微生物的代谢调节
微生物的代谢调节

1.改变代谢途径
改变分支途径流向,阻断其他产物合成,提高目标 产物产量。 ①加速限速反应
如:头孢霉素C的代谢工程菌的构建。青霉素N积累,下一酶克隆、导
入、产量上升25%;
②改变分支途径流向
提高目的产物支路的酶活性,占据优势、提高产量;
③构建代谢旁路
将抑制物分解或转化成影响小的其他物质;如:乙酸→乙醇(乳酸)。
第三章 微生物的代谢调节 和代谢工程
提纲
微生物的代谢调节类型和自我调 节 酶活性调节 酶合成调节 分支生物合成途径的调节 能荷调节 代谢调控 次级代谢与次级代谢调节 代谢工程
微生物的代谢调节和代谢工程
微生物细胞有着一整套可塑性极强和极精确的 代谢调节(regulation of metabolism)系统,
四、分支生物合成途径的调节
1.同 功 酶 调 节:催化相同反应,但酶分子结构有差异; 2.协同反馈调节:一个不能少;
3.累加反馈调节:按比例累加,无协同效应,无拮抗作用;
4.增效反馈调节:1+1>2; 5.顺序反馈调节:按①→②→③顺序逐步抑制; 6.联合激活或抑制调节:途径产物各自调节,同一中间产
物
7.酶的共价修饰:一酶两形式,活力有差异,关键在有无共
价连接物(腺苷酰基)。
五、能荷调节
细胞的能荷计算式:
[ATP]+1/2[ADP] 能荷=—————————— [ATP]+ [ADP]+[AMP]
能荷高时,ATP的酶合成系统受抑制, ATP消耗酶系统被活化。 呈抑制与活化的中间状态的能荷大约是 0.85,此时两种酶系统达到平衡。
初级代谢产物的调节
A有共用合成途径,反馈抑制;B初产物参与次合成,自反馈而影响。
第五章 微生物工程的代谢调节和代谢工程

二、酶活性的调节
代谢调节是指在代谢途径水平上酶活性 和酶合成的调节。 酶活性调节: 激活剂→酶激活作用; 抑制剂→酶抑制作用; 可以是外源物,也可是自身代谢物。
1、酶激活作用与抑制作用
微生物代谢中,普遍存在酶既有激活作 用又有抑制作用的现象。 如:天门冬氨酸转氨甲酰酶受ATP激活, 受CTP抑制(终产物)。 大肠杆菌糖代谢过程中,许多酶都有 激活剂和抑制剂(表5-1)。共同控制糖 代谢。
酶的共价修饰。
生产目的:高浓度地积累人们所期望的产物。 办法:①育种,得到根本改变代谢的基因突变株;
②控制微生物培养条件,影响其代谢过程。 代谢工程:利用基因工程技术,扩展和构建、连接,形 成新的代谢流。(也称途径工程)
一、微生物的代谢类型和自我调节
1.代谢类型:分解代谢和合成代谢。 相互关联,相互制约。 细胞优先合成异化可维持更快生长的化合物 的酶。利用完后,再合成下一个酶。 2.微生物自我调节部位: ①细胞膜的屏障作用(多数亲水分子)和通道; ②控制通量,调节酶量和改变酶分子活性; ③限制基质的有形接近,可存在于不同细胞 器各个代谢库中,其酶量差别大。
价连接物(腺苷酰基)。
五、能荷调节
细胞的能荷计算式:
[ATP]+1/2[ADP] 能荷=—————————— [ATP]+ [ADP]+[AMP]
能荷高时,ATP的酶合成系统受抑制, ATP消耗酶系统被活化。 呈抑制与活化的中间状态的能荷大约是 0.85,此时两种酶系统达到平衡。
六、代谢调控
根据代谢调节理论,通过改变发酵工艺条 件(温度、PH、风量、培养基组成)和菌 种遗传特性,达到改变菌体内的代谢平 衡,过量产生所需产物的目的。 1.发酵条件的控制 2.改变细胞透性 3.菌种遗传特性的改变
3、微生物的代谢调节

