=16﹣4=12,则S2=AC2=12,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021春•武汉期中)一竖直的木杆在离地面4米处折断,木杆顶端落在地面离木杆底端3米处,木杆折断之前的高度为 9 米.【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【解析】∵一竖直的木杆在离地面4米处折断,顶端落在地面离木杆底端3米处,∴折断的部分长为42+32=5(米),∴折断前高度为5+4=9(米).故答案为:9.12.(2021春•隆回县期中)已知,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD=3,AC=6,则AB = 12 .【分析】先根据CD⊥AB于D,AD=3,AC=6得到∠ACD是30°,再利用同角的余角相等得到∠B=∠ACD=30°,所以AB=2AC=12.【解析】∵CD⊥AB于D,AD=3,AC=6,∴∠ACD=30°,∵CD⊥AB于D,∴∠B+∠BCD=90°,又∠ACD+∠BCD=90°,∴∠B=∠ACD=30°,∵AC=6,∴AB=2AC=12.故答案为12.13.(2021•龙泉驿区模拟)如图,在△ABC中,AB=10,AC=BC=13,CD是中线,则CD的长为 12 .【分析】由AC=BC,CD是中线得出△ABC是等腰三角形,CD⊥AB,然后由勾股定理求出CD即可.【解析】∵AC=BC,∴△ABC是等腰三角形,∵CD是等腰三角形底边上的的中线,∴CD⊥AB,∵AB=10,∴AD=5,∴在Rt△CAD中,AD=AC2―AD2=132―52=12,故答案为:12.14.(2021春•安宁市校级期中)如图,已知正方形A的面积为25,如果正方形C的面积为169,那么正方形B的面积为 144 .【分析】结合勾股定理和正方形的面积公式,得字母B所代表的正方形的面积等于其它两个正方形的面积差.【解析】根据题意知正方形的A面积为25,正方形C的面积为169,则字母B所代表的正方形的面积=169﹣25=144.故答案为:144.15.(2021春•天津期中)如图,已知在Rt△ABC中,∠ACB=90°,分别以AC,BC,AB为直径作半圆,面积分别记为S1,S2,S3,若S3=9π,则S1+S2等于 9π .【分析】根据勾股定理和圆的面积公式,可以得到S1+S2的值,从而可以解答本题.【解析】∵∠ACB=90°,∴AC2+BC2=AB2,∵S1=π(AC2)2×12,S2=π(BC2)2×12,S3=π(AB2)2×12,∴S1+S2=π(AC2)2×12+π(BC2)2×12=π(AB2)2×12=S3,∵S3=9π,∴S1+S2=9π,故答案为:9π.16.(2021•富阳区二模)有一根长33厘米的木棒(粗细忽略),木箱的长、宽、高分别为24厘米、18厘米、16厘米,这根木棒理论上 能 (填“能”或“不能”)放进木箱.【分析】在木箱中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长、宽、高可求出最大距离,然后和木棒的长度进行比较即可.【解析】设放入长方体盒子中的最大长度是xcm,根据题意得:x2=242+182+162=1156,∵332=1089,1089<1156,∴能放进去,故答案为:能.17.(2021春•江汉区期中)直角三角形两条直角边长分别为3和4,则该直角三角形周长为 12 .【分析】直接利用勾股定理得出斜边长,进而得出答案.【解析】设Rt△ABC的斜边长为x,则由勾股定理得:x2=32+42=25,∴解得:x=5(负数舍去),∴此直角三角形的周长=3+4+5=12.故答案为:12.18.(2021春•海淀区校级期中)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部 8 m处.【分析】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解析】设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019春•宁都县期中)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”可翻译为:有一根竹子高一丈,今在A处折断,竹梢落在地面的B处,B与竹根部C相距3尺,求折断点A与地面的高度AC.