B 环状3‘,5’-腺苷单磷酸(C‘AMP)的不足
支持低生长速率的碳源比迅速利用的碳源造成细 胞内更高的C‘AMP浓度。
环化AMP在细胞内的浓度与供给ATP 的多少成反 比。环状AMP在真核生物中不仅在酶的表达方面而且 在细胞分化方面起作用。
应当注意:一种能源可起分解代谢阻遏物作用的 效能不取决于它的特有的化学结构,只取决于它作为 碳和能源的效率。 在一种生物中可最为有效地起分解代谢阻遏物作 用的化合物可能在另一生物中并不起作用。
B 分枝途径的终点产物阻遏作用
分枝生物合成途径上的酶合成的阻遏作用机制很复 杂。如表3-3所示。
C 细菌调节机制的多样性
从生化观点看大多数微生物的生物合成途径都是 相同的。但是同一途径在不同的生物中可能受到不同 方式的调节。这种调节型式往往存在族的特异性。 从生化角度看各种不同的细菌类群的分解代谢途 径亦是相同的,其调节方式既不相同又呈族特异性。
3.8 微生物代谢的协调作用
为了生长和维持生命活力,微生物必须进行大量的 酶催化反应。以提供能量和中间体,又转化为大约 2000种蛋白质(DNA和三种类型的RNA,粘多肽,多 糖,辅酶和脂质)。它再利用这些高聚物来形成细胞 的结构(核、核辩体、细胞壁、细胞膜和线粒体)。
尽管其基因型是稳定的,微生物在改变其成份和 代谢以响应环境的变化方面具有惊人的灵活性。
细胞大分子成分随生长速率的变化可解释如下:
快速生长的细胞必须比缓慢生长的细胞合成蛋白 质快得多,这种高速蛋白质合成要求细胞含有更多的 核糖体,因单位核糖体的蛋白质合成速率是不变的。 细菌具有调整它的核糖体含量的能力。这对在环 境条件变化下维持高速率生长有着很重要的意义。 对核糖体的补给不足常会明显地限制生长速率, 核糖体的过量也会这样。
微生物的代谢可以通过什么方式调节

微生物的代谢可以通过什么方式调节引言:微生物是一类微小的生物体,包括细菌、真菌、病毒等。
微生物的代谢是指微生物体内化学过程的总和,包括营养物质的摄取、分解、合成和转化等。
微生物的代谢方式的调节对于微生物的生长、繁殖以及产生有用的代谢产物具有重要意义。
本文将介绍微生物代谢调节的几种方式。
概述:微生物的代谢调节可以通过包括基因表达调控、信号传导、环境响应、代谢产物反馈调控以及细胞内能量平衡等多种方式来实现。
这些调控方式可以使微生物根据外界环境的变化,调整代谢途径,以适应不同的生存条件。
正文:一、基因表达调控1. 转录调控:微生物的代谢调节最基本的方式是通过转录调控。
微生物通过启动子区域的结构特征和转录因子的结合来调控基因的转录,从而调节酶的合成。
例如,当微生物需要产生某种特定酶时,相关的转录因子被激活并与启动子结合,启动基因的转录。
2. 翻译调控:除了通过转录调控来调节基因的表达外,微生物还可以通过翻译调控来影响蛋白质的合成水平。
这可以通过调控转录后修饰、mRNA稳定性和翻译效率等途径实现。
二、信号传导1. 孤立态信号传导:微生物可以通过发送和接收特定的信号分子来进行细胞间的通信。
这些信号分子可以是激素、激活因子或抑制因子等,它们通过特定的信号传导通路传递信号,从而调节代谢途径的活性。
2. 确定信号:微生物还可以通过环境感知来进行代谢调节。
例如,当微生物感知到特定的环境因素,如温度、pH值、氧气浓度等发生变化时,它们可以通过转导途径来调整代谢途径以适应外界环境的改变。
三、环境响应1. 高温应激响应:高温是微生物生长和代谢的重要限制因素之一。