(注:1丈=10尺)【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解析】设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.20.(2019春•望花区期末)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解析】设水深x尺,芦苇(x+1)尺,由勾股定理:x2+52=(x+1)2,解得:x=12,x+1=13,答:水深12尺,芦苇的长度是13尺.21.(2018秋•台儿庄区校级月考)“交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪间距离为130米,这辆小汽车超速了吗?【分析】利用勾股定理列式求出BC,再根据速度=路程÷时间求出小汽车的速度,然后化为千米/小时的单位即可得解.【解析】由勾股定理得,BC=AC2―AB2=1302―502=120米,v=120÷6=20米/秒,∵20×3.6=72,∴20米/秒=72千米/小时,72>70,∴这辆小汽车超速了.22.(2018秋•晋江市期末)如图,一架2.5m长的梯子AB斜靠在墙AC上,梯子的顶端A离地面的高度为2.4m,如果梯子的底部B向外滑出1.3m后停在DE位置上,则梯子的顶部下滑多少米?【分析】根据勾股定理即可得到结论.【解析】由题意得,AB=DE=2.5,AC=2.4,BD=1.3,∵∠C=90°,∴BC=AB2―AC2=2.52―2.42=0.7,∴CD=BC+BD=2,∵CE=DE2―CD2=2.52―22=1.5,∴AE=AC﹣CE=2.4﹣1.5=0.9,答:梯子的顶部下滑0.9米.23.(2020秋•盐湖区期中)如图是一底面周长为24m,高为6m的圆柱形油罐,一只老鼠欲从距地面1m的A处沿侧面爬行到对角B处吃食物,请算出老鼠爬行的最短路程为多少?【分析】延AC和BD剪开,将曲面平铺在平面上,过AE作AE⊥BD于E,根据勾股定理求出线段AB 的长即可.【解析】延AC和BD剪开,将曲面平铺在平面上,过AE作AE⊥BD于E,如图,∵底面周长为24m,高为6m的圆柱形油罐,∴AE=12m,BE=6﹣1=5(m),在Rt△AEB中,由勾股定理得:AB=AE2+BE2=122+52=13(m),∴老鼠爬行的最短路程为13m.24.(2018秋•灵石县期中)阅读材料,回答问题:(1)中国古代数学著作《周脾算经》有着这样的记载:“勾广三,股修四,径隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.“上述记载表明了在Rt△ABC中,如果∠C =90°,BC=a,AC=b,AB=c,那么a,b,c三者之间的数量关系是:(2)对于这个数量关系,可以利用面积法进行了证明.已知四个全等的直角三角形围成如图所示的正方形,请你参考右图,将下面的证明过程补充完整;证明:∵S△ABC=12ab,S正方形ABCD=c2,S正方形EFGB= (a+b) 又∵S正方形EFGB= 4S△ABF + S正方形ABCD ,∴ (a+b)2 = 4×12ab + c2 ,整理得a2+2ab+b2=2ab+c2,∴ a2+b2=c2 .【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可.【解析】(1)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,由勾股定理得,a2+b2=c2,故答案为:a2+b2=c2;(2)证明:∵S△ABC=12ab,S正方形ABCD=c2,S正方形EFGB=(a+b)2又∵S正方形EFGB=4S△ABF+S正方形ABCD,∴(a+b)2=4×12ab+c2,整理得a2+2ab+b2=2ab+c2,∴a2+b2=c2.故答案为:(a+b)2;4S△ABF;S正方形ABCD,(a+b)2,c2,a2+b2=c2.。

2019—2020学年 北师版数学八年级上册 期末冲刺培优提升卷及答案

2019—2020学年 北师版数学八年级上册 期末冲刺培优提升卷及答案

2019—2020学年北师版数学八年级上册期末冲刺培优提升卷及答案一.选择题(共10小题,3*10=30)1.使二次根式x-1有意义的x的取值范围是()A.x≠1 B.x>1C.x≤1 D.x≥12.现有一个长、宽、高分别为120 cm,40 cm,30 cm的木箱,将一根木棒放入木箱,问木棒最长为( )A.120 cm B.130 cmC.140 cm D.150 cm3.下列运算正确的是()A.2+3= 5B.43-3=4C.2×3=2 3D.4÷2=2 24.若x,y为实数,且x-1+(y-2)2=0,则x-y的值为()A.3 B.2C.1 D.-15.直线y=x+4和直线y=-x+4与x轴围成的三角形的面积是( )A.32 B.64 C.16 D.86.若y=2-x+x-2-3,则y x的值是()A.-6 B.-9C.6 D.97.如图,AB∥CD,BE交CD于点F,∠B=45°,∠E=21°,则∠D的度数为()A.21°B.24°C.45°D.66°8.若一组数据x1+1,x2+1,x3+1,…,x n+1的平均数为10,方差为2,则对于另一组数x1+2,x2+2,x3+2,…,x n+2,下列结论正确的是( )B .平均数为11,方差为3C .平均数为11,方差为2D .平均数为12,方差为49.若点A(-5,y 1),B(-2,y 2)都在直线y =-12x 上,则y 1与y 2的关系是( ) A .y 1≤y 2 B .y 1=y 2C .y 1>y 2D .y 1<y 210.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(km)与两车行驶的时间x(h)之间的函数图象如图所示,则A ,B 两地之间的距离为( )A .150 kmB .300 kmC .350 kmD .450 km二.填空题(共8小题,3*8=24) 11. 64的算术平方根是________.12.“垂直于同一条直线的两条直线互相平行”这个命题的条件是____________________________.13.为参加梅州市初中毕业生升学体育考试,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)为8,8.5,8.8,8.5,9.2.这组数据的众数是________,中位数是________,方差是________.14.二元一次方程组⎩⎪⎨⎪⎧9x +4y =1,x +6y =-11的解满足2x -ky =10,则k 的值为_______. 15.某校八年级学生有160人,已知男生人数比女生人数的2倍少50,设男生、女生的人数分别为x ,y ,根据题意可列方程组是:_____________________16. 四个命题:①对顶角相等;②同位角相等;③全等三角形的对应角相等;④两点之间线段最短.其中真命题有________个.17.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为________.18.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,点A 在x 轴上,点O ,B ,B ,B ,…都在正比例函数y =kx 的图象l 上,则点B 的坐标是__________________.三、解答题19. (8分)计算:(1)|3|-4+(-1000)0;(2)(2-5)(2+5)+(2-2)2-12.20.(8分)解方程组:⎩⎪⎨⎪⎧x +y +z =8,x -y =1,2x -y +z =15.21.(8分)如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y 轴交于(1)求这两个函数的表达式;(2)求△AOB的面积S.22.(10分)如图,已知∠1=142°,∠ACB=38°,∠2=∠3,FH⊥AB于H,问AB与CD是否垂直?并说明理由.23.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用A型车3辆,B型车5辆,一次运完,且恰好每辆车都载满货物,请求出该物流公司有多少吨货物要运输.24. (10分))新星公司从某大学应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分,有4位应聘者的得分如下表所示:(1)求出4位应聘者的总分;(2)就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出4人三项所得分数的方差;25.