为了适应高温环境,微生物可以通过调节热休克蛋白表达、膜脂组分改变以及调节酶的热稳定性等途径来进行代谢调节。
2. 氧气响应:氧气是微生物代谢的重要底物和能量供应者。
微生物可以通过调节酶的氧气需求以及调整氧气通透性等途径来适应不同氧气浓度的环境。
四、代谢产物反馈调控1. 酶的反馈抑制:微生物的代谢途径中,常常存在着反馈抑制机制。
工艺学-微生物代谢调节

F (过量) 从以上生物合成途径看,是一种完全无关的氨基酸的控制, 产物 F 的过量积累会抑制 E 的合成。 这种调节方式只是在F浓度很高的情况下(与生理学浓度 相比)才能显示抑制作用,且是部分抑制或阻遏。
反馈阻遏与反馈抑制的比较
代谢控制育种(定向育种)
运用代谢控制理论,人为地改变菌种的代谢调节机制或避 开微生物固有代谢调节,使得微生物体内的代谢流按照人 们所需要的方向进行,过量生产目标代谢产物。 1、营养缺陷型突变菌株的筛选 在营养缺陷型突变菌株中,生物合成途径中的某一步发生了酶 缺陷,合成反应不能完成,末端产物不能积累,末端产物的反 馈调节作用被解除,只要在培养基中限量加入所要求的末端产 物,克服生长障碍,就能积累中间产物。
微生物初级代谢调节
铵阻遏 氮分解产物的调节作用指的是被菌体迅速利用的氮源(特别 是铵)能阻抑某些参与含氮化合物代谢的酶的合成。 如在初级代谢中,它能阻遏许多芽孢杆菌的蛋白酶的合成。 通常受到 NH4+ 阻遏的酶有:亚硝酸还原酶、硝酸还原酶、 固氮酶、乙酰胺酶、脲酶、黄嘌呤脱氢酶、组氨酸酶、天 冬酰胺酶等。
葡萄糖效应
碳分解产物的阻抑作用。
当大肠杆菌培养于含有葡萄 糖和乳糖的培养基中,菌体 出现两次生长旺盛期,这是 菌首先利用葡萄糖进行生长 繁殖,在葡萄糖耗尽后,过 一段时间菌体才开始利用乳 糖。在上述培养基中即使加 入乳糖酶诱导物,葡萄糖没 耗尽,利用乳糖的酶系也不 能合成。碳分解产物的阻抑 作用普遍存在于微生物的生 化代谢中。
(1)调节基因或操纵基因发生突变,使产生的阻遏蛋白不能再和终产物 结合或结合后不能作用于已突变的操纵基因,反馈阻遏作用被解除。 (2)由于编码酶的结构基因发生突变,使由结构基因转录出来的变构酶 不能再和终产物结合但活力中心不变,仍具有催化活性。
微生物代谢的调节和机制

微生物代谢的调节和机制微生物是生态系统中不可或缺的一部分,其代谢作用对生态系统的稳定和功能具有重要的影响。
微生物代谢的调节和机制是研究微生物生理生态的重要课题之一。
在本文中,我们将介绍微生物代谢的调节和机制的基本概念和最新研究进展。
一、微生物代谢的基本概念微生物代谢是生物化学过程中,利用有机或无机物质产生能量和产物的过程。
微生物代谢主要包括两个方面:有氧代谢和厌氧代谢。
有氧代谢是指微生物在氧气的存在下进行代谢,利用氧气作为电子受体,通过氧化还原反应分解有机物质,同时产生ATP(三磷酸腺苷)、二氧化碳和水。
常见的有氧代谢途径有三种:糖酵解、柠檬酸循环和呼吸链。
其中,糖酵解是最常见和最基本的有氧代谢途径,从葡萄糖开始,通过一系列反应,最终产生ATP和乳酸、酒精等产物。
厌氧代谢是指微生物在缺乏氧气条件下进行代谢,直接利用有机物质产生能量和产物。
厌氧代谢不需要氧气作为电子受体,经过不同的途径进行代谢,产生的产物也不同。
其中最常见的厌氧代谢途径包括乳酸发酵、酒精发酵、醋酸发酵等。
二、微生物代谢的调节微生物所处的环境是一个复杂的生态系统,微生物的代谢受到多种生物和非生物因素的调节和限制。
微生物代谢的调节主要包括以下几个方面:1. 底物促进或抑制微生物的代谢需要能量和底物,底物在一定程度上可以影响微生物的代谢速率和代谢产物。
底物的促进和抑制作用与微生物代谢路径的不同而异。
例如,乙酰辅酶A是柠檬酸循环的重要底物,而且可以在某些菌株中通过自我诱导提高柠檬酸循环的速率和产氢量。
另一方面,糖类和蛋白质的浓度过高时,会抑制糖酵解途径的进行。
2. pH 值的影响菌株所处环境的pH 值是微生物代谢的重要控制因素之一。
pH值对酶催化作用的影响可以影响代谢途径和代谢速率。
通常来讲,pH值在4-10范围内是适宜微生物生长的,但是不同的菌株对 pH值要求不同,例如有些产酸菌需要较低的pH值才能正常生长代谢。
3. 温度的影响微生物的代谢速率和代谢产物也受到环境温度的影响,不同的微生物对温度要求不同。
微生物代谢调节

两种调节的对比
酶合成的调节 酶活性的调节
通过酶量的变化 调节对象 控制代谢速率
不 同 点
控制酶活性,不涉 及酶量变化 快速、精细
代谢调节,它调节 酶活性
调节效果
调节机制
相对缓慢
基因水平调节, 调节控制酶合成
相同 点
细胞内两种方式同时存在,密切配合,高效、准 确控制代谢的正常进行。
反馈阻遏与反馈抑制的比较
适应酶又可分为诱导酶和阻遏酶
• 诱导酶 只有当其分解底 物或有关诱导物存在 时才,会合成的酶。
• 机制
诱导物与一种调节 基团编码的活性的阻 遏物可逆地结合,从 而解除后者对该酶结 构基团的转录的阻塞。
阻遏酶及其机理
其调节基因产物是一种阻遏蛋白,无活性,仅在有辅阻遏物(终产物) 存在下可转化为抑制剂 (“锁”),与操纵基因结合,阻止转录进行。
1.控制营养物质透过细胞膜进入细胞 2.通过酶的定位控制酶与底物的接触 3.控制ห้องสมุดไป่ตู้谢物流向(酶活性与酶量调节)
第三节 酶活性的调节
一、调节酶 静态酶:一般性催化;反应可逆;速度快; 调节酶:通过改变现成的酶分子活性来调节新陈代谢的速率的方式。是酶 分子水平上的调节,属于精细的调节。限速反应;不可逆;速度慢 (一)调节方式:包括两个方面: 1、酶活性的激活:在代谢途径中后面的反应可被较前面的反应产物所促 进的现象;常见于分解代谢途径。 2、酶活性的抑制:包括:竞争性抑制和反馈抑制。 概念:反馈:指反应链中某些中间代谢产物或终产物对该途径关键酶活性 的影响。 凡使反应速度加快的称正反馈; 凡使反应速度减慢的称负反馈(反馈抑制); 反馈抑制——主要表现在某代谢途径的末端产物过量时可反过来直接抑制 该途径中第一个酶的活性。主要表现在氨基酸、核苷酸合成途径中。 特点:作用直接、效果快速、末端产物浓度降低时又可解除
微生物代谢调节和代谢工程

代谢工程的应用实例
总结词
代谢工程的应用实例包括生产抗生素、生物燃料、食 品添加剂等。例如,通过代谢工程手段提高酵母菌生 产乙醇的能力,提高青霉素的生产效率等。
详细描述
代谢工程在工业生产中有着广泛的应用,例如在制药 行业中,通过代谢工程可以生产抗生素、激素等生物 药物。在燃料行业,可以通过代谢工程手段改良微生 物,使其能够生产生物燃料,如乙醇、丁醇等。此外 ,在食品加工业中,代谢工程也用于生产食品添加剂 、香精、色素等。这些应用实例证明了代谢工程在提 高微生物代谢效率、优化生物产品产量和性质方面具 有巨大的潜力。
微生物发酵过程的挑战和机遇
发酵过程优化
针对微生物发酵过程进行优化,提高发酵效率和 产物产量。
新型发酵技术
开发新型的发酵技术,如无细胞发酵、光合发酵 等,实现更高效、环保的微生物发酵生产。
ABCD