(12分)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月电费y(元)与用电量x(kW•h)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,填写下表:(2)小明家某月用电120 kW•h,需交电费________元;(3)求第二档每月电费y(元)与用电量x(kW•h)之间的函数表达式;(4)每月用电量超过230 kW•h时,每多用1 kW•h电要比第二档多付电费m元,小刚家某月用电290 kW•h,交电费153元,求m的值.)参考答案1-5DBDDC 6-10DBCCD 11.2 212. 两条直线垂直于同一条直线13.8.5;8.5;0.15614. 415.⎩⎪⎨⎪⎧x +y =160,x =2y -50 16. 317.18°或36°18. (2019,20193)19. 解:(1)原式=3-2+1=2;(2)原式=4-5+6-42-22=5-922. 20. 解: ⎩⎪⎨⎪⎧x +y +z =8,①x -y =1,②2x -y +z =15.③由②得x =y +1.④把④分别代入①③,得2y +z =7,y +z =13.解方程组⎩⎪⎨⎪⎧2y+z =7,y+z =13. 得⎩⎪⎨⎪⎧y =-6,z =19.. 把y =-6代入④,得x =-5.∴原方程组的解是⎩⎪⎨⎪⎧x =-5,y =-6,z =19.21. 解:(1)设正比例函数的解析式为y=k 1x ,一次函数的图象的解析式为y=k 2x-5,将A(3,4)代入两个解析式,解得k 1=43,k 2=3 所以直线OA 的表达式为y =43x ,直线AB 的表达式为y =3x -522. 解:AB 与CD 垂直.理由如下:∵∠1=142°,∠ACB =38°,∴∠1+∠ACB =180°.∴DE ∥BC.∴∠2=∠DCB.又∵∠2=∠3,∴∠3=∠DCB.∴HF ∥CD.又∵FH ⊥AB ,∴CD ⊥AB.23. 解:(1)设A 型车1辆载满运货x 吨,B 型车1辆载满运货y 吨,由题意得⎩⎪⎨⎪⎧2x +y =10,x +2y =11, 解得⎩⎪⎨⎪⎧x =3,y =4. 答:1辆A 型车载满运货3吨,1辆B 型车载满运货4吨.(2)依题意,得3×3+5×4=29(吨).答:该物流公司有29吨货物要运输.24. 解:(1)应聘者A 总分为85×50%+85×30%+90×20%=86(分);应聘者B 总分为85×50%+85×30%+70×20%=82(分);应聘者C 总分为80×50%+90×30%+70×20%=81(分);应聘者D 总分为90×50%+90×30%+50×20%=82(分).(2)4位应聘者的专业知识测试的平均分数为x 1=(85+85+80+90)÷4=85(分),方差为:s 12=12.5, 4位应聘者的英语水平测试的平均分数为x 2=(85+85+90+90)÷4=87.5(分),方差为:s 22=6.25, 4位应聘者参加社会实践与社团活动等的平均分数为x 3=(90+70+70+50)÷4=70(分),方差为:s 32=200.25. 解:(1)140<x≤230;x >230(2)54元(3)设第二档每月电费y(元)与用电量x(kW•h)之间的函数表达式为y =ax +c ,将点(140,63),(230,108)的坐标分别代入,得⎩⎪⎨⎪⎧140a+3=63,230a+c =108. 解得⎩⎪⎨⎪⎧a =12,c =-7.y=12x-7(140<x≤230).(4)由(3)得,当140<x≤230时,y=12x-7,所以第二档电费为0.5元/(kW•h).290-230=60(kW•h),153-108=45(元),45÷60=0.75[元/(kW•h)],故m=0.75-0.5=0.25.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O y (微克/毫升) x (时) 3 14 8 4八年级上册试题一、填空题1、设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a , 则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