基因组编辑技术
利用基因组编辑技术,对微生物进行精确的基因 修饰和改造,提高其发酵性能。
生物基产品的开发
利用代谢工程技术,开发具有广泛应用价值的生 物基产品,如生物燃料、生物塑料等。
要的地位,并广泛参与了地球生物地球 题和推动工业生产等方面都具有重要的
化学循环。
意义。
微生物基因组学的研究方法
基因组测序
通过全基因组测序技术,获取微生物 的基因组序列信息,是研究微生物基 因组学的基础。
基因组组装
将测序得到的序列数据进行组装,形 成完整的基因组序列,是基因组学研 究的重要步骤。
基因注释
微生物代谢调节在工业生物技术、生物医药、环境保护等领域具有广泛的应用价值,如提高微生物产物 的产量、降低生产成本、优化微生物处理污染物的能力等。
微生物代谢调节的机制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等生物 —— 三级水平代谢调节
• 细胞水平代谢调节 • 激素水平代谢调节
高等生物在进化过程中,出现了专司调节 功能的内分泌细胞及内分泌器官,其分泌的激 素可对其他细胞发挥代谢调节作用。 • 整体水平代谢调节
在中枢神经系统的控制下,或通过神经纤维及 神经递质对靶细胞直接发生影响,或通过某些激 素的分泌来调节某些细胞的代谢及功能,并通过 各种激素的互相协调而对机体代谢进行综合调节
② 催化单向反应不可逆或非平衡反应,它的活性决定 整个代谢途径的方向。
③ 这类酶活性除受底物控制外,还受多种代谢物或效 应剂的调节。
例:糖代谢的关键酶
酶活调节机理
• 调节酶:关键酶、限速酶,是酶分子结 构(或构象)或活性可以受有关调节因 子的影响而变化的酶类,催化速度慢
• 种类:共价修饰酶,变构酶,同工酶, 多功能酶
(allosteric effector) • 变构激活剂allosteric effector
——引起酶活性增加的变构效应剂。
• 变构抑制剂allosteric effector
——引起酶活性降低的变构效应剂。
2 分子结构特点
• 多亚基、多配基结合特点 • 除具有活性中心外,还有调节中心
3. 变构调节的机制(变构作用及协同效应)
多酶体系在细胞内的分布
多酶体系 三羧酸循环 氧化磷酸化
糖酵解 磷酸戊糖途径
糖异生 糖原合成
分布 线粒体 线粒体 胞液 胞液 胞液 胞液
多酶体系
脂酸 氧化 脂酸合成 胆固醇合成 磷脂合成 DNA、RNA合成
分布
线粒体 胞液
内质网、胞液 内质网 细胞核
多酶体系 蛋白质合成 多种水解酶 尿素合成 血红素合成
分布 内质网、胞液
溶酶体 线粒体、胞液 线粒体、胞液
• 酶的隔离分布的意义 —— 避免了各种代谢途径互相干扰。
•代谢途径是一系列酶促反应组成的,其速 度及方向由其中的关键酶决定 。 •关键酶催化的反应具有以下特点:
① 速度最慢,它的速度决定整个代谢途径的总速度, 故又称其为限速酶(limiting velocity enzymes)。
消化吸收 中间代谢 废物排泄
• 各种物质代谢之间互有联系,相互依存。
2、代谢调节
内外环境 不断变化
影响机体代谢
适应环境 的变化
机体有精细的调节 机制,调节代谢的 强度、方向和速度
3、各组织、器官物质代谢各具特色
不同的组 织、器官
结构不同
酶系的种类、 含量不同
代谢途径不同、 功能各异
4、各种代谢物均具有各自共同的代谢池
• V对[S]的变化有一个很窄的敏感范围