3、在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=α,则∠A=_________。

4、直角三角形两锐角的平分线交角的度数是 。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。

6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )A.m °B.2m °C.(90-m)°D.(90-2m)°2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( ) A . 8 3≤y ≤ 64 11 B . 64 11≤y ≤8 C . 8 3≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )A.5种B. 6种C. 7种D.8种 5、在△ABC 中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( ) A.23y x =-- B.26y x =-- C.23y x =-+ D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- 动点P 沿9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )O 1xy-2y =k 2x +c y =k 1x +bxyOBA2y x =-10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( ) A.5个 B.6个 C.7个 D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距.蚌埠的路程.....为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、 排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。

② 如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量。

4、如图,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M .(1)直接写出直线L 的解析式;(2)设OP t ,OPQ △的面积为S ,求S 关于t 的函数关系式.40L 15、探索:在如图①至图③中,三角形ABC的面积为a,(1)如图①,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S,则S1=______(用含a的代数式表示);(2)如图②,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S,则S2= (用含a的代数式表示)并写出理由;(3)在图②的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图③),若阴影部分的面积为S3,则S3=______(用含a的代数式表示)发现:象上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图③),此时,我们称△ABC向外扩展了一次,可以发现,扩展后得到的△DEF的面积是原来△ABC面积的____倍。

应用:去年在面积为10m2的△ABC空地上栽种了某种花,今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图④)。

求这两次扩展的区域(即阴影部分)面积共为多少m2?6、如图:已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,求∠DAE的度数。

7、如图:△ABC中,O是内角平分线AD、BE、CF的交点。

⑴求证:∠BOC=90°+21∠A ;ABE DC⑵ 过O 作OG ⊥BC 于G ,求证:∠ DOB=∠GOC 。

答案见下页1、2〈c 〈42、⎪⎭⎫ ⎝⎛-441,或⎪⎭⎫ ⎝⎛-447,、 3、01802-α 4、045或01355、4≥a 注意:一次函数图象是直线,但直线不一定是一次函数。

如直线02=+y ,03=-x6、060或01207、②8、20BADCB BDCDA CB1、解:(1)S 1=100t …………………………………………………………………………(3分) (2) ① ∵S 2=kt+b ,依题意得t=9时,S 2=0,……(4分) ∵t=2,S 2=560 ∴⎩⎨⎧=+=+560209b k b k :⎩⎨⎧=-=72080b k ………………………………………(7分)② (解法一)由①得,S 2=-80t+720A BCD E F G令S 1=S 2,得100t=-80t+720,解得t=4 ……(9分)当t <4时,S 2>S 1 , ∴S 2-S 1<288 …………………………(11分) 即(-80t+720)-100t <288 , -180t <-432∴ 180t >432,解得t >2.4 ……………………………(12分)∴ 在两车相遇之前,当2.4<t <4时,两车的距离小于288千米。

…………(13分) (解法二) 由①得,S 2=-80t+720, 令t=0,∴S 2=720, 即王红所乘汽车的平均速度为9720=80(千米/时)…………………………………(8分) 设两辆汽车t 1小时后相遇,∴100t 1+80t 1=720,解得t 1=4 ……………………(9分) 又设两车在相遇之前行驶t 2小时后,两车之距小于288千米,则有720-(100t 2+80t 2)<288 …………(11分)解得:t 2>2.4 ………(12分)∴在两车相遇之前,当2.4<t <4时,两车的距离小于288千米。

……………(13分)2、解:(2)第二组由甲地出发首次到达乙地所用的时间为:[]0.81082)28(28=÷=÷+⨯÷(小时)第二组由乙地到达丙地所用的时间为:[]0.21022)28(22=÷=÷+⨯÷(小时)(3)根据题意得A 、B 的坐标分别为(0.8,0)和(1,2),设线段AB 的函数关系式为:b kt S +=2,根据题意得: ⎩⎨⎧+=+= 28.00b k bk 解得:⎩⎨⎧==-810b k ∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t 的取值范围是:10.8≤≤t .3、解:(1)4分钟,40升(各一分) (2)y=40-19(x-15)=-19x+325 , (3分) 2升 (1分)4、(1)1y x =- ··························································································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ················································································ 3分 ②当121≥t ,即2t ≥时,111122QM t t =-=-,∴11122OPQS t t⎛⎫=-⎪⎝⎭△.∴1110222111 2.22t t tSt t t⎧⎛⎫-<<⎪⎪⎪⎝⎭=⎨⎛⎫⎪-⎪⎪⎝⎭⎩,,,≥4分5、a 2a 6a 7 7(7a)×10 m26注意:⑴书写数学符号语言一定要规范!⑵在不会引起误会情况下,角尽量用∠1、∠2、∠3、∠4、…形式表达,或用表示角顶点的一个字母表示,如∠A、∠B、∠C、∠D、…。

相关文档
最新文档