解释:第一个底物分子与酶 分子中第一个亚基的活性部 位结合之后,使该亚基的构 象发生变化,此亚基的构象 变化引起相邻第二个亚基的 构象发生变化,从而提高了 第二个亚基的活性部位对第 二个底物分子的结合力(亲 和力)。其余第三、第四个 亚基对第三、第四个底物分 子的结合,依次类推
• 体内调节可发生在不同的层次上,一般分 为三种类型:
• 1.细胞水平的调节---通过对细胞内酶 的调节来实现。
• 2.激素水平的调节---协调不同细胞、 组织与器官之间的代谢。
• 3.神经系统的调节---在神经系统参与 下由酶和激素共同构成的调节网络。
细胞水平的调节
• 细胞水平的调节主要是通过对酶的控制来实 现,因此又称为酶调节,包括酶在胞内的分 布差异、酶活性的改变及酶量的变化
例如
消化吸收的糖 血
各
肝糖原分解
种 组
糖异生
糖
织
5、ATP是机体能量利用的共同形式
营养物 分解
释放 能量
ADP+Pi
直
接
供
ATP
能
6、NADPH是合成代谢所需的还原当量
例如
磷酸戊糖途径
NADPH + H+
乙酰CoA
脂酸、胆固醇
• 代谢调节普遍存在于生物界,是生物的重 要特征。
单细胞生物
主要通过细胞内代谢物浓度的 变化,对酶的活性及含量进行调节 ,这种调节称为原始调节或细胞水 平代谢调节。
变构酶
催化亚基 调节亚基
变构效应剂: 底物、终产物 其他小分子代谢物
变构效应剂 + 酶的调节亚基
疏松
紧密
酶的构象改变
亚基聚合
亚基解聚
酶分子多聚化 酶的活性改变
(激活或抑制 )
• 协同效应:一个亚基与其配基结合 后,能影响此寡聚体中另一亚基与 配基的结合能力。
• 有正协同,负协同
• S型v- [S]曲线
微生物的代谢调节
• 概述 • 细胞结构对代谢途径的分割控制 • 酶活性调节机理 • 酶量调节机理 • 分支合成代谢途径的几种反馈调节模式 • 能荷对糖代谢的调节及巴斯德效应的解释 • 代谢控制与发酵工业生产
第一整体性
水 脂类
糖类
无机盐
蛋白质
维生素
变构酶及酶学变构调节机理
关键酶的变构调节
1. 变构调节的概念 小分子化合物与酶分子活性中心以
外的某一部位特异结合,引起酶蛋白分 子构象变化,从而改变酶的活性,这种 调节称为酶的变构调节或别构调节
•被调节的酶称为变构酶或别构酶
(allosteric enzyme)
•使酶发生变构效应的物质,称为变构效应剂
• 酶量变化的调节
• 细胞内酶的浓度的改变也可以改变代谢 速度。其中主要是对基因表达的调节, 活化基因则合成相应的酶,酶量增加; 钝化基因则基因关闭,停止酶的合成, 酶量降低。这种调节方式为迟缓调节, 所需时间较长,但作用时间持久
细胞结构对代谢途径的分割控制
(一)细胞内酶的隔离分布
• 代谢途径有关酶类常常组成多酶体系,分布于 细胞的某一区域 。
• 基本的调节机理:变构调节,共价修饰 调节,解聚和聚合作用
代谢调节主要是通过对关键酶活性的调节而实现的。
• 快速代谢
数秒、数分钟
变构调节
(allosteric regulation)
通过改变酶的活性
化学修饰调节
• 迟缓代谢
(chemical modification)
数小时、几天
解聚、聚合调节
通过改变酶的含量
• 区域定位的调节 • 细胞内的不同部位分布着不同的酶,称为
酶的区域定位或酶分布的分隔性,这个特性 决定了细胞内不同的部位进行着不同的代谢。 这种区域化的分布,使得各种代谢途径不致 互相干扰,而又彼此协调。
•
• 酶活性的调节
• 通过控制酶的活性来控制代谢速度。 对酶的控制主要是由改变酶的分子结构 来